
The contents in this document are highly

confidential and should be handled accordingly.

© 2006-2007 Nintendo RVL-06-0034-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution DSPADPCM
Version 1.00

Revolution DSPTOOL.DLL Revolution SDK

RVL-06-0034-001-B 2 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

Revolution SDK Revolution DSPTOOL.DLL
Contents
Revision History .. 4
1 Overview... 5
2 Usage ... 6
3 Data Formats.. 8

3.1 WAV Files ... 8
3.2 AIFF Files ... 8
3.3 DSP-ADPCM Files.. 8

Code Examples
Code 3–1 DSPADPCM Header File .. 8
© 2006-2007 Nintendo 3 RVL-06-0034-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution DSPTOOL.DLL Revolution SDK
Revision History

Version
Date

Revised
Item Description

1.00 2006/03/01 - First release by Nintendo of America Inc.
RVL-06-0034-001-B 4 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution DSPTOOL.DLL

© 2006-2007 Nintendo 5 RVL-06-0034-001-B
CONFIDENTIAL Released: October 22, 2007

1 Overview
DSPADPCM is a data conversion utility for the Nintendo Revolution audio subsystem. This tool converts
standard WAV or AIFF files into the DSP-ADPCM format. This format is specific to the hardware decoder
built into the Revolution audio DSP and provides good data compression while retaining high fidelity.

The DSPADPCM tool can also convert DSP-ADPCM data back into WAV or AIFF formats. The conversion
process models the DSP decoder exactly and thus provides a convenient method for previewing com-
pressed data without relying on Nintendo Revolution hardware.

Revolution DSPTOOL.DLL Revolution SDK
2 Usage
DSPADPCM is a Win32 console application. It has the following command-line syntax and parameters:

DSPADPCM -<mode> <inputfile> [<outputfile>] [-<option><argument> ……]

The DSPADPCM tool also supports the following options:

-<mode> <mode> must be either “e” (encode) or “d” (decode). This is a required
parameter and specifies the operational mode of the tool.

If encoding is requested, the tool will convert a WAV file (as specified by
<inputfile>) into a DSPADPCM file (as specified by [<outputfile>]).

Note: The [<outputfile>] parameter is optional. If omitted, the
default output file name will be the input file with a “.dsp” exten-
sion.

If decoding is requested, the tool will convert a DSP-ADPCM file (as speci-
fied by <inputfile>) into a WAV file (as specified by
[<outputfile>]). Again, the [<outputfile>] parameter is optional. If
omitted, the default output file name will be the input file with a .wav exten-
sion.

<inputfile> Specifies the file to be converted. This is a required parameter.

[<outputfile>] Specifies the file that will store the converted data. If omitted, the tool will
generate a filename based on <inputfile> (see <mode> above). If the
user has specified decode mode and the output file already exists, the tool
will abort to prevent inadvertent destruction of source data.

-l<start>-<end> For encode mode only; specifies the loop points for the sample data to be
converted. The <start> parameter is the raw sample address at which
the loop begins. The <end> parameter is the raw sample address at which
the loop ends. Both addresses are expressed in decimal. For example, “-
l100-232” means that the loop starts at sample 100, and ends at sample
232. Samples are counted from zero, meaning that “sample zero” is the
first sample in the file; “sample 100” is actually the one hundred-first sam-
ple in the file.

-a<endaddr> For encode mode only; this parameter is ignored if a loop has been speci-
fied. The <endaddr> specifies the last sample to be played by the DSP. If
omitted, DSPADPCM uses the sample count (minus one) of the WAV file as
a default value.

-c<textfile> Instructs DSPADPCM to dump the ADPCM file’s header information into
<textfile>. If <textfile> is omitted, DSPADPCM will use
<inputfile> with a “.txt” extension. If the text file already exists, its
contents will be destroyed.

-v Turns on verbose mode. The tool will dump header data and processing
status to stdin.

-f When decoding, generates an AIFF file. Loop points specified in the DSP
header of the source file will be preserved.
RVL-06-0034-001-B 6 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution DSPTOOL.DLL
-w When decoding, generates a WAV file. Loop points specified in the DSP
header of the source file will be lost (because WAV files do not support loop
points). This is the default setting.

-h Displays help information.
© 2006-2007 Nintendo 7 RVL-06-0034-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution DSPTOOL.DLL Revolution SDK
3 Data Formats

3.1 WAV Files

DSPADPCM converts standard WAV files into DSP-ADPCM format. The WAV files must contain monaural,
16-bit PCM data.

3.2 AIFF Files

DSPADPCM can also convert AIFF files into DSP-ADPCM format. The AIFF files must contain monaural, 16-
bit PCM data.

Note: Loop points in the AIFF file will be read automatically and programmed into the header of the DSP-
ADPCM output file.

