
The contents in this document are highly

confidential and should be handled accordingly.

© 2006-2008 Nintendo RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications
Version 1.02

Revolution AX Applications Revolution SDK

RVL-06-0032-001-F 2 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Confidential

These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

Revolution SDK Revolution AX Applications
Contents
Revision History .. 6
1 Overview... 7
2 Mixer... 8

2.1 Mixer Modes ... 9
2.2 Mixer Controls... 10

2.2.1 Voice Mixing Controls ... 10
2.2.2 Wii Remote Speaker Control... 12

2.3 Mixer Application Notes .. 13
2.3.1 Volume Clamping.. 13
2.3.2 Volume Ramping .. 13
2.3.3 Suggested Input and Fader Control Use .. 13

3 AUX Effects .. 14
3.1 Effects... 14

3.1.1 High Quality Reverb.. 14
3.1.2 Standard Reverb... 16
3.1.3 Chorus .. 17
3.1.4 Delay... 18

3.2 Expansion Effects ... 19
3.2.1 Effect Bus Send .. 19
3.2.2 Expansion Effect High-quality Reverb... 20
3.2.3 Expansion Effect Standard Reverb... 22
3.2.4 Expansion Effect Chorus .. 24
3.2.5 Expansion Effect Delay... 25

4 Synthesizer... 26
4.1 Wavetable... 27

4.1.1 Instrument Programs .. 28
4.1.2 Regions... 29
4.1.3 Articulators .. 30
4.1.4 Sampling Data .. 30

4.2 File Format.. 30
4.2.1 File Creation.. 30
4.2.2 WT File.. 31
4.2.3 PCM File ... 37

4.3 Synthesizer Application Notes .. 37
4.3.1 MIDI Bank Support.. 37
4.3.2 MIDI Message Support ... 37
4.3.3 MIDI Controller Support .. 38
4.3.4 Calling SYNMidiInput().. 38
4.3.5 Shutting Down a Synthesizer .. 38

5 MIDI Sequencer.. 39
5.1 Sequencer Features ... 39

5.1.1 State Control ... 39
5.1.2 Tempo Control .. 40
5.1.3 Volume Control ... 40
5.1.4 Controller Event Callback Interface... 40

6 Voice Articulator ... 41
6.1 AXART and AX ... 41
6.2 Articulator Types... 42
6.3 Low Frequency Oscillators (LFOs) ... 44
© 2006-2008 Nintendo 3 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
Code Examples
Code 4–1 WT File Header ... 31
Code 4–2 WTINST... 31
Code 4–3 WTREGION... 32
Code 4–4 WTART.. 33
Code 4–5 WTSAMPLE .. 35
Code 4–6 WTAPCM .. 36

Equations
Equation 2-1 AUX Send Level .. 11
Equation 2-2 Pan Conversion ... 11
Equation 2-3 Span Conversion ... 11

Figures
Figure 1-1 Applications for AX .. 7
Figure 2-1 MIX API Layer ... 8
Figure 2-2 Mixer Channels.. 10
Figure 2-3 Wii Remote Speaker Control ... 12
Figure 3-1 High-Quality Reverb .. 14
Figure 3-2 Standard Reverb .. 16
Figure 3-3 Chorus .. 17
Figure 3-4 Delay .. 18
Figure 3-5 Effect Bus Send.. 19
Figure 3-6 Expansion Effect High-Quality Reverb ... 20
Figure 3-7 Expansion Effect Standard Reverb .. 22
Figure 3-8 Expansion Effect Chorus .. 24
Figure 3-9 Expansion Effect Delay .. 25
Figure 4-1 SYN API Layer .. 26
Figure 4-2 Wavetable Concepts ... 27
Figure 4-3 Instrument Programs ... 28
Figure 4-4 Melodic Key Regions... 28
Figure 4-5 Percussive Key Regions.. 29
Figure 4-6 Region Specification.. 29
Figure 4-7 Regions and Articulators ... 30
Figure 4-8 Regions and Sampling Data.. 30
Figure 5-1 SEQ API Layer .. 39
Figure 6-1 AXART API Layers .. 41
Figure 6-2 Sound, Articulators and AX Voice ... 41

Tables
Table 2-1 Mixer Modes ... 9
Table 3-1 High Quality Reverb Controls ... 15
Table 3-2 Standard Reverb Controls .. 16
Table 3-3 Chorus Controls.. 17
Table 3-4 Delay Controls .. 18
Table 3-5 Expansion Effect High-Quality Reverb Controls .. 21
Table 3-6 Expansion Effect Standard Reverb Controls ... 23
Table 3-7 Expansion Effect Chorus Controls... 24
Table 3-8 Effect Delay Controls ... 25
Table 4-1 WT File Header Members... 31
Table 4-2 WTREGION Members .. 32
Table 4-3 WTART Members ... 33
Table 4-4 WTSAMPLE Members.. 35
RVL-06-0032-001-F 4 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
Table 4-5 WTADPCM Members ... 36
Table 4-6 Supported MIDI Messages ... 37
Table 4-7 Supported MIDI Controllers .. 38
Table 5-1 State Controls ... 39
Table 6-1 Articulators and Voice Parameter Support (1) .. 42
Table 6-2 Articulators and Voice Parameter Support (2) .. 43
© 2006-2008 Nintendo 5 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
Revision History

Version
Revision

Date
Item Description

1.02 2007/09/28 - Complete revision to Chapter 3 (AUX Effects).

1.01 2006/12/26 - Complete revision to match the Wii specification.

1.00 2006/03/01 - First release by Nintendo of America Inc.
RVL-06-0032-001-F 6 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications

© 2006-2008 Nintendo 7 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

1 Overview

The AX library provides a low-level abstraction for the Revolution audio subsystem shown in Figure 1-1.
The AX library was designed to provide flexible support for audio applications (for example, MIDI
synthesizers, mixers, software audio streaming, and sound effect synthesizers).

Some of these applications have been implemented already and are provided as SDK libraries. These
applications include the following:

• MIDI sequencer (SEQ)

• Synthesizer (SYN)

• Voice articulator (AXART)

• Mixer (MIX)

• AUX effects (AXFX)

This document provides an introduction to these libraries.

Figure 1-1 Applications for AX

For detailed AX component descriptions, see “AX Applications” in the “Audio System” section of the Revo-
lution Function Reference Manual.

Mixer (MIX)

Synthesizer (SYN)

MIDI Sequencer (SEQ)

AX

Voice Articulator (AXART)

AUX Effect (AXFX)

AI and DSP

User Application

Revolution AX Applications Revolution SDK
2 Mixer

The AX mixer library (MIX) is located in the layer immediately above AX and controls the AX voice based
on requests from the higher level AX application libraries and user applications. Parameters set in the MIX
library (mixing control) are: input level, AUX send level, panning, muting, and fader. MIX library also per-
forms an automatic volume ramping to prevent zip and pop effects when applying volume and pan
changes to AX voice.

