
The contents in this document are highly

confidential and should be handled accordingly.

Revolution Audio Library
Version 1.01
© 2006-2007 Nintendo RVL-06-0031-001-C
CONFIDENTIAL Released: October 22, 2007

Revolution Audio Library Revolution SDK
Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.
RVL-06-0031-001-C 2 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Audio Library
Contents
Revision History .. 4
1 Introduction... 5

1.1 Terms.. 5
2 AX Processing Model ... 6

2.1 System Components .. 6
2.1.1 AI... 6
2.1.2 DSP... 6

2.2 Processing Flow ... 6
2.3 Voice Processing Pipeline .. 8

2.3.1 Streaming Cache .. 8
2.3.2 ADPCM Decoder .. 9
2.3.3 Sample Rate Converter (SRC).. 9
2.3.4 Volume Envelope.. 9
2.3.5 IIR Filter .. 9
2.3.6 Initial Time Delay (ITD) ... 9
2.3.7 Mixing.. 10
2.3.8 Controller Speaker Processing ... 12

3 Application Notes.. 13
3.1 Voice Acquisition .. 13
3.2 Buffer-Addressing ... 14
3.3 Optimization.. 14
3.4 Voice Indexing .. 14

Figures
Figure 2–1 AX Logical Flow .. 7
Figure 2–2 Voice Processing Flow ... 8
Figure 2–3 Stereo Mixing.. 10
Figure 2–4 Surround Mixing.. 11
Figure 2–5 Dolby Pro Logic 2 Mixing .. 11
Figure 2–6 Controller Speaker Processing ... 12

Tables
Table 1–1 AX Library Terms ... 5
Table 3–1 Voice Acquisition Priority ... 13
© 2006-2007 Nintendo 3 RVL-06-0031-001-C
CONFIDENTIAL Released: October 22, 2007

Revolution Audio Library Revolution SDK
Revision History

Version
Date

Revised
Item Description

Version 1.01 2006/11/24 2.1.2

2.3

2.3.5

2.3.8

3.1

3.5

Added controller speaker processing.

Updated Figure 2.

Added a description of the IIR filter.

Added a description of controller speaker processing.

Revised the description of AX_PRIORITY_NDROP.

Deleted the zero buffer.

Version 1.00 2006/03/01 - First release by Nintendo of America Inc.
RVL-06-0031-001-C 4 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Audio Library

© 2006-2007 Nintendo 5 RVL-06-0031-001-C
CONFIDENTIAL Released: October 22, 2007

1 Introduction
The AX library is a thin, low-level interface to the Revolution audio subsystem. The AX library abstracts the
details of managing the audio DSP and associated audio hardware into a convenient library. The AX library
has the following features.

• Allows user applications to allocate audio voices and provides access to the parameters that describe
each voice.

• Automatically generates DSP commands for creating audio as dictated by changes to these voice
parameters.

• Manages voice contention and audio system resources.

• Provides efficient, low-level control of the audio subsystem so that you can create your own audio
applications without worrying about hardware interfaces.

1.1 Terms

The terms in Table 1–1 are used throughout this document.

Table 1–1 AX Library Terms

Term Description

AI Audio Interface. Provides the data path between the major components of the
audio subsystem hardware. Specifically, the AI routes data between the DSP
and the external DAC.

SRC Sample Rate Converter. Interpolates audio data samples to change the sample
rate of specified data.

volume In this context, a multiplier applied to the samples of an audio signal to modu-
late the signal amplitude.

volume envelope A fixed change to volume over time.

Revolution Audio Library Revolution SDK
2 AX Processing Model

2.1 System Components

The following subsections provide a brief description of the Revolution audio subsystem.

2.1.1 AI

The Audio Interface (AI) routes audio data from the DSP and optical disc streaming interfaces to the exter-
nal 48 KHz stereo DAC. The AI also includes a pair of high-quality 32-48 KHz sample rate converters.
These convert output from the DSP and optical disc streaming interfaces (if needed) prior to mixing.

The AI interface to the DSP consists of a programmable DMA, which transfers data from main memory to
a FIFO buffer. This DMA is referred to as the AI-FIFO DMA and is managed by the AX library.

For more information about the Audio Interface, including its API functions, see “Audio Interface (AI)” in the
audio system section of the Revolution Function Reference Manual (HTML).

2.1.2 DSP

The Revolution audio system includes a proprietary digital signal processor (DSP). The DSP generates
audio data as dictated by the voice parameters maintained by the AX library. Specifically, the DSP carries
out the following processing:

• Retrieving sampled data from main memory (streaming cache)

• ADPCM decoding

• Sample rate conversion

• Applying a volume envelope

• Applying an IIR filter

• Mixing

• Generating audio data for the controller speaker

• Applying AUX-send-receive effects

Note: The microcode application used in the DSP is proprietary and currently not available for review
and/or modification.

