
WiiProfiler v3.0WiiProfiler v3.0

Steve Rabin
Principal Software Engineer

Software Development Support Group

AgendaAgendaAgendaAgenda
WiiP fil i t d tiWiiProfiler introduction
– What it provides
WiiP fil M h d lWiiProfiler Methodology
– Game integration

V2 0 f– V2.0 features
WiiProfiler v3.0 features

l b d f– Sampling based on performance counters
– Instrumenting using performance counters

T ki d t– Tracking user data
– Code coverage

IntroductionIntroductionIntroductionIntroduction
Measures CPU function performanceMeasures CPU function performance
– How much time spent in each function
– Cycles, instructions, branches, cache misses
– Function call tree
– Function code coverage
– Frame rate performancep

Free tool created exclusively for Wii
Version 1 0 (May 2007)– Version 1.0 (May 2007)

– Version 2.0 (April 2008)
– Version 3.0 (Open BETA now, Final Summer 2009)

Requirements
– NDEV and minor programmer integrationp g g

WiiProfiler v1.0WiiProfiler v1.0

WiiProfiler v2.0WiiProfiler v2.0

WiiProfiler v3.0WiiProfiler v3.0

WiiProfiler Design MethodologyWiiProfiler Design MethodologyWiiProfiler Design MethodologyWiiProfiler Design Methodology
E t l f t d t i t tExtremely fast and easy to integrate
– Only a couple required function calls to library functions

(10 minute integration)(g)

Extremely fast and easy to operate
Mi i li t i t f th t j t k– Minimalist interface that just works

– Deep functionality with little cognitive overhead

Effortless visual exploration of data
– Use graphs to maximize comprehension
– Frame-based graphs show problem frames
– Easy to compare and interpret

Methodology:Methodology:gygy
Fast and easy to integrateFast and easy to integrate

Code Integration: Step 1Code Integration: Step 1Code Integration: Step 1Code Integration: Step 1

Link against "wiiprofiler.a"

Code Integration: Step 2Code Integration: Step 2Code Integration: Step 2Code Integration: Step 2

Include the header file:
#include <revolution/wiiprofiler.h>

Code Integration: Step 3Code Integration: Step 3Code Integration: Step 3Code Integration: Step 3

WIIPROFILER_Init(void * bufferMEM2,u32 sizeInBytes,

BOOL doesGameWaitForRetrace);BOOL doesGameWaitForRetrace);

Call init function with a MEM2 buffer
– At least 8MB, as large as 100MBAt least 8MB, as large as 100MB
– Larger buffer = longer profiling

Answer the question:
– Does your main loop wait for the vertical retrace?

Code Integration: Step 4Code Integration: Step 4Code Integration: Step 4Code Integration: Step 4

hil ()while(true)

{ //Top of main loop Add This
WIIPROFILER_MarkFrameBegin();

//Game code, etc.

}

Methodology:Methodology:gygy
Fast and easy to operateFast and easy to operate

Only Two ChoicesOnly Two ChoicesOnly Two ChoicesOnly Two Choices

Connect to NDEV Open a profilep p

Demo:Demo:
Fast and Easy to OperateFast and Easy to Operate

Statistical sampling
– Various rates available, Simple vs Full
– Accuracy vs Overhead/Size tradeoff

Start and Stop

Open and Save

Settings and right click menus

Methodology:Methodology:
Effortless VisualizationEffortless Visualization

Demo:Demo:
Effortless VisualizationEffortless Visualization

FunctionsFunctions
– Sparklines
– Self vs Total
– Hide insignificant

Call tree explorationCall tree exploration
– Reverse call tree

Statistical graphStatistical graph
– Click functions
– Zoom, scroll, choose

fframe
– Highlight Band
– Range and average

Demo:Demo:
Effortless VisualizationEffortless Visualization

F hFrame rate graph
–Examine frame rate spikes
–Events

Resort functions (new in v3.0)
Sort based on selected frame–Sort based on selected frame

–Sort based on average (default)
S t l h b ti ll–Sort alphabetically

–Continuously resort

Performance CounterPerformance Counter
Factoid TheaterFactoid Theater

4 CPU performance counters in Broadway CPU4 CPU performance counters in Broadway CPU
– Reset, start, stop, and read in code

R t tReset counters
– PPCMtpmc1(0); PPCMtpmc2(0); PPCMtpmc3(0); PPCMtpmc4(0);

St t tStart counters
– PPCMtmmcr0(<counter1> | <counter2>);
– PPCMtmmcr1(<counter3> | <counter4>);

Stop counters
– PPCMtmmcr0(0);

PPCMtmmcr1(0);– PPCMtmmcr1(0);

Read counters
PPCMfpmc1(); PPCMfpmc2(); PPCMfpmc3(); PPCMfpmc4();– PPCMfpmc1(); PPCMfpmc2(); PPCMfpmc3(); PPCMfpmc4();

Performance CounterPerformance Counter
Factoid TheaterFactoid Theater

P f t t l (60 t t l)Performance counter event examples (~60 total)
– PMC1_CYCLE # processor cycles
– PMC1_L2_HIT # of accesses that hit L2
– PMC1_L1_MISS # of accesses that miss L1
– PMC1_Bx_UNRESOLVED # of branches unresolved
– PMC1_Bx_STALL_CYCLE # of cycles stalled due to branchesy
– PMC2_CYCLE # processor cycles
– PMC2_INSTRUCTION # of instructions completed
– PMC2 IC MISS # of L1 instruction cache missesPMC2_IC_MISS # of L1 instruction cache misses
– PMC2_L1_CASTOUT # of L1 castouts to L2
– PMC2_Bx_FALL_THROUGH # of fall through branches