The MIX library also supports the remote controller speakers, where the fader and AUX send level may be
set for each Wii Remote.

Figure 2-1 MIX API Layer

Applications will configure the individual mixing controls through the MIX API. The newly configured mixing
control will be reflected into the AX voice when the audio frame callback is called.

For detailed API descriptions, see “Mixer” in the “Audio System” section of AX Applications in the
Revolution Function Reference Manual.

AX

MIX

Voice Acquisition
State/Address/Format Settings

User Application
High Level AX Application Library

Mixing Control
RVL-06-0032-001-F 8 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
2.1 Mixer Modes

The MIX library supports several mixer modes. The application must set an AX library appropriate mode in
conjunction with the selected mixer mode. Table 2-1 includes descriptions about each mixer mode and lists
the corresponding AX mode setting.

Table 2-1 Mixer Modes

MIX mode Description AX Mode

MIX_SOUND_MODE_MONO Mono output mode. AX will be processed
in the stereo mode, but the MIX library will
ignore the left and right pan. This will
result in AX output data that is mono
(equivalent).

AX_MODE_STEREO

MIX_SOUND_MODE_STEREO Stereo output mode. AX will also be pro-
cessed in the stereo mode, and neither
MIX nor AX will ignore the surround pan.
For stereo applications, AX library mixes
the generated surround sound signal
equally to the left and right channels.

AX_MODE_STEREO

MIX_SOUND_MODE_SURROUND Surround sound output mode. AX library
will encode the surround sound signal to
left and right channels.

AX_MODE_SURROUND

MIX_SOUND_MODE_DPL2 Dolby Pro Logic II output mode. This
mode does not support Aux C.

AX_MODE_DPL2
© 2006-2008 Nintendo 9 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
2.2 Mixer Controls

2.2.1 Voice Mixing Controls

Figure 2-2 Mixer Channels

U

 +6dB

INPUT

U

 +6dB

AUX A

POST / PRE
FADER

U

 +6dB

AUX B

POST / PRE
FADER

R

PAN

L

C

S

SPAN

F

C

MUTE

FADER

+6dB

U



U

 +6dB
AUX C

POST / PRE
FADER

Mute switch

0.1 dB unit fader

The front to back pan is 0 ~ 127 (center is 64).

The left to right pan is 0 ~ 127 (center is 64).

AUX supports post-fader mode and pre-fader modes.
RVL-06-0032-001-F 10 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
The MIX library supports AX_MAX_VOICES number of mixer channels in Figure 2-2.

In the MIX library, the volume parameters, such as input level and AUX send level, are managed in 0.1dB
increments. For example, to set an AUX send level of -90.4dB, the MIX API will be specified as -904. Also,
the individual volume parameters will be clamped to +6.0dB - -90.4dB at integration to AX voice.

2.2.1.1 Input Level (input)

The input control manages the input level applied to the input data (ADPCM/PCM sample). Applications
can use this control to apply ADSR envelope and tremolo in addition to volume adjustments. This control is
set to 0 dB by default.

Note: Using input control takes fewer DSP cycles than fader and pan controls.

2.2.1.2 AuxA, AuxB, and AuxC

The AuxN control manages the AUX send level for each bus. This control can also switch between the
postfader and prefader modes. The following AUX send level is applied based on mode:

Equation 2-1 AUX Send Level

post fader attendB = AUX attendB + fader attendB

pre fader attendB = AUX attendB

This control is set to post-fader mode/-96.0dB by default.

2.2.1.3 Pan (pan)

The pan control manages the left and right pan. Left is 0, center is 64, and right is 127. The pan value is
converted as follows and reflected to the volume:

Equation 2-2 Pan Conversion

left channel attendB = -20 * log10(sqrt ((127 - pan) / 127))

right channel attendB = 20 * log10(sqrt (pan / 127))

This control is set to 64 by default.

2.2.1.4 Surround Pan (span)

The span control manages the front and rear pan. Rear is 0, center is 64, and front is 127. The span value
is converted as follows and reflected to the volume:

Equation 2-3 Span Conversion

surround channel attendB = -20 * log10(sqrt ((127 - pan) / 127))

front channel attendB = 20 * log10(sqrt (pan / 127))

This control is set to 127 by default.

2.2.1.5 Mute (mute)

When the mute control is turned on, the input level will become 0 (-90.4dB). The input level will return to
input control value when the mute control is turned off. The default value for this control is “off.”
© 2006-2008 Nintendo 11 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
2.2.1.6 Fader (fader)

The fader control manages the output level of all channels in the main bus (right, left, surround). This set-
ting will also be applied to all AUX bus channels when the AUX bus is set to postfader mode. The default
value is 0 dB for this control.

2.2.2 Wii Remote Speaker Control

Figure 2-3 Wii Remote Speaker Control

The MIX library supports Wii Remote speaker control shown in Figure 2-3 for each mixer channel.

2.2.2.1 Fader

The fader control manages the speaker output level for each Wii Remote.

2.2.2.2 AUX Send

The AUX control manages the AUX send level for each Wii Remote. This control also allows switching of a
common pre-fader/post-fader mode for all Wii Remotes.

Note: As of 2006/12/26, the AUX bus processing for Wii Remote speakers is not yet implemented.

0 1 2 3

FADER

AUX Pre/Post Fader

0 1 2 3
RVL-06-0032-001-F 12 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
2.3 Mixer Application Notes

2.3.1 Volume Clamping

The MIX library clamps the individual volume between +6.0 dB and -90.4 dB and passes it to the AX library
to accommodate the mixer specification of the DSP. Since the clamping will be performed automatically,
the application does not need to consider this range when adjusting the fader and input controls. However,
a careless adjustment of the individual controllers may cause the controller value to wrap around.

2.3.2 Volume Ramping

The mixer applies “per sample volume ramping” (process to gradually change volume) to mitigate pop or
zip effects induced by rapid changes in volume. This volume ramping will be applied when the change in
volume is greater than or equal to 96. If the volume change is smaller than 96, the sound volume will be set
as-is. The new volume level set by the user will be ramped over a single audio frame and applied from the
subsequent audio frame.

2.3.3 Suggested Input and Fader Control Use

When adjusting the volume, fewer DSP cycles are consumed when the adjustment is made through the
input control instead of the fader control. Programmers can utilize the DSP efficiently by balancing the
input control and fader control use per application.