2.2 Processing Flow

The AI-FIFO DMA interrupt drives AX. Upon receipt of this interrupt, AX generates a command list for the
DSP to produce a three-millisecond “frame” of audio data. AX buffers two frames of audio data and directs
the AI-FIFO DMA to alternate between the frame buffers every 3 ms. (It is also possible to have a triple
buffer structure, which buffers three frames of audio data by using the AXInitEx function.)

AX generates a command list as dictated by the state of voice parameters, which are maintained in main
memory and accessible by the user audio application. The DSP generates audio according to the com-
mands in the command list and transfers the data to main memory for consumption by the AI-FIFO DMA.

For more information about the AI-FIFO DMA, see “Audio Interface (AI)” in the audio system section of
the Revolution Function Reference Manual (HTML).

Figure 2–1 offers an overview of the AX processing model.
RVL-06-0031-001-C 6 © 2006-2007 Nintendo
Released: 2007/08/31 CONFIDENTIAL

Revolution SDK Revolution Audio Library
Figure 2–1 AX Logical Flow

Interrupt

AI

Interrupt

AX DSP

Program AI to play buffer 1

Program AI to play buffer 0

Playing buffer 0

Playing buffer 1

Sync DSP processing

Give DSP command list made
during last frame

Process AUX effects

User gets callback, runs
sequencers and service

voices.

Make commandlist for next
frame on buffer 0

Sync DSP processing

Give DSP command list
made during last frame

Process AUX effects

User gets callback, runs
sequencers and service

voices.

Make commandlist for next
frame on buffer 1

Process command list to
output to buffer 1

Interrupt

Process command list to
output to buffer 0

Interrupt

Set processing sync flag

Set processing sync flag

User makes AX API calls

User makes AX API calls

3
m

sec
audio

fram
e

3
m

sec
audio

fram
e

© 2006-2007 Nintendo 7 RVL-06-0031-001-C
CONFIDENTIAL Released: 2007/08/31

Revolution Audio Library Revolution SDK
2.3 Voice Processing Pipeline

Figure 2–2 represents the process flow for each voice handled in the DSP.

Figure 2–2 Voice Processing Flow

2.3.1 Streaming Cache

The streaming cache is a dedicated memory interface that provides the DSP with fast linear access to
main memory.

It features automatic address generation and allows the DSP to access main memory as nibbles, bytes, or
(16-bit) WORDs.

The streaming cache also provides automatic loop-address generation. Each of the current address, loop-
start address, and loop-end address parameters must be set for the DSP before utilizing the streaming
cache. When the current address reaches the end address, the streaming cache automatically reverts to
the specified loop-start address.

Sample Rate Converter

Volume Envelope

Initial Time Delay

Main Memory

Audio Sample

AI Output Buffer

x 96 voices

ADPCM Decoder

IIR Filter

Streaming Cache

Mixer

Controller Speaker ProcessingController Speaker
Buffer
RVL-06-0031-001-C 8 © 2006-2007 Nintendo
Released: 2007/08/31 CONFIDENTIAL

Revolution SDK Revolution Audio Library
2.3.2 ADPCM Decoder

The DSP contains a hardware decoder coupled to the streaming cache. This decoder accelerates decom-
pression of ADPCM samples and conversion of 8-bit PCM samples to 16-bit.

The decoder may also be programmed to pass raw 16-bit PCM data unchanged.

The decoder (and streaming cache) supports looped ADPCM data. The DSP accesses the ADPCM con-
text stored within the voice parameter block when the decoder generates a loop event. The ADPCM con-
text is automatically stored in data when data is created. The application must configure this ADPCM
context within the voice parameter block when voices are initialized.

2.3.3 Sample Rate Converter (SRC)

Sample rate conversion is handled by the DSP microcode. Three types of SRC are provided:

• Interpolation with 4-tap FIR filter

• Linear interpolation without a filter

• Conversion bypass with no rate change

The 4-tap FIR filter supports three different coefficient tables to provide three frequency responses (8 KHz,
12 KHz, and 16 KHz).

2.3.4 Volume Envelope

The DSP applies the volume envelope to sampled data, using the current volume level in the voice param-
eter block and the volume difference value of each sample.

The volume envelope may represent the sum of the volume fader, ADSR envelope, and tremolo algo-
rithms (as computed by the user audio application).

The DSP does not perform clamping while calculating the volume envelope. The audio application must
guarantee that these calculations remain within determined bounds.

2.3.5 IIR Filter

The DSP can apply an IIR filter to sampled data. There are two types of IIR filter: a simple filter that per-
forms light processing and features gentle cutoffs and a biquad filter that performs more intense process-
ing (three times the load of the simple filter) and features steep cutoffs.

