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Agenda

¢ WIiiProfiler introduction
— What it provides

¢ WiiProfiler Methodology
— Game Iintegration
— V2.0 features

¢ WiiProfiler v3.0 features
— Sampling based on performance counters
— Instrumenting using performance counters
— Tracking user data
— Code coverage
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Introduction

¢ Measures CPU function performance
— How much time spent in each function
— Cycles, instructions, branches, cache misses
— Function call tree
— Function code coverage
— Frame rate performance

¢ Free tool created exclusively for Wii
— Version 1.0 (May 2007)
— Version 2.0 (April 2008)
— Version 3.0 (Open BETA now, Final Summer 2009)

¢ Requirements
— NDEV and minor programmer integration
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WiiProfiler v2.0
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WiiProfiler Design Methodology

¢ Extremely fast and easy to integrate

— Only a couple required function calls to library functions
(10 minute integration)

¢ Extremely fast and easy to operate
— Minimalist interface that just works
— Deep functionality with little cognitive overhead

¢ Effortless visual exploration of data
— Use graphs to maximize comprehension
— Frame-based graphs show problem frames
— Easy to compare and interpret



Methodology:
Fast and easy to integrate



Code Integration: Step 1

¢ Link against "wiiprofiler.a"




Code Integration: Step 2

Include the header file:
#include <revolution/wiiprofiler.h>
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Code Integration: Step 3

WIIPROFILER Init(void * bufferMEM2,u32 sizelnBytes,
BOOL doesGameWaintForRetrace);

¢ Call init function with a MEMZ2 buffer
— At least 8MB, as large as 100MB
— Larger buffer = longer profiling

¢ Answer the question:
— Does your main loop wait for the vertical retrace?

Wii



Code Integration: Step 4

while(true) _
{ //Top of main loop Add This

/

WI IPROFILER MarkFrameBegin();

//Game code, etc.




Methodology:
Fast and easy to operate



Only Two Choices

¢ Connect to NDEV ¢ Open a profile

Technical Conference 2009
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Demo:
Fast and Easy to Operate

¢ Statistical sampling
— Various rates available, Simple vs Full
— Accuracy vs Overhead/Size tradeoff

¢ Start and Stop

¢ Open and Save

g J =R

¢ Settings and right click menus
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Methodology:
Effortless Visualization



Demo:
Effortless Visualization

¢ Functions
— Sparklines
— Self vs Total
— Hide insignificant

GetSufacelayerPotent]

p— ormal
‘ Ca” tree eXpIO ration — .-I:!:..'-"ZEE;Z SortM arkers(std: vector<MarkerC
— Reverse call tree

¢ Statistical graph
— Click functions

— Zoom, scroll, choose
frame

— Highlight Band
— Range and average
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Demo:
Effortless Visualization

¢ Frame rate graph
— Examine frame rate spikes
—Events

¢ Resort functions (new Iin v3.0)
— Sort based on selected frame
— Sort based on average (default)
— Sort alphabetically
— Continuously resort




Performance Counter
Factoid Theater

¢ 4 CPU performance counters in Broadway CPU
— Reset, start, stop, and read in code

¢ Reset counters
— PPCMtpmc1(0); PPCMtpmc2(0); PPCMtpmc3(0); PPCMtpmc4(0);

¢ Start counters
— PPCMtmmcrO( <counterl> | <counter2>);
— PPCMtmmcrl( <counter3> | <counter4=>);

¢ Stop counters
— PPCMtmmcrO( O0);
— PPCMtmmcrl( 0 );

¢ Read counters
— PPCMfpmc1(); PPCMfpmc2(); PPCMfpmc3(); PPCMfpmc4();

Technical Conference 2009
Wii



Performance Counter
Factoid Theater

¢ Performance counter event examples (—60 total)

— PMC1 _CYCLE # processor cycles
— PMC1 L2 HIT # of accesses that hit L2
— PMC1 L1 MISS # of accesses that miss L1

— PMC1 _Bx UNRESOLVED # of branches unresolved
— PMC1 _Bx STALL CYCLE # of cycles stalled due to branches

— PMC2_CYCLE # processor cycles

— PMC2_INSTRUCTION # of instructions completed

— PMC2_IC_MISS # of L1 instruction cache misses
— PMC2_L1 CASTOUT # of L1 castouts to L2