The following sections discuss a few examples for using these controls.

2.3.3.1 Sound Effects and Audio Streaming

For most sound effects and audio streaming, it is possible to fix the fader control to 0 dB and use the input
control to adjust the fader volume.

2.3.3.2 Music Synthesizer

With the music synthesizer, it is possible to fix the fader control to 0 dB and implement ADSR envelope,
LFO volume modulation, channel volume, expression pedal volume, and master volume using only the
input control.

2.3.3.3 3D Sound Applications

In 3D sound applications, movement of a sound source can be expressed through fine timing control of the
pan control and span control. The distance attenuation of the volume can also be expressed through
manipulation of the input control.
© 2006-2008 Nintendo 13 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
3 AUX Effects

The AUX Effects library (AXFX) provides various effects for the AuxA, AuxB, and AuxC buses in AX. Wii
has added expansion effects that enable the implementation of effects that are more flexible and diverse,
in addition to existing effects inherited from Nintendo GameCube.

Note: The implementation of all existing effects (excluding delay) has been changed to use expansion
effects, while preserving API compatibility.

These existing and expansion effects include high-quality reverb, standard reverb, chorus, and delay.

All effects have left, right, and Surround (left-front, right-front, left-rear, and right-rear for Dolby Pro Logic II)
channels, all processed independently.

3.1 Effects

3.1.1 High Quality Reverb

The structure of the high-quality reverb is shown in Figure 3-1.

Figure 3-1 High-Quality Reverb

predelay

comb

comb

comb

+

All Pass All Pass LPF All Pass +

Input

crosstalk

from / to other channels

mix

Output
RVL-06-0032-001-F 14 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
High-quality reverb takes the following parameters.

Table 3-1 High Quality Reverb Controls

Note: In contrast with the Nintendo GameCube AXFX library, reverb here only outputs the reverberation,
and does not output the original sound.

Parameter Description

preDelay The time delay before reverberation starts. A value of 0.0 or larger (in seconds)
is specified. Set a large value for preDelay for a larger distance between the
sound source and the reflective wall when simulating a large room.

time The length of time until the reverberation attenuates. A value of 0.0 or larger (in
seconds) is specified. A value of 0.01 seconds simulates a very small room,
while a value of 10.0 seconds will simulate a cathedral or a stadium.

coloration Modulates the all-pass filter coefficients. A value between 0.0 and 1.0 is
specified. This value is used to simulate the acoustic properties of the reflective
walls. In general, the smaller this value, the rougher the density of
reverberations. The larger the value, the more detailed the density, but
waveform interference may result in times where high-frequency waves sound
louder than they should.

damping Modulates high-frequency attenuation for reverberation by adjusting the low-
pass filter (LPF) coefficients. A value between 0.0 and 1.0 is specified. The
closer the value is to 0.0, the more pronounced low frequency components will
be. Conversely, as damping approaches 1.0, high frequency components will
remain without attenuation.

crosstalk Sets the degree of cross-channel interaction. A value between 0.0 and 1.0 is
specified. When a crosstalk value of 0.0 is specified, all interaction between the
channels will be eliminated. When a value larger than 0.0 is specified, the
reverberated signal will be applied to other channels as well.

mix Output gain for the reverberation. A value between 0.0 and 1.0 is specified.
© 2006-2008 Nintendo 15 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
3.1.2 Standard Reverb

The structure of the standard reverb is shown in Figure 3-2. The structure is simplified compared to high-
quality reverberation, reducing the CPU load, but resulting in rougher reverberations. There are also fewer
parameters to specify.

Figure 3-2 Standard Reverb

Standard reverb takes the following parameters:

Table 3-2 Standard Reverb Controls

Note: In contrast with the Nintendo GameCube AXFX library, reverb here only outputs the reverberation
and does not output the original sound.

Standard Reverb Control Description

preDelay The time delay before reverberation starts. A value of 0.0 or larger (in
seconds) is specified. Set a large value for preDelay for a larger
distance between the sound source and the reflective wall when
simulating a large room.

time The length of time until the reverberation attenuates. A value of 0.0 or
larger (in seconds) is specified. A value of 0.01 seconds simulates a
very small room, while a value of 10.0 seconds will simulate a
cathedral or a stadium.

coloration Modulates the all-pass filter coefficients. A value between 0.0 and 1.0
is specified. This value is used to simulate the acoustic properties of
the reflective walls. In general, the smaller this value, the rougher the
density of reverberations. The larger the value, the more detailed the
density, but waveform interference may result in times where high-
frequency waves sound louder than they should.

damping Modulates high-frequency attenuation for reverberation by adjusting
the low-pass filter (LPF) coefficients. A value between 0.0 and 1.0 is
specified. The closer the value is to 0.0, the more pronounced low
frequency components will be. Conversely, as damping approaches
1.0, high frequency components will remain without attenuation.

mix Output gain for the reverberation. A value between 0.0 and 1.0 is
specified.

predelay

comb

comb

+ all pass LPF all passInput

mix

Output
RVL-06-0032-001-F 16 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
3.1.3 Chorus

Chorus refers to the creation of a delay sound periodically modulated by a delay time. Its structure is
shown in Figure 3-3.

Figure 3-3 Chorus

Chorus takes the following parameters:

Table 3-3 Chorus Controls

Chorus Control Description

baseDelay The length of the delay line (input signal base delay). A value between 1 and
50 (milliseconds) is specified.

variation The time variation range of the output position from the delay line (that is, the
delay time) through LFO. A value between 0 and baseDelay (milliseconds) is
specified. The output position changes time between the values (baseDelay -
variation) and (baseDelay + variation).

Note: This parameter is sometimes referred to as chorus depth in other
documents.

period The LFO variation cycle. A value between 500 and 10000 (milliseconds) is
specified.

Note: This parameter is typically referred to as chorus rate or chorus speed
in other documents.

Input OutputDelay Line

output location
changes

LFO
© 2006-2008 Nintendo 17 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
3.1.4 Delay

The structure of the delay is as shown in Figure 3-4.

Figure 3-4 Delay

Delay takes the following parameters.

Table 3-4 Delay Controls

Note: The individual parameters must be configured for all channels, left, right, and Surround, in that
order (and in the order of left-front, right-front, left-rear, and right-rear for Dolby Pro Logic II).

Delay Control Description

delay The length of the delay line (that is, the input signal delay time). A value larger than
0 (milliseconds) is specified.

feedback The feedback gain. A value smaller than 100 (percent) is specified.

output The output gain. A value smaller than or equal to 100 (percent) is specified.