Select one PMC1, PMC2, PMC3, PMC4 at a time
Bracket code (Reset, Start, Stop) and measure results

Performance Counters in Performance Counters in
WiiProfiler v3.0WiiProfiler v3.0

Use performance counters toUse performance counters to
–Statistically sample functions

I t t i di id l f ti– Instrument individual functions

Performance CounterPerformance Counter
Statistical SamplingStatistical Sampling

Sample by
–Mispredicted branches Data Instruction

CPU

Mispredicted branches
–Undecided branches

Floating point instructions
32KB 32KB

Data
L1 Cache

Instruction
L1 Cache

– Floating point instructions
–L1 or L2 instruction misses

Combined
L2 Cache

– L1 or L2 data misses
–L1 writes to L2

256KB

– L2 writes to memory
MEM2
64MB

Main Memory

MEM1
24MB 64MB24MB

Performance CounterPerformance Counter
Statistical SamplingStatistical Sampling

Ch li tChoose a sampling rate
– Between every 10 and every 100K

Too often (every 10 to 100)Too often (every 10 to 100)
– Large overhead
– Can be less accurate (cache pollution)
– Fills up buffer fast

Often (every 100 to 1K)
Medium overhead– Medium overhead

– Good accuracy

Less often (every 1K to 100K)(y)
– Least overhead
– Most accurate overall (less accurate per frame)

Instrumenting FunctionsInstrumenting FunctionsInstrumenting FunctionsInstrumenting Functions
Ch l f f tChoose a class of performance counters
– Cycles only
– Cycles and instructionsCycles and instructions
– Branch prediction performance
– Why branch prediction failed

C h d f– Cache and memory performance
– L1 cache performance
– L2 cache performancep
– Outbound cache writes

E l ti f l t d i bi bExplanation of selected in big gray box
Decide:
– Whether or not to also statistically sample by time– Whether or not to also statistically sample by time

Instrumenting Functions:Instrumenting Functions:
Branch Prediction PerformanceBranch Prediction Performance

Performance counters selectedPerformance counters selected
– PMC1_Bx_UNRESOLVED PMC3_Bx_TAKEN
– PMC2_Bx_FALL_THROUGH PMC4_Bx_MISSED

Data teased out from these 4 counters
– % of correctly predicted branches% of correctly predicted branches
– % of incorrectly predicted branches
– Correctly predicted branches

Incorrectly predicted branches– Incorrectly predicted branches
– Skipped branches based on prediction
– Taken branches based on prediction

B h di t d b h d– Branches predicted by hardware
– Branches unconditionally taken
– All branches

Instrumenting Functions:Instrumenting Functions:
L1 Cache PerformanceL1 Cache Performance

P f t l t dPerformance counters selected
– PMC1_L1_MISS PMC3_DC_MISS
– PMC2 IC MISS PMC4 CYCLE– PMC2_IC_MISS PMC4_CYCLE

Data teased out from these 4 countersData teased out from these 4 counters
– Cycles
– Cycles waiting for memory
– Instruction not found in L1
– Data not found in L1

Memory not found in L1– Memory not found in L1
– Average cycles waiting for memory
– % of time waiting for memory % of time waiting for memory

Instrumenting Functions:Instrumenting Functions:
Selecting FunctionsSelecting Functions

U 10 f i fil d iUp to 10 functions profiled at a time

3 ways to select a function
–Choose a Self or Total function–Choose a Self or Total function
–Drop down list of all game functions

Ch f ti f C d C–Choose a function from Code Coverage

Data captured is similar to "Total"
–Function call and child calls

Instrumenting Functions:Instrumenting Functions:
Profile and ExploreProfile and Explore

f ti ll t k d# function calls tracked
recursive calls tracked
Performance counters
– Total count for performance counter
– Range per frame (max, ave, min)
– Raw call data (might graph slowly)

Helpers
– Expand top level
– Auto-select similar

Tracking User DataTracking User DataTracking User DataTracking User Data
Track any data you want in code
– Track floating point values

WIIPROFILER_TrackValue(name, value);
– Will track multiple values per frame

WIIPROFILER_TrackAccumulatedValue(name, value);
– Will track one accumulated value per frameWill track one accumulated value per frame

WiiProfiler on PC
– Appears in Instrumented tab
– Graphs in Instrumented Graph tab

Code CoverageCode CoverageCode CoverageCode Coverage
D i fil (lti l)During a profile (or over multiple)
– Which functions get called
– Which functions don't get called– Which functions don t get called

FilterFilter
– Exclude SDK and platform libraries
– Exclude functions with certain prefixesp
– Include functions with certain prefixes

R t b ttReset button
Instrument button

WiiProfiler v3 0 ReleaseWiiProfiler v3 0 ReleaseWiiProfiler v3.0 ReleaseWiiProfiler v3.0 Release

Open BETA for next 1-2 months
– Sign up and we'll send it to you:

https://www.warioworld.com/wii/wiiprofiler

Final release v3.0 early Summer
– More robust communications layery
– Instrumenting functions

Allow RSO and REL functions
Remove interrupts from data

WiiProfiler SummaryWiiProfiler SummaryWiiProfiler SummaryWiiProfiler Summary

Statistical sampling profiler
– Time and performance counters

Instrument functions
– Using performance counters

Track and graph arbitrary data

Function-based code coverage

Questions?Questions?QQ

Ask me after the presentationAsk me after the presentation
Or e-mail support@noa.com