— PMC2_Bx_ FALL THROUGH # of fall through branches

¢ Select one PMC1, PMC2, PMC3, PMC4 at a time
¢ Bracket code (Reset, Start, Stop) and measure results

Wii



Performance Counters In
WiiProfiler v3.0

V3.0

¢ Use performance counters to
— Statistically sample functions
— Instrument individual functions




Performance Counter
Statistical Sampling

¢ Sample by
— Mispredicted branches

Jndecided branches
~loating point instructions

|1 or L2 instruction misses
1 or L2 data misses
-1 writes to L2

_2 writes to memory

Data Instruction
L1 Cache L1 Cache
32KB 32KB

Comblned
L2 Cache

256KB

Main Memory

MEM1 MEM2
24MB 64MB




Performance Counter
Statistical Sampling

¢ Choose a sampling rate
— Between every 10 and every 100K

¢ Too often (every 10 to 100)
— Large overhead
— Can be less accurate (cache pollution)
— Fills up buffer fast

¢ Often (every 100 to 1K)

— Medium overhead
— Good accuracy

¢ Less often (every 1K to 100K)
— Least overhead
— Most accurate overall (less accurate per frame)




Instrumenting Functions

¢ Choose a class of performance counters
— Cycles only
— Cycles and instructions
— Branch prediction performance
— Why branch prediction failed
— Cache and memory performance
— L1 cache performance
— L2 cache performance
— Outbound cache writes

¢ Explanation of selected in big gray box

¢ Decide:
— Whether or not to also statistically sample by time



Instrumenting Functions:
Branch Prediction Performance

¢ Performance counters selected
— PMC1_Bx_UNRESOLVED PMC3 Bx_ TAKEN
— PMC2_Bx_FALL THROUGH PMC4 Bx_MISSED

¢ Data teased out from these 4 counters
— % of correctly predicted branches
— % of incorrectly predicted branches
— Correctly predicted branches
— Incorrectly predicted branches
— Skipped branches based on prediction
— Taken branches based on prediction
— Branches predicted by hardware
— Branches unconditionally taken
— All branches



Instrumenting Functions:

L1 Cache Performance

¢ Performance counters selected
— PMC1 L1 MISS PMC3 DC MISS
— PMC2 IC MISS PMC4 CYCLE

¢ Data teased out from these 4 counters
— Cycles
— Cycles waiting for memory
— Instruction not found in L1
— Data not found Iin L1
— Memory not found in L1
— Average cycles waiting for memory
— % of time waiting for memory




Instrumenting Functions:
Selecting Functions

¢ Up to 10 functions profiled at a time

¢ 3 ways to select a function
— Choose a Self or Total function
—Drop down list of all game functions
—Choose a function from Code Coverage

¢ Data captured iIs similar to "Total"
— Function call and child calls



Instrumenting Functions:

Profile and Explore

¢ # function calls tracked
¢ # recursive calls tracked

¢ Performance counters
— Total count for performance counter
— Range per frame (max, ave, min)
— Raw call data (might graph slowly)

¢ Helpers
— Expand top level
— Auto-select similar




Tracking User Data

¢ Track any data you want in code
— Track floating point values

¢ WIIPROFILER TrackValue(name, value);
— Will track multiple values per frame

¢ WIIPROFILER TrackAccumulatedValue(name, value);
— Will track one accumulated value per frame

¢ WiiProfiler on PC

— Appears in Instrumented tab
— Graphs in Instrumented Graph tab




Code Coverage

¢ During a profile (or over multiple)
— Which functions get called
— Which functions don't get called

¢ Filter
— Exclude SDK and platform libraries
— Exclude functions with certain prefixes
— Include functions with certain prefixes

¢ Reset button
¢ Instrument button




WiiProfiler v3.0 Release

¢ Open BETA for next 1-2 months
— Sign up and we'll send it to you:
https://www.warioworld.com/wii/wiiprofiler

¢ Final release v3.0 early Summer
— More robust communications layer

— Instrumenting functions
¢ Allow RSO and REL functions
¢ Remove interrupts from data



WiiProfiler Summary

¢ Statistical sampling profiler
— Time and performance counters

¢ Instrument functions
— Using performance counters

¢ Track and graph arbitrary data

¢ Function-based code coverage




Questions?
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Ask me after the presentation
Or e-maill support@noa.com