+
output

OutputDelay Line

feedback

Input
RVL-06-0032-001-F 18 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
3.2 Expansion Effects

3.2.1 Effect Bus Send

Two types of parameters, busIn and busOut, are available for expansion effects. Their use enables pro-
cesses such as applying reverberation on a chorus effect.

Figure 3-5 Effect Bus Send

As shown in Figure 3-5, each of the expansion effects, in addition to the existing output (Out) pass, now
has a pass for sending output to the next stage’s effect (Send).

Note: Effect processing occurs in order from AuxA to AuxB to AuxC. As a result, when returning AuxC
output to AuxA, the AuxC data is reflected in AuxA with a lag of one audio frame.

The Send target bus is a buffer, and memory must be allocated for it in advance. Buffers are required for
each channel, and their size in bytes can be calculated as a product of sizeof(s32) and
AX_IN_SAMPLES_PER_FRAME.

sendGain

sendGain

AuxA OutEffect A

AuxB In Effect B

Bus (buffer)

Bus (buffer)

outGain

outGain

AuxA In

AuxB Out+
© 2006-2008 Nintendo 19 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
3.2.2 Expansion Effect High-quality Reverb

The structure of the expansion effect high-quality reverb is as shown in Figure 3-6.

Figure 3-6 Expansion Effect High-Quality Reverb

Early Reflection

predelay

comb

comb

comb

earlyGain

in

sendGain

busIn

fusedGain outGain

crosstalk

from / to other channels

out

busOut

+ +all pass all passLPFall pass

+

+

RVL-06-0032-001-F 20 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
The expansion effect high-quality reverb takes the following parameters.

Table 3-5 Expansion Effect High-Quality Reverb Controls

Parameter Description

earlyMode The mode for the initial reflection (Early Reflection).

earlyGain The mix gain for the initial reflection. A value ranging from 0.0 to 1.0 is specified.

preDelayTimeMax The maximum value of the pre-delay for the end of the reverberation (that is, the
maximum delay until reverberation begins). A value of 0.0 or more (in seconds) is
specified. The pre-delay memory must be allocated according to this value.

preDelayTime The pre-delay for the end of the reverberation (that is, the delay until the start of
the reverberation). A value ranging from 0.0 to preDelayTimeMax (in seconds) is
specified.

fusedMode The mode for the end of the reverberation.

fusedTime The reverberation time for the end of the reverberation. A value of 0.0 or more (in
seconds) is specified.

coloration Modulates the all-pass filter coefficients. A value between 0.0 and 1.0 is specified.
This value is used to simulate the acoustic properties of the reflective walls. In
general, the smaller this value, the rougher the density of reverberations. The
larger the value, the more detailed the density, but waveform interference may
result in times where high-frequency waves sound louder than they should.

damping Modulates high-frequency attenuation for reverberation by adjusting the low-pass
filter (LPF) coefficients. A value between 0.0 and 1.0 is specified. The closer the
value is to 0.0, the more pronounced low frequency components will be. Con-
versely, as damping approaches 1.0, high frequency components will remain with-
out attenuation.

fusedGain The mix gain for the end of the reverberation. A value between 0.0 and 1.0 is
specified.

crosstalk Sets the degree of cross-channel interaction. A value between 0.0 and 1.0 is
specified. When a crosstalk value of 0.0 is specified, all interaction between the
channels will be eliminated. When a value larger than 0.0 is specified, the
reverberated signal will be applied to other channels as well.

outGain The output gain. A value between 0.0 and 1.0 is specified.

The following are effect bus send parameters.

busIn Specifies the input bus (buffer).

busOut Specifies the output bus (buffer).

sendGain The send gain. A value between 0.0 and 1.0 is specified.
© 2006-2008 Nintendo 21 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
3.2.3 Expansion Effect Standard Reverb

The structure of the expansion effect standard reverb is as shown in Figure 3-7.

Figure 3-7 Expansion Effect Standard Reverb

busIn

earlyGain

Early Reflection

predelay

comb

comb

all pass LPF all pass

fusedGain outGain

out

in

sendGain

busOut

+ +

+

RVL-06-0032-001-F 22 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
The expansion effect standard reverb takes the following parameters.

Table 3-6 Expansion Effect Standard Reverb Controls

Parameter Description

earlyMode The mode for the initial reflection (early reflection).

earlyGain The mix gain for the initial reflection. A value ranging from 0.0 to 1.0 is specified.

preDelayTimeMax The maximum value of the pre-delay for the end of the reverberation (that is, the
maximum delay until reverberation begins). A value of 0.0 or more (in seconds) is
specified. The pre-delay memory must be allocated in conjunction with this value.

preDelayTime The pre-delay for the end of the reverberation (that is, the delay until the start of
the reverberation). A value ranging from 0.0 to preDelayTimeMax (in seconds) is
specified.

fusedMode The mode for the end of the reverberation.

fusedTime The reverberation time for the end of the reverberation. A value of 0.0 or more (in
seconds) is specified.

coloration Modulates the all-pass filter coefficients. A value between 0.0 and 1.0 is specified.
This value is used to simulate the acoustic properties of reflective walls. In
general, the smaller this value, the rougher the density of reverberations. The
larger the value, the more detailed the density, but waveform interference may
result in times where high-frequency waves sound louder than they should.

damping Modulates high-frequency attenuation for reverberation by adjusting the low-pass
filter (LPF) coefficients. A value between 0.0 and 1.0 is specified. The closer the
value is to 0.0, the more pronounced low frequency components will be. Con-
versely, as damping approaches 1.0, high frequency components will remain with-
out attenuation.

fusedGain The mix gain for the end of the reverberation. A value between 0.0 and 1.0 is
specified.

outGain The output gain. A value between 0.0 and 1.0 is specified.

The following are effect bus send parameters.

busIn Specifies the input bus (buffer).

busOut Specifies the output bus (buffer).

sendGain The send gain. A value between 0.0 and 1.0 is specified.
© 2006-2008 Nintendo 23 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
3.2.4 Expansion Effect Chorus

The structure of the expansion effect chorus is as shown in Figure 3-8.

Figure 3-8 Expansion Effect Chorus

The expansion effect chorus takes the following parameters.

Table 3-7 Expansion Effect Chorus Controls

Parameter Description

delayTime The length of the delay line (that is, the input signal’s basic delay time). A value
between 0.1 and 50.0 (in milliseconds) is specified.

depth The degree of variation by which LFO modifies the output position from the delay
line (that is, the delay time). Specified as a ratio of delayTime, with a value ranging
from 0.0 to 1.0.

rate The LFO frequency. A value between 0.1 and 2.0 (in Hertz) is specified.

feedback The feedback gain. A value between 0.0 and 1.0 is specified. This is used prima-
rily to increase the flange effect when using the chorus as a flanger effect (to pro-
duce a powerful swell of sound, called a jet sound). It can also be used for unique
delay effects when a large delayTime value is specified.

outGain The output gain. A value between 0.0 and 1.0 is specified.