It is possible not only to select which filter to use for each voice and whether to turn it on or off, but also to
modify the filter coefficient. It is also possible to apply both the simple filter and biquad filter to the same
voice. (When this is done, the simple filter first is applied first, then the biquad filter.)

2.3.6 Initial Time Delay (ITD)

The DSP mixer can introduce up to 1 ms of phase shift for the left and right channels of the main bus.

The ITD is programmed with a shift value (in samples) for each channel. The shift is not introduced imme-
diately; instead, the DSP crawls towards the target value to prevent popping or rate-conversion artifacts.
© 2006-2007 Nintendo 9 RVL-06-0031-001-C
CONFIDENTIAL Released: 2007/08/31

Revolution Audio Library Revolution SDK
2.3.7 Mixing

Several mixing modes are available for AX. These are described in the following subsections. In the follow-
ing diagrams, L indicates the left channel, R, the right channel, and S, the surround channel

2.3.7.1 Stereo Mixing

Figure 2–3 Stereo Mixing

s16 input

s32 main L

s32 AuxA L

s32 AuxB S

s32 main R

s32 AuxB R

s32 AuxB L

s32 AuxA S

s32 AuxA R

s32 main S

s32 CPU
AuxA

processing

s32 CPU
AuxB

processing

s32
compressor

s16
interleave

output

s32
distribute S
to L and R

equally

s32 CPU
AuxC

processing

s32 AuxC S

s32 AuxC R

s32 AuxC L
RVL-06-0031-001-C 10 © 2006-2007 Nintendo
Released: 2007/08/31 CONFIDENTIAL

Revolution SDK Revolution Audio Library
2.3.7.2 Surround Mixing

Figure 2–4 Surround Mixing

2.3.7.3 Dolby Pro Logic 2 Mixing

Figure 2–5 Dolby Pro Logic 2 Mixing

s16 input

s32 main L

s32 AuxA L

s32 AuxB S

s32 main R

s32 AuxB R

s32 AuxB L

s32 AuxA S

s32 AuxA R

s32 main S

s32 CPU
AuxA

processing

s32 CPU
AuxB

processing

s32
compressor

s16
interleave

output

s32
surround S
to L and R

s32 CPU
AuxC

processing

s32 AuxC S

s32 AuxC R

s32 AuxC L

s16 input

s32 main L

s32 main Rs

s32 main R

s32 AuxA Ls

s32 AuxA R

s32 AuxA L

s32 main Ls

s32 CPU AuxA
processing

s32
compressor

s16 interleave
output

s32 Dolby Pro
Logic 2
encode

s32 AuxA Rs

s32 CPU AuxB
processing

s32 AuxB Ls

s32 AuxB R

s32 AuxB Rs

s32 AuxB L
© 2006-2007 Nintendo 11 RVL-06-0031-001-C
CONFIDENTIAL Released: 2007/08/31

Revolution Audio Library Revolution SDK
2.3.8 Controller Speaker Processing

The DSP carries out the following processing for the controller speaker.

Figure 2–6 Controller Speaker Processing

SRC

IIR Filter

Mixer

Audio Data Created at 32 KHz for the Main Speaker

Controller Speaker
Main Bus (0 to 3) Data

Controller Speaker
AUX Bus (0 to 3) Data

Use either a simple filter or a biquad filter.

Converts from 32 KHz to 6 KHz.
RVL-06-0031-001-C 12 © 2006-2007 Nintendo
Released: 2007/08/31 CONFIDENTIAL

Revolution SDK Revolution Audio Library
3 Application Notes

3.1 Voice Acquisition

AX handles voice allocation internally so that automatic de-popping occurs for voices being dropped due
to resource conflicts. A call to AXAcquireVoice causes AX to attempt to acquire a voice for use in the fol-
lowing fashion:

• Acquire a free voice

• Re-acquire the oldest voice with the lowest priority (of those voices having priority lower than new
voices)

• Not acquire a voice (cannot be acquired)

AX drops voices during processing if the number of DSP cycles required to process all the voices exceeds
the number of DSP cycles available. In this case, AX drops as many of the oldest and lowest priority voices
as required.

Although a voice whose priority has been specified as AX_PRIORITY_NODROP is not dropped due
to resource conflicts, it will be dropped when the number of DSP cycles required to process voices
exceeds the number of available DSP cycles.

Table 3–1 offers suggestions for voice priority usage. Some may be more useful than others in game
development.

Table 3–1 Voice Acquisition Priority

Voices may be dropped at any time. Once a voice is dropped, the application must make sure that the
voice is not referenced inappropriately. Be sure to handle this by clearing the pointer to the voice in the
callback function specified by the argument to the AXAcquireVoice function. This ensures that the voice
can be used safely in the same sound routine or in mutually independent sound routines.

