WiiProfiler v3.0

a Steve Rabin
'{'. Principal Software Engineer

- é‘OftWare Development SUpport Group

Agenda

¢ WIiiProfiler introduction
— What it provides

¢ WiiProfiler Methodology
— Game Iintegration
— V2.0 features

¢ WiiProfiler v3.0 features
— Sampling based on performance counters
— Instrumenting using performance counters
— Tracking user data
— Code coverage

{ Niniqrnii;a]

Introduction

¢ Measures CPU function performance
— How much time spent in each function
— Cycles, instructions, branches, cache misses
— Function call tree
— Function code coverage
— Frame rate performance

¢ Free tool created exclusively for Wii
— Version 1.0 (May 2007)
— Version 2.0 (April 2008)
— Version 3.0 (Open BETA now, Final Summer 2009)

¢ Requirements
— NDEV and minor programmer integration

[wiiProfiler v1.0

pling
[+ Func

nrnudnCatons

tract

Connected: Start profile at any time.

Nin?ﬁgnd!;‘

T

WiiProfiler v1.0

Call Graph

= [0.000%

= [7.49
=N

seimetaball.MAP

at.unzigned long, unsigned b,
%

2]

WiiProfiler v2.0

[wiiProfiler v2.0 E]@

’ Connect] [Lu:uad Map] [Start Sampling Rate: | 1K per frame 5% overhead [v] Fird: Settingz] [Save] [Open l

Functions Self | Functions Tatal | Events Function Graph | Call Graph Tree

wmeme [298%] SelectThread Al percentages are a percent of a 30Hz frame [+ [=1[7]

[25.3%] Surtface:GetSurtacelaye
== [14.0%] Surface: CheckCubeflnfi
———- [3.79%] Surface:DiawSurfaceF ac
s [B61%] Suface:MakeSurfaceFo

]

e [288%] PSVECDotProduct
[1.37%] Sortharkers(ztd:vector<h
[1.17%] PSVECSubtract

[0.76%] GxBegin

[052%] _ restare_gpr

[0.49%] _ save_gpr

[0.20%] Surface:ClearSurfacelay
[013%] Surface:SurfaceMarch(c
[012%] 0OSaAlocFromHeap
[010%] Clurnps:insert nboliztztd:
[0.09%] DLIngert D L B L A N I I A I
[009%] _ phomatter G 12 18 24 30 3k 42 43 B BD BE Y2 7B

e {ggg;ﬁ} ﬁ:ee?Ed_sqrt Frame Rate Graph | Reverse Call Graph | Statistics
[0.07%] std:vector<unsigned long
[0.07%] GESefdtDesc 15fps
[0.07%] Clumps: ClurnpifuGrouplst 2fps
[0.06%] GeSetytxtttrFmt 30fps
[0.08%] DbaTexst:Clear) B0fps
[0.04%] DEMOPrintf
w[(]mﬂ 1] E 12 18 24 30 3F® 42 43 B BD EBE Y2 7B B4

s

[T

Connected: Start profile at any time. CARYL_DEMOSYMetaball_no_precompiled_libraryibinimetaball - Releaseimetaball. MAP

ppr—
Nintendo

WiiProfiler v3.0

[~ -
[wiiProfiler v3.0

@ aﬁ " Sample by Time [samples per frame] ~ K perframe 26% overhead 4.4z max Ful Profiing . B Fird

Self |T0ta| Instrumented | Events Function Call Tree | Statistical Graph | [nstumented Graph | Select Instrumented Functions | Code Coverage
e 32 7% SelectThread L Al percentages are a percent of a 30Hz frame.

17.1% Surface: GetSurfacelayerPotent
o 16.3% Surface::CheckCube(InfluenceP
e 1 2.8% Surface::DrawSurfaceF acelMec”

10.4% Suface:GetSurfacel ayerPotent
4.04% PSVECHormalize
3458% PSVECD otProduct
1.97% Sorttdarkers(ztd:: vector<k arkerC
1.34% PSVECSubtract
0.83% GxBegin
0.70% __restore_gpr
0.69% _ save_gpr
0.18% Surface: SufaceMarchlconst BB
0.15% 0SallocFromHeap
0.15% Surface: Clears wifacelayerPoter
0.13% DLlngert
0.11% Clumps::Insertintoliststd:: vector
0.09% Clumps: ClurnpifyGroup]std:; vech m
0.09% ztd:vector<unzigned long, std:;a
D.Da?’; _pformatter LELERLEN AL DAL DL AL LN LA B LA AL BN BLALEL DAL AL LA AL BLELELE AL B LA BLELELE BLELELE BLELELE BLALELE DL |
0.08% Dbl est:Clear] 0o 4 2 12 16 20 24 28 32 36 40 44 43 52 BE EBO B4 BB V2 FE B0 84 88 92 96
ggg:ﬁ GSSE“;E;EESCt Feverse Call Tree | Frame Rate Graph | Instumented Graph | Statistics