The following are effect bus send parameters.

busIn Specifies the input bus (buffer).

busOut Specifies the output bus (buffer).

sendGain The send gain. A value between 0.0 and 1.0 is specified.

Delay Line++in

LFO

outGain

out

busIn feedback

sendGain

busOut
RVL-06-0032-001-F 24 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
3.2.5 Expansion Effect Delay

The structure of the expansion effect delay is as shown in Figure 3-9.

Figure 3-9 Expansion Effect Delay
v

 The expansion effect delay takes the following parameters.

Table 3-8 Effect Delay Controls

Note: In existing versions of delay, parameters had to be specified for each channel, but this has been
changed in the expansion effect delay effect such that the parameters are shared by all channels.

Parameter Description

maxDelay The length of the delay line (that is, the input signal’s basic delay time). A value
larger than 0.0 (in milliseconds) is specified. Memory for the delay line must be
allocated according to this value.

delay The delay time (that is, the delay time for the input signal). A value from 0.0 to
maxDelay (in milliseconds) is specified.

feedback The feedback gain. A value between 0.0 and 1.0 is specified.

lpf Modulates the cutoff frequency for the low-pass filter (LPF). A value from 0.0 to
1.0 is specified. The smaller the value, the lower the cutoff frequency.

outGain The output gain. A value between 0.0 and 1.0 is specified.

The following are effect bus send parameters.

busIn Specifies the input bus (buffer).

busOut Specifies the output bus (buffer).

sendGain The send gain. A value between 0.0 and 1.0 is specified.

+ Delay LineLPF+

busIn

busOut

sendGain

in out
outGain

feedback
© 2006-2008 Nintendo 25 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
4 Synthesizer

The synthesizer library (SYN) accepts the MIDI message input by the higher level AX application library
and user application, and the wave table information registered to synthesizer. The library then uses this
information to control the mixer and AX voice, producing music.

Figure 4-1 SYN API Layer

For detailed API descriptions, see “Synthesizer” under “AX Applications” in the “Audio System” section of
the Revolution Function Reference Manual.

AX

MIX

Voice Acquisition
State/Address/Format Settings

SYN

Mixing Control

User Application MIDI Message Input
Wavetable Data
RVL-06-0032-001-F 26 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
4.1 Wavetable

A wavetable is a lookup table used by the synthesizer to determine playback parameters for individual
notes. Specifically, the wavetable contains tables for instrument programs, regions, articulators, and
sampling data. The following sections explain general wavetable concepts; implementation for this specific
synthesizer is covered in section 4.3 Synthesizer Application Notes.

Figure 4-2 Wavetable Concepts

Instrument
Program

Region

Articulator

Sampling
Data
© 2006-2008 Nintendo 27 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
4.1.1 Instrument Programs

When a MIDI program number is allocated to a specific channel through MIDI messages, an instrument
program corresponding with the program number will be referenced. Various wave table objects will be
associated with the individual instrument programs and referenced at the time of synthesis. Instrument
programs come in two types: melodic and percussion.

Figure 4-3 Instrument Programs

4.1.1.1 Melodic Instruments

As shown in Figure 4-4, individual melodic instruments typically do not have a region for each note/on-
message specified key number, but instead are composed of n key regions that can each assume a range
of keys. Each region will contain descriptors representing the lowest and the highest keys to specify the
key range. Regions will also contain pointers to articulators and sampling data. When the MIDI message
specifies a program number and a key number, the synthesizer will produce music using the appropriate
sampling data after selecting the corresponding instruments and region.

Figure 4-4 Melodic Key Regions

Instrument
Program n

Program n

Region 2
key b - c

Region 1
key a - b

Region 0
key 0 - a

Region 3
key c - 127

0 1 2 3
RVL-06-0032-001-F 28 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
4.1.1.2 Percussive Instruments

Percussion instruments typically play a unique sample for each key. Unlike melodic instruments,
percussion instruments contain a region for each key as shown in Figure 4-5. Each region will also contain
a “key group” data, in addition to pointers to articulators and sampling data, that is also contained in
melodic instrument regions. Key groups are used for exclusive playback of samples. For example, more
than one closed, open, or pedal hi-hat key cannot be played at the same time. To achieve this, the same
key group is assigned for these data.

Figure 4-5 Percussive Key Regions

4.1.2 Regions

When the MIDI message specifies a program number and a key number, the synthesizer will produce
sounds using the corresponding region information. A region will have the following parameters:

• Low key: Lowest key of the region.

• High key: Highest key of the region.

• Normal key: Baseline key of the region. This is also known as a unity note.

• Key group: Key group.

• Fine tune: Fine tuning value for the pitch.

• Attenuation: Volume adjustment value.

• Pointer to the articulator.

• Pointer to the sample data.

Figure 4-6 Region Specification

Region 2
key c

Region 1
key b

Region 0
key a

Region 3
key d

Region for
key number n

Instrument
Program m

Program m
Key n
© 2006-2008 Nintendo 29 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
4.1.3 Articulators

Articulators define elements that add characteristics to the music during music production. Typically, an
articulator will have the following parameters:

• LFO parameter (start delay, frequency, pitch modulation range, and volume modulation range)

• Volume envelope parameter (attack time, decay time, sustain volume, and so on)

• Pitch envelope parameter (attack time, decay time, sustain pitch, and so on)

• Pan for percussion instruments

Figure 4-7 Regions and Articulators

4.1.4 Sampling Data

Sampling data will typically have the following parameters:

• Sampling frequency

• Format

• Data size

• Offset address

• Loop information (loop start and loop length)

Figure 4-8 Regions and Sampling Data

4.2 File Format

This section will explain the file format of the wave table data that is used by the SYN library. Wave table
data is composed of a WT and PCM file. These files are created from a DLS 1.0 file.

4.2.1 File Creation

Wave table data used by the SYN library is created using the dls1wt.exe program that is included in the
SDK. dls1wt.exe accepts DLS 1.0 files as an input. These DLS 1.0 files can be created through com-
mercially available DLS editors. dls1wt.exe outputs a WT file containing an instrument program with
sample data information and a PCM file. The PCM file is a collection of only the sampling data.

Articulator
Region for

key number n

Sample for
region

Region for
key number

n

RVL-06-0032-001-F 30 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
4.2.2 WT File

The WT file is a lookup table, optimized so that the SYN library will access the runtime. The format for the
WT file is defined in /include/revolution/wt.h. The WT file format is explained in this section.