User Application Priority

Voice and music
streams

Typically cannot be dropped. Therefore, they should be acquired with the
highest priority (AX_PRIORITY_NODROP).

Sound effects High in priority, but some types of effects may become lower in priority as
time elapses. The user application may acquire voices in order of high pri-
ority and, internally within effects, re-assign them to a low priority once they
are no longer important. Applications may also be used to set varying
degrees of lower priorities; for example, a machine gun might use the same
voice over and over, while other sound effects (such as environment
sounds) may be set to an increasing lower priority as they grow further
away and become less important.

MIDI synthesizer Should acquire voices with high priority, but priority should not be higher
than the more important sound effects and voice/music streams. Once the
note is played, set the priority for that voice lower so that any new notes
may be played. Any notes entering ADSR release stage can be set to low
priority to ensure that they will be acquired first in case of voice contention;
for example, acquire voices with priority 16. Once the note is on, set the
voice priority to 15. When the voice is set to release, set priority to 1.
© 2006-2007 Nintendo 13 RVL-06-0031-001-C
CONFIDENTIAL Released: October 22, 2007

Revolution Audio Library Revolution SDK
3.2 Buffer-Addressing

Keep the following facts in mind when specifying a buffer address for sampled data in the voice parameter
block:

• When setting the address, you must change the address unit according to the format of the data. If the
sampled data is 16-bit PCM, specify the buffer address in WORDs (16-bit units). If the format is 8-bit
PCM, specify the address in bytes, and if the format is ADPCM, specify the address in nibbles (4-bit
units).

• Specify the address in which sampled data to be played is stored for the current address, loop-start
address, and loop-end address. For example, if a 4096-byte looped 8-bit PCM data sample is stored in
a buffer starting at address 0, specify zero for the current address and loop-start address, and 4095
for the loop-end address.

• ADPCM data has a frame length of 8 bytes, where the first byte represents the frame header, and the
remaining 7 bytes represent data. When loading ADPCM data into a buffer, the frame header of each
ADPCM frame must be aligned at an 8-byte boundary.

• Avoid the ADPCM frame header when setting the address of the ADPCM buffer. In other words, it is
impossible to set the first byte (2 nibbles) of an 8-byte (16-nibble) frame for each address.

• Applications must set the ADPCM predictor and scale during voice initialization.

3.3 Optimization

If your application uses frequent calls at runtime to AXSetVoiceXXX to set voice parameters, you can
optimize code by directly editing the parameter block. Here are some helpful guidelines:

• When you have changed the voice parameter block, you must set the voice parameter block sync flag
(axvbp.sync) appropriately. For a detailed description of the sync flag, see axvpb.sync in “Audio
Library (AX)” in the Audio section of the Revolution Function Reference Manual.

• Disable interrupts when changing the voice parameter block. However, interrupts can be enabled
when changing the voice parameter block from an AX user callback.

3.4 Voice Indexing

The AXVPB data structure includes an index member. This index is assigned by AX to each voice during
initialization. This index aids application voice referencing.

• Applications may implement a table of AX_MAX_VOICES entries to store voice referencing

• Service acquired voices by referencing the table entry at [voice index]

• Do not write to the [voice index] table entry
RVL-06-0031-001-C 14 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Audio Library
TM and ® are trademarks of Nintendo.

Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.

IBM is a trademark of International Business Machines Corporation.

Roland GS Sound Set is a trademark of Roland Corporation U.S.

All other trademarks and copyrights are property of their respective owners.
© 2006-2007 Nintendo 15 RVL-06-0031-001-C
CONFIDENTIAL Released: October 22, 2007

Revolution Audio Library Revolution SDK
RVL-06-0031-001-C 16 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

© 2006-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

	1 Introduction
	1.1 Terms

	2 AX Processing Model
	2.1 System Components
	2.1.1 AI
	2.1.2 DSP

	2.2 Processing Flow
	2.3 Voice Processing Pipeline
	2.3.1 Streaming Cache
	2.3.2 ADPCM Decoder
	2.3.3 Sample Rate Converter (SRC)
	2.3.4 Volume Envelope
	2.3.5 IIR Filter
	2.3.6 Initial Time Delay (ITD)
	2.3.7 Mixing
	2.3.7.1 Stereo Mixing
	2.3.7.2 Surround Mixing
	2.3.7.3 Dolby Pro Logic 2 Mixing

	2.3.8 Controller Speaker Processing

	3 Application Notes
	3.1 Voice Acquisition
	3.2 Buffer-Addressing
	3.3 Optimization
	3.4 Voice Indexing