OB% _ ieeerBd_aqr
0L0E% GHSetybudtteFmt EEE
0.04% DEMOPrinkf 15fps
0.04% DEMOPuUtz 20fpz
0.04% 0OSFreeToHeap 30fps
0.03% operator delete(void™) Bfps

0.03% I:Iurnps::AddMember[unsiqnedID[V] A EE R A RARARREEE S S T
[{]||||| [)] 4 8 12 16 20 24 28 32 3%k 40 44 43 52 56 BO B4 BB V2 B B0 B84 83 92 96

Connected: Start profile &k any time. C:ARYL_DEMOS metaball_wiiprofileriRYL_Default. MAP

WiiProfiler Design Methodology

¢ Extremely fast and easy to integrate

— Only a couple required function calls to library functions
(10 minute integration)

¢ Extremely fast and easy to operate
— Minimalist interface that just works
— Deep functionality with little cognitive overhead

¢ Effortless visual exploration of data
— Use graphs to maximize comprehension
— Frame-based graphs show problem frames
— Easy to compare and interpret

Methodology:
Fast and easy to integrate

Code Integration: Step 1

¢ Link against "wiiprofiler.a"

Code Integration: Step 2

Include the header file:
#include <revolution/wiiprofiler.h>

Wii

Code Integration: Step 3

WIIPROFILER Init(void * bufferMEM2,u32 sizelnBytes,
BOOL doesGameWaintForRetrace);

¢ Call init function with a MEMZ2 buffer
— At least 8MB, as large as 100MB
— Larger buffer = longer profiling

¢ Answer the question:
— Does your main loop wait for the vertical retrace?

Wii

Code Integration: Step 4

while(true) _
{ //Top of main loop Add This

/

WI IPROFILER MarkFrameBegin();

//Game code, etc.

Methodology:
Fast and easy to operate

Only Two Choices

¢ Connect to NDEV ¢ Open a profile

Technical Conference 2009

Wii

Demo:
Fast and Easy to Operate

¢ Statistical sampling
— Various rates available, Simple vs Full
— Accuracy vs Overhead/Size tradeoff

¢ Start and Stop

¢ Open and Save

g J =R

¢ Settings and right click menus

o

Methodology:
Effortless Visualization

Demo:
Effortless Visualization

¢ Functions
— Sparklines
— Self vs Total
— Hide insignificant

GetSufacelayerPotent]

p— ormal
‘ Ca” tree eXpIO ration — .-I:!:..'-"ZEE;Z SortM arkers(std: vector<MarkerC
— Reverse call tree

¢ Statistical graph
— Click functions

— Zoom, scroll, choose
frame

— Highlight Band
— Range and average

Nintendo T
s datitd Wii

Demo:
Effortless Visualization

¢ Frame rate graph
— Examine frame rate spikes
—Events

¢ Resort functions (new Iin v3.0)
— Sort based on selected frame
— Sort based on average (default)
— Sort alphabetically
— Continuously resort

Performance Counter
Factoid Theater

¢ 4 CPU performance counters in Broadway CPU
— Reset, start, stop, and read in code

¢ Reset counters
— PPCMtpmc1(0); PPCMtpmc2(0); PPCMtpmc3(0); PPCMtpmc4(0);

¢ Start counters
— PPCMtmmcrO(<counterl> | <counter2>);
— PPCMtmmcrl(<counter3> | <counter4=>);

¢ Stop counters
— PPCMtmmcrO(O0);
— PPCMtmmcrl(0);

¢ Read counters
— PPCMfpmc1(); PPCMfpmc2(); PPCMfpmc3(); PPCMfpmc4();

Technical Conference 2009
Wii

Performance Counter
Factoid Theater

¢ Performance counter event examples (—60 total)

— PMC1 _CYCLE # processor cycles
— PMC1 L2 HIT # of accesses that hit L2
— PMC1 L1 MISS # of accesses that miss L1

— PMC1 _Bx UNRESOLVED # of branches unresolved
— PMC1 _Bx STALL CYCLE # of cycles stalled due to branches