4.2.2.1 File Header

Code 4–1 WT File Header

typedef struct WTFILEHEADER
{

 u32 offsetPercussiveInst;
 u32 offsetMelodicInst;
 u32 offsetRegions;
 u32 offsetArticulations;
 u32 offsetSamples;
 u32 offsetAdpcmContext;

 // data ...

} WTFILEHEADER;

Code 4–1 shows the file header of the WT file. An offset for each data structure is stored here.

Table 4-1 WT File Header Members

4.2.2.2 Melodic and Percussion Instruments

The WT file contains the WTINST structure arrays for melodic instruments and percussion instruments.
Each array will have 128 entries with each array element corresponding to the MIDI program number.

Code 4–2 WTINST

typedef struct WTINST
{

 u16 keyRegion[128];

} WTINST;

Offset Description

u32 offsetPercussiveInst Byte offset to an array of percussive instrument WTINST structures.

u32 offsetMelodicInst Byte offset to an array of melodic instrument WTINST structures.

u32 offsetRegions Byte offset to an array of WTREGION structures.

u32 offsetArticulations Byte offset to an array of WTART structures.

u32 offsetSamples Byte offset to an array of WTSAMPLE structures.

u32 offsetAdpcmContext Byte offset to an array of WTADPCM structures.
© 2006-2008 Nintendo 31 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
The WTINST structure represents each instrument that comprises the wave table. The member of this
structure is a table of an index to the region information (WTREGION) that corresponds to each key. Each
region index will take a value between 0 and 65,534 (65535 is used when the region is not specified).

4.2.2.3 Regions

Code 4–3 WTREGION

typedef struct WTREGION
{

 u8 unityNote;
 u8 keyGroup;
 s16 fineTune;
 s32 attn;
 u32 loopStart;
 u32 loopLength;
 u32 articulationIndex; // articulation index to reference
 u32 sampleIndex; // sample index to reference

} WTREGION;

The WT file will wait for an array of region information structures (WTREGION). The size of the array will
vary for each wave table. The key number and the region information will not always correspond one-to-
one, and more than one key number accesses the same region information. Members of the WTREGION
structure are described in Table 4-2.

Table 4-2 WTREGION Members

Region Description

u8 unityNote The key number that will be the basis of the corresponding region.

u8 keyGroup Key group number. Range is 1-15, and 0 indicates no group speci-
fication.

s16 fineTune Fine tuning value for the pitch (0x0001 = 1 cent).

s32 attn Volume (0x00010000 = 0.1dB).

u32 loopStart Loop start position by sample unit.

u32 loopLength Total number of samples in the loop.

u32 articulationIndex Index to the articulator information (WTART).

u32 sampleIndex Index to the sampling data information (WTSAMPLE).
RVL-06-0032-001-F 32 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
4.2.2.4 Articulator

Code 4–4 WTART

typedef struct WTART
{
 // LFO
 s32 lfoFreq;
 s32 lfoDelay;
 s32 lfoAtten;
 s32 lfoPitch;
 s32 lfoMod2Atten;
 s32 lfoMod2Pitch;

 // EG1
 s32 eg1Attack;
 s32 eg1Decay;
 s32 eg1Sustain;
 s32 eg1Release;
 s32 eg1Vel2Attack;
 s32 eg1Key2Decay;

 // EG2
 s32 eg2Attack;
 s32 eg2Decay;
 s32 eg2Sustain;
 s32 eg2Release;
 s32 eg2Vel2Attack;
 s32 eg2Key2Decay;
 s32 eg2Pitch;

 // pan
 s32 pan;

}
 WTART;

The WT file waits for an array of articulator information structures (WTART). The size of the array varies for
each wave table. Each WTART structure is accessed by more than one region information (WTREGION).
The members of the WTART structure are described in Table 4-3.

Table 4-3 WTART Members

Articulator Description

s32 lfoFreq LFO frequency. The LFO is calculated using a sine wave divided into 64
steps per period. IfoFreq is a delta) step value to be added every audio
frame (3 ms) (0x00010000 = 1 step).

s32 lfoDelay LFO start delay time, expressed as the number of audio frames (3ms).

s32 lfoAtten LFO volume amplitude (0x00010000 = 0.1dB).

s32 lfoPitch LFO pitch amplitude (0x00010000 = 1cent).

s32 lfoMod2Atten Per unit change in LFO volume through modulation wheel (0x00010000 =
0.1dB, AttenuationdB = lfoMod2Atten * (modulation wheel / 128)).

s32 lfoMod2Pitch Per unit change in LFO pitch through modulation wheel (0x00010000 =
1cent, PitchCents = lfoMod2Pitch * (modulation wheel / 128)).
© 2006-2008 Nintendo 33 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
s32 eg1Attack Volume envelope attack time.
(unit Time Cents, TimeSec = pow(2, eg1Attack / (1200 * 65536)))

s32 eg1Decay Volume envelope decay time.
(unit Time Cents, TimeSec = pow(2, eg1Decay / (1200 * 65536)))

s32 eg1Sustain Sustain volume for volume envelope (0x00010000 = 0.1dB).

s32 eg1Release Volume change per audio frame (3 ms) in volume envelope release stage
(0x00010000 = 0.1dB).

s32 eg1Vel2Attack Scaling applied to volume envelope attack time.
(ScaleTimeCents = eg1Vel2Attack * (key velocity / 128)).

s32 eg1Key2Decay Scaling applied to volume envelope decay time.
(ScaleTimeCents = eg1Key2Decay * (key number / 128)).

s32 eg2Attack Pitch envelope attack time.
(unit Time Cents, TimeSec = pow(2, eg2Attack / (1200 * 65536)))

s32 eg2Decay Pitch envelope decay time.

(unit Time Cents, TimeSec = pow(2, eg2Decay / (1200 * 65536)))

s32 eg2Sustain Sustain pitch for pitch envelope (0x00010000 = 1cent).

s32 eg2Release Pitch change per audio frame (3 ms) in pitch envelope release stage
(0x00010000 = 0.1dB).

s32 eg2Vel2Attack Scaling applied to pitch envelope attack time.
(ScaleTimeCents = eg2Vel2Attack * (key velocity / 128)).

s32 eg2Key2Decay Scaling applied to pitch envelope decay time.
(ScaleTimeCents = eg2Key2Decay * (key number / 128)).

s32 eg2Pitch Pitch envelope attack level (0x00010000 = 1cent).

s32 pan Panning for percussion instruments (0 = left, 64 = center, 127 = right).