3.3 DSP-ADPCM Files

When converting data into DSP-ADPCM format, the tool will preface the output data with a header. The
structure of the header is defined in Code 3–1:

Code 3–1 DSPADPCM Header File

// all data in this structure is in BIG-ENDIAN FORMAT!!!!

typedef struct
{
// for header generation during decode

u32 num_samples; // total number of RAW samples
u32 num_adpcm_nibbles; // number of ADPCM nibbles (including frame headers)
u32 sample_rate; // Sample rate, in Hz

// DSP addressing and decode context
u16 loop_flag; // 1=LOOPED, 0=NOT LOOPED
u16 format; // Always 0x0000, for ADPCM
u32 sa; // Start offset address for looped samples (zero for non-looped)
u32 ea; // End offset address for looped samples
u32 ca; // always zero
u16 coef[16]; // decode coefficients (eight pairs of 16-bit words)

// DSP decoder initial state
u16 gain; // always zero for ADPCM
u16 ps; // predictor/scale
u16 yn1; // sample history
u16 yn2; // sample history

// DSP decoder loop context
u16 lps; // predictor/scale for loop context
u16 lyn1; // sample history (n-1) for loop context
u16 lyn2; // sample history (n-2) for loop context

u16 pad[11]; // reserved

} DSPADPCM;

// Header is 96 bytes long
RVL-06-0034-001-B 8 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution DSPTOOL.DLL
This header contains information needed by the Nintendo Revolution audio DSP to decode and play the
associated sample.

Note: All data in the header is stored in big-endian format. This facilitates transfer of the data to a Nin-
tendo Revolution runtime application. Much of the data may be used verbatim to program the DSP
for sample playback. Consult the Audio Library document set in this guide for application details.

When decoding DSP-ADPCM data into WAV or AIFF format, the tool will assume that this header is present
at the start of the DSP-ADPCM file. The DSPADPCM tool needs the first two parameters of the header to
regenerate WAV header information during decode:

The remaining parameters are required by the Nintendo Revolution audio DSP to decode and play the
associated ADPCM sample data:

num_samples Number of raw, uncompressed samples in the file. Used for WAV/AIFF
header generation during decode.

num_adpcm_nibbles Number of ADPCM nibbles (including frame headers) generated for this
sample.

Note: You must round this up to the next multiple of 8 bytes to get the
actual length of the data in the file because DSPADPCM only gener-
ates complete frames.

sampling_rate Sampling rate of the data, expressed in Hertz. Used for WAV/AIFF header
generation during decode.

loop_flag Specifies whether or not the sample is looped. This parameter is stored in
big-endian format and is used by the DSP for sample playback.

format Specifies the data format of the sample. Always zero. Used by the DSP for
sample playback.

sa Loop start offset value (in nibbles). This value includes the frame header. If
not looping, specify 2, which is the top sample. In the user application, the
main memory address of the sample data must be added before DSP is
used.

ea Loop end offset value (in nibbles). This value includes the frame header. In
the user application, the main memory address of the sample data must be
added before DSP is used.

ca Initial offset value (in nibbles). This value includes the frame header.
Always specify 2, which is the first sample. In the user application, the main
memory address of the sample data must be added before DSP is used.
© 2006-2007 Nintendo 9 RVL-06-0034-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution DSPTOOL.DLL Revolution SDK
coef[16] Decoder coefficients. This coefficient corresponds to AXPBADPCM Struc-
ture member a[][] in the following way.

a[0][0] = coef[0];

a[0][1] = coef[1];

a[1][0] = coef[2];

a[1][1] = coef[3];

a[2][0] = coef[4];

a[2][1] = coef[5];

a[3][0] = coef[6];

a[3][1] = coef[7];

a[4][0] = coef[8];

a[4][1] = coef[9];

a[5][0] = coef[10];

a[5][1] = coef[11];

a[6][0] = coef[12];

a[6][1] = coef[13];

a[7][0] = coef[14];

a[7][1] = coef[15];

gain Gain factor. Always zero for ADPCM samples.

ps Predictor and scale. This will be initialized to the predictor and scale value
of the sample’s first frame.

yn1 History data; used to maintain decoder state during sample playback.

yn2 History data; used to maintain decoder state during sample playback.

lps Predictor/scale for the loop point frame. If the sample does not loop, this
value is zero.

lyn1 History data for the loop point. If the sample does not loop, this value is
zero.

lyn2 History data for the loop point. If the sample does not loop, this value is
zero.
RVL-06-0034-001-B 10 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution DSPTOOL.DLL
Some notes about decoder addressing:

• When processing ADPCM samples, the DSP will address memory as 4-bit nibbles.

• The values for sa, ea, and ca generated by DSPADPCM are nibble-offsets which already account for
the extra space needed for ADPCM frame headers. For example, the one hundredth sample does not
refer to the one hundredth nibble in the sample data; the one hundredth sample would actually be the
one hundred-sixteenth nibble.

• The sa, ea, and ca values are offsets. When encoding data, DSPADPCM cannot know where the sam-
ple will be placed in memory. The user application is therefore responsible for adding a main memory
address (in nibbles) to these offsets before the DSP can access the sample.

• Note that individual ADPCM sound effects must start on 8-byte boundaries and must be at least a multi-
ple of 8 bytes in length. Thus, when loading one or more ADPCM samples into memory, the samples
must be packed such that the start of each sample falls on an 8-byte boundary.
© 2006-2007 Nintendo 11 RVL-06-0034-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution DSPTOOL.DLL Revolution SDK
TM and ® are trademarks of Nintendo.

Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.

IBM is a trademark of International Business Machines Corporation.

Roland GS Sound Set is a trademark of Roland Corporation U.S.

All other trademarks and copyrights are property of their respective owners.
RVL-06-0034-001-B 12 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

© 2006-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

	1 Overview
	2 Usage
	3 Data Formats
	3.1 WAV Files
	3.2 AIFF Files
	3.3 DSP-ADPCM Files