— PMC2_CYCLE # processor cycles

— PMC2_INSTRUCTION # of instructions completed

— PMC2_IC_MISS # of L1 instruction cache misses
— PMC2_L1 CASTOUT # of L1 castouts to L2

— PMC2_Bx_ FALL THROUGH # of fall through branches

¢ Select one PMC1, PMC2, PMC3, PMC4 at a time
¢ Bracket code (Reset, Start, Stop) and measure results

Wii

Performance Counters In
WiiProfiler v3.0

V3.0

¢ Use performance counters to
— Statistically sample functions
— Instrument individual functions

Performance Counter
Statistical Sampling

¢ Sample by
— Mispredicted branches

Jndecided branches
~loating point instructions

|1 or L2 instruction misses
1 or L2 data misses
-1 writes to L2

_2 writes to memory

Data Instruction
L1 Cache L1 Cache
32KB 32KB

Comblned
L2 Cache

256KB

Main Memory

MEM1 MEM2
24MB 64MB

Performance Counter
Statistical Sampling

¢ Choose a sampling rate
— Between every 10 and every 100K

¢ Too often (every 10 to 100)
— Large overhead
— Can be less accurate (cache pollution)
— Fills up buffer fast

¢ Often (every 100 to 1K)

— Medium overhead
— Good accuracy

¢ Less often (every 1K to 100K)
— Least overhead
— Most accurate overall (less accurate per frame)

Instrumenting Functions

¢ Choose a class of performance counters
— Cycles only
— Cycles and instructions
— Branch prediction performance
— Why branch prediction failed
— Cache and memory performance
— L1 cache performance
— L2 cache performance
— Outbound cache writes

¢ Explanation of selected in big gray box

¢ Decide:
— Whether or not to also statistically sample by time

Instrumenting Functions:
Branch Prediction Performance

¢ Performance counters selected
— PMC1_Bx_UNRESOLVED PMC3 Bx_ TAKEN
— PMC2_Bx_FALL THROUGH PMC4 Bx_MISSED

¢ Data teased out from these 4 counters
— % of correctly predicted branches
— % of incorrectly predicted branches
— Correctly predicted branches
— Incorrectly predicted branches
— Skipped branches based on prediction
— Taken branches based on prediction
— Branches predicted by hardware
— Branches unconditionally taken
— All branches

Instrumenting Functions:

L1 Cache Performance

¢ Performance counters selected
— PMC1 L1 MISS PMC3 DC MISS
— PMC2 IC MISS PMC4 CYCLE

¢ Data teased out from these 4 counters
— Cycles
— Cycles waiting for memory
— Instruction not found in L1
— Data not found Iin L1
— Memory not found in L1
— Average cycles waiting for memory
— % of time waiting for memory

Instrumenting Functions:
Selecting Functions

¢ Up to 10 functions profiled at a time

¢ 3 ways to select a function
— Choose a Self or Total function
—Drop down list of all game functions
—Choose a function from Code Coverage

¢ Data captured iIs similar to "Total"
— Function call and child calls

Instrumenting Functions:

Profile and Explore

¢ # function calls tracked
¢ # recursive calls tracked

¢ Performance counters
— Total count for performance counter
— Range per frame (max, ave, min)
— Raw call data (might graph slowly)

¢ Helpers
— Expand top level
— Auto-select similar

Tracking User Data

¢ Track any data you want in code
— Track floating point values

¢ WIIPROFILER TrackValue(name, value);
— Will track multiple values per frame

¢ WIIPROFILER TrackAccumulatedValue(name, value);
— Will track one accumulated value per frame

¢ WiiProfiler on PC

— Appears in Instrumented tab
— Graphs in Instrumented Graph tab

Code Coverage

¢ During a profile (or over multiple)
— Which functions get called
— Which functions don't get called

¢ Filter
— Exclude SDK and platform libraries
— Exclude functions with certain prefixes
— Include functions with certain prefixes

¢ Reset button
¢ Instrument button

WiiProfiler v3.0 Release

¢ Open BETA for next 1-2 months
— Sign up and we'll send it to you:
https://www.warioworld.com/wii/wiiprofiler

¢ Final release v3.0 early Summer
— More robust communications layer

— Instrumenting functions
¢ Allow RSO and REL functions
¢ Remove interrupts from data

WiiProfiler Summary

¢ Statistical sampling profiler
— Time and performance counters

¢ Instrument functions
— Using performance counters

¢ Track and graph arbitrary data

¢ Function-based code coverage

Questions?
HOE E B EE E

Ask me after the presentation
Or e-maill support@noa.com