Articulator Description
RVL-06-0032-001-F 34 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
4.2.2.5 Samples

Code 4–5 WTSAMPLE

typedef struct WTSAMPLE
{
 u16 format; // ADPCM, PCM16, PCM8
 u16 sampleRate; // Hz
 u32 offset; // offset in samples from beginning of PCM file
 u32 length; // length of sample in samples
 u16 adpcmIndex; // ADPCM index to determine if in ADPCM mode

} WTSAMPLE;

The WT file contains an array of sampling data information structures (WTSAMPLE). The size of the array
varies for each wave table. Each WTSAMPLE structure is accessed by more than one region information
(WTREGION). The members of the WTSAMPLE structure are described in Table 4-4.

Table 4-4 WTSAMPLE Members

Sample Description

u16 format Format. The following formats are supported:

ADPCM (WT_FORMAT_ADPCM)

16-bit PCM (WT_FORMAT_PCM16)

8-bit PCM (WT_FORMAT_PCM8)

u16 sampleRate Sampling frequency (in Hz).

u32 offset Offset to sampling data from beginning of PCM file (sample units).

u32 length Length (sample units).

u16 adpcmIndex Index for the array of ADPCM data decode information (WTADPCM).
© 2006-2008 Nintendo 35 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
4.2.2.6 ADPCM Data Decode Information

Code 4–6 WTAPCM

typedef struct WTADPCM
{

 // values to program at start
 u16 a[8][2]; // coef table a1[0], a2[0], a1[1], a2[1]....
 u16 gain; // gain to be applied (0 for ADPCM, 0x0800 for PCM8/16)
 u16 pred_scale; // predictor / scale combination (nibbles, as in hardware)
 u16 yn1; // y[n - 1]
 u16 yn2; // y[n - 2]

 // loop context
 u16 loop_pred_scale; // predictor / scale combination (nibbles, as in hardware)
 u16 loop_yn1; // y[n - 1]
 u16 loop_yn2; // y[n - 2]

} WTADPCM;

The WT file contains an array of ADPCM data decode information structures (WTADPCM). The size of the
array varies for each wave table. Each WTADPCM structure is accessed from sampling data information
(WTSAMPLE). The members of the WTADPCM structure are described in Table 4-5.

Table 4-5 WTADPCM Members

ADPCM Description

u16 a[8][2] ADPCM coefficient table.

u16 gain Gain. 0 for ADPCM, 0x0800 for PCM16, and 0x0100 for PCM8.

u16 pred_scale Frame information.

u16 yn1, yn2 History data.

u16 loop_pred_scale Frame information for loop.

u16 loop_yn1, loop_yn2 History data for loop.
RVL-06-0032-001-F 36 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
4.2.3 PCM File

The PCM file stores all the sampling data registered to the WT file. The offset information for each sam-
pling data in the WT file will be initialized to PCM file load destination as an address. This address is
passed as an argument to the synthesizer instance initialization function SYNInitSynth.

4.3 Synthesizer Application Notes

4.3.1 MIDI Bank Support

The SYN library does not support MIDI controller bank select (0x00 and 0x20). Also, the data conversion
tool for SYN library, dls1wt.exe, converts only the bank 0 data, even if the original DLS file is composed
of multiple banks.

4.3.2 MIDI Message Support

The SYN library supports the MIDI messages listed in Table 4-6.

Table 4-6 Supported MIDI Messages

MIDI Message Description

0x8n Note off

0x9n Note on

0xBn Control change

0xCn Program change

0xEn Pitch wheel
© 2006-2008 Nintendo 37 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
4.3.3 MIDI Controller Support

SYN library supports the MIDI controllers shown in Table 4-7.

Table 4-7 Supported MIDI Controllers

4.3.4 Calling SYNMidiInput()

Applications are required to disable interrupts when SYNMidiInput() is being called outside of the AX
audio frame callback. MIDI messages input through SYNMidiInput() will be buffered into a synthesizer
instance and will be executed when SYNRunAudioFrame() is called.

4.3.5 Shutting Down a Synthesizer

Applications need to guarantee that there are no active notes before shutting down the synthesizer with
SYNQuitSynth(). Before shutting down, call SYNGetActiveNotes() to check the availability of active
notes. Typically, notes will stay active until the ADSR envelope release phase is completed, even if the
note-off message is input.

Controller Number Description

0x01 Modulation wheel

0x06 & 0x26 Data entry (set pitch wheel range)

0x07 Volume

0x0A Pan

0x0B Expression

0x40 Hold pedal

0x5B Effect send level (AuxA)

0x5C Effect send level (AuxB)

0x62 & 0x63 Data entry disabled

0x64 & 0x65 Data entry enabled

0x78 All sounds off

0x79 Reset all controllers

0x7B – 0x7F All notes off (same as all sounds off)
RVL-06-0032-001-F 38 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
5 MIDI Sequencer

The MIDI sequencer library (SEQ) is an AX application library layer above the SYN library. The SEQ library
processes the standard MIDI type 0 and type 1 data. The MIDI message analyzed through the SEQ library
is passed to the SYN library.

Figure 5-1 SEQ API Layer

For detailed API descriptions, see “Sequencer” under “AX Applications” in the “Audio System” section of
the Revolution Function Reference Manual.

5.1 Sequencer Features

SEQ library provides an API for the application to control the MIDI sequencer in runtime.

5.1.1 State Control

The user can set one of the following states in a MIDI sequencer.

Table 5-1 State Controls

State Description

Stop Stops the playback of MIDI data. The current position (playback position) will return to
the beginning of the MIDI data.

Run Starts the MIDI data playback from the current position. When the current position
reaches the end of MIDI data, the playback will be stopped.

Run looped Starts the MIDI data playback from the current position. When the current position
reaches the end of MIDI data, the playback will resume from the beginning of the data.

Pause Stops the MIDI data playback. The current position will not return to the beginning.

MIDI Data

SEQ

SYN

MIX

AX
© 2006-2008 Nintendo 39 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
5.1.2 Tempo Control

A user application can set the tempo for any track through an API. Tempo will be expressed as a floating
point number in BPM units (120.0 = 120 BPM).

A tempo can also be obtained from any track in the MIDI data. However, the new tempo will then only
be applied to that track. Be aware of this when using type 1 MIDI data.

5.1.3 Volume Control

The user application can set the master volume for the sequence through an API. Volume will be
expressed as a signed fixed point number in dB units (0x00000001 = 0.1 dB).

Also, the channel volumes can be obtained from MIDI data using control-change messages.

5.1.4 Controller Event Callback Interface

The user application may register callbacks to specific MIDI controllers. Any controller, 0 ~ 127, may be
used as the destination, regardless of whether any function (such as a modulation wheel) is assigned.
These events can then be inserted into a MIDI data to notify the user application of the current playback
progress, for example.
RVL-06-0032-001-F 40 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
6 Voice Articulator

The voice articulator library (AXART) applies articulators to AX voices, adding effects such as volume, pan,
pitch, LFO, envelope, and 3D sound effects. Multiple articulators may be applied to a same voice.

Figure 6-1 AXART API Layers

For detailed API descriptions, see “Articulator Library” under “AX Applications” in the “Audio System” sec-
tion of the Revolution Function Reference Manual.

6.1 AXART and AX

The AXART library will control the articulator through the sound list, which sets a sound as a node. Each
sound will have a pointer to its associated AX voice and a list of applied articulators.

Figure 6-2 Sound, Articulators and AX Voice

The articulators will each have a specific function and will set volume, pan, pitch, and other settings, follow-
ing the user direction. Also, the user can change the articulator parameters at runtime.

The AXART library will run the articulators for all sounds in the sound list using the AX audio frame
callback.

AXART

MIX

AX

User Application

Sound

AX voice
Articulator

Articulator

Articulator
© 2006-2008 Nintendo 41 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
6.2 Articulator Types

Table 6-1 shows the articulator types and the voice parameters set by each articulator (indicated by ).

Table 6-1 Articulators and Voice Parameter Support (1)

Articulator Type SRC Type SRC Ratio ITD Volume Pan SPan

AXART_3D      

AXART_PANNING  

AXART_ITD 

AXART_SRCTYPE 

AXART_PITCH 

AXART_PITCH_ENV 

AXART_PITCH_MOD 

AXART_VOLUME 

AXART_AUXA_VOLUME

AXART_AUXB_VOLUME

AXART_AUXC_VOLUME

AXART_VOLUME_ENV 

AXART_AUXA_VOLUME_ENV

AXART_AUXB_VOLUME_ENV

AXART_AUXC_VOLUME_ENV

AXART_VOLUME_MOD 

AXART_AUXA_VOLUME_MOD

AXART_AUXB_VOLUME_MOD

AXART_AUXC_VOLUME_MOD

AXART_LPF

AXART_FADER

AXART_RMT

AXART_RMT_FADER

AXART_RMT_AUX_VOLUME
RVL-06-0032-001-F 42 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
Table 6-2 Articulators and Voice Parameter Support (2)

Articulator Type AuxA AuxB AuxC LFO LPF Fader RMT
RMT
Fader

RMT
Aux

AXART_3D

AXART_PANNING

AXART_ITD

AXART_SRCTYPE

AXART_PITCH

AXART_PITCH_ENV

AXART_PITCH_MOD 

AXART_VOLUME

AXART_AUXA_VOLUME 

AXART_AUXB_VOLUME 

AXART_AUXC_VOLUME 

AXART_VOLUME_ENV

AXART_AUXA_VOLUME_ENV 

AXART_AUXB_VOLUME_ENV 

AXART_AUXC_VOLUME_ENV 

AXART_VOLUME_MOD 

AXART_AUXA_VOLUME_MOD  

AXART_AUXB_VOLUME_MOD  

AXART_AUXC_VOLUME_MOD  

AXART_LPF 

AXART_FADER 

AXART_RMT 

AXART_RMT_FADER 

AXART_RMT_AUX_VOLUME 
© 2006-2008 Nintendo 43 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
6.3 Low Frequency Oscillators (LFOs)

AXART library supports the following common LFO shapes:

• Sine

• Square

• Saw

• Reverse Saw

• Triangle

• Noise

The user may also add LFO shapes not listed above.
RVL-06-0032-001-F 44 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Applications
TM and ® are trademarks of Nintendo.

Dolby, Pro Logic, and the Double-D symbol are trademarks of Dolby Laboratories.

IBM is a trademark of International Business Machines Corporation.

Roland GS Sound Set is a trademark of Roland Corporation U.S.

All other trademarks and copyrights are property of their respective owners.
© 2006-2008 Nintendo 45 RVL-06-0032-001-F
CONFIDENTIAL Released: October 17, 2008

Revolution AX Applications Revolution SDK
RVL-06-0032-001-F 46 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

© 2006-2008 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

	1 Overview
	2 Mixer
	2.1 Mixer Modes
	2.2 Mixer Controls
	2.2.1 Voice Mixing Controls
	2.2.1.1 Input Level (input)
	2.2.1.2 AuxA, AuxB, and AuxC
	2.2.1.3 Pan (pan)
	2.2.1.4 Surround Pan (span)
	2.2.1.5 Mute (mute)
	2.2.1.6 Fader (fader)

	2.2.2 Wii Remote Speaker Control
	2.2.2.1 Fader
	2.2.2.2 AUX Send

	2.3 Mixer Application Notes
	2.3.1 Volume Clamping
	2.3.2 Volume Ramping
	2.3.3 Suggested Input and Fader Control Use
	2.3.3.1 Sound Effects and Audio Streaming
	2.3.3.2 Music Synthesizer
	2.3.3.3 3D Sound Applications

	3 AUX Effects
	3.1 Effects
	3.1.1 High Quality Reverb
	3.1.2 Standard Reverb
	3.1.3 Chorus
	3.1.4 Delay

	3.2 Expansion Effects
	3.2.1 Effect Bus Send
	3.2.2 Expansion Effect High-quality Reverb
	3.2.3 Expansion Effect Standard Reverb
	3.2.4 Expansion Effect Chorus
	3.2.5 Expansion Effect Delay

	4 Synthesizer
	4.1 Wavetable
	4.1.1 Instrument Programs
	4.1.1.1 Melodic Instruments
	4.1.1.2 Percussive Instruments

	4.1.2 Regions
	4.1.3 Articulators
	4.1.4 Sampling Data

	4.2 File Format
	4.2.1 File Creation
	4.2.2 WT File
	4.2.2.1 File Header
	4.2.2.2 Melodic and Percussion Instruments
	4.2.2.3 Regions
	4.2.2.4 Articulator
	4.2.2.5 Samples
	4.2.2.6 ADPCM Data Decode Information

	4.2.3 PCM File

	4.3 Synthesizer Application Notes
	4.3.1 MIDI Bank Support
	4.3.2 MIDI Message Support
	4.3.3 MIDI Controller Support
	4.3.4 Calling SYNMidiInput()
	4.3.5 Shutting Down a Synthesizer

	5 MIDI Sequencer
	5.1 Sequencer Features
	5.1.1 State Control
	5.1.2 Tempo Control
	5.1.3 Volume Control
	5.1.4 Controller Event Callback Interface

	6 Voice Articulator
	6.1 AXART and AX
	6.2 Articulator Types
	6.3 Low Frequency Oscillators (LFOs)

