
© 2006-2009 Nintendo RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Revolution SDK

Optical Disc Drive Library (DVD)
Version 1.01

Optical Disc Drive Library (DVD) Revolution SDK

RVL-06-0041-001-C 2 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
Contents
1 Overview... 6
2 Main Features... 7

2.1 Size... 7
2.2 Read Speed.. 7
2.3 File System ... 7
2.4 Error Handling... 7

3 Discs... 8
3.1 Disc Structure ... 8
3.2 Disc ID .. 8

4 Simple Demo.. 10
5 How to Use APIs .. 12

5.1 Initialization ... 12
5.2 Open ... 12
5.3 Read ... 12

5.3.1 Synchronous Read ... 13
5.3.2 Asynchronous Read.. 13

5.4 Close... 17
5.5 Get Size .. 17
5.6 Change Directory.. 17

6 Error Handling .. 18
6.1 Disc Drive Device Driver Error Processing Policy .. 18
6.2 Error Checking.. 18

6.2.1 No Disk Error (DVD_STATE_NO_DISK) .. 20
6.2.2 Wrong Disk Error (DVD_STATE_WRONG_DISK) ... 20
6.2.3 Retry Error (DVD_STATE_RETRY).. 21
6.2.4 Fatal Error (DVD_STATE_FATAL) ... 21

6.3 State Diagram... 21
6.4 Disc Check by the Application during Restart... 22
6.5 Emulating Errors ... 22

7 File System... 24
7.1 FST Size ... 24
7.2 FST Location .. 24
7.3 Tips to Reduce FST Size and Speed ... 24
7.4 Character Set Usable for File/Directory Names.. 25

8 Directory Access Support Functions .. 26
8.1 Open Directory.. 26
8.2 Read Directory.. 26
8.3 Close Directory ... 27
8.4 Sample Code for Accessing a Directory ... 27
8.5 Tell Directory... 27
8.6 Seek Directory .. 28
8.7 Rewind Directory .. 28

9 Multiple Disc Games (Reference Information).. 30
9.1 Disc Exchange Processing Pattern .. 30
9.2 Disc Specification during Exchange ... 30

9.2.1 Wildcard Use Restriction (excluding Game Version) .. 31
9.2.2 Wildcard Use Restriction (Game Version) .. 31

9.3 Disc Exchange Procedure .. 32
9.4 Error Handling and Messages During Disc Exchange.. 32
9.5 Multiple Disc Emulation .. 32
9.6 Multiple Disc Functions... 32
9.7 Cautions Regarding Multiple Disc Games .. 33

10 Optical Disc Drive FAQs... 35
© 2006-2009 Nintendo 3 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
Code Examples
Code 4–1 Read File Demo ... 10
Code 5–1 The DVDInit Function ... 12
Code 5–2 The DVDOpen Function ... 12
Code 5–3 The DVDRead Function ... 13
Code 5–4 The DVDReadAsync Function ... 13
Code 5–5 Asynchronous File Read .. 15
Code 5–6 Example of Illegal Code ... 16
Code 5–7 Legal Code, Option 1 ... 16
Code 5–8 Legal Code, Option 2 ... 17
Code 5–9 DVDClose() .. 17
Code 5–10 DVDGetLength()... 17
Code 5–11 DVDChangeDir() .. 17
Code 6–1 Function to Acquire Disc Drive Status.. 18
Code 6–2 Error Handling .. 20
Code 6–3 The DVDCheckDiskAsync Function... 22
Code 8–1 The DVDOpenDir Function .. 26
Code 8–2 The DVDReadDir Function... 26
Code 8–3 The DVDCloseDir Function .. 27
Code 8–4 Sample Code for Accessing a Directory... 27
Code 8–5 The DVDTellDir Function ... 27
Code 8–6 The DVDSeekDir Function ... 28
Code 8–7 The DVDRewindDir Function ... 28
Code 10–1 FAQ Code Sample ... 35

Equations
Equation 7-1 Calculating FST File Size .. 24
Equation 7-2 Calculating FST Directory Size.. 24

Figures
Figure 2–1 Applications Use Filenames to Retrieve Data From the Wii Disc 7
Figure 6–1 State Transition Diagram ... 21

Tables
Table 6–1 Error Messages Returned by the Disc Drive Status Get Functions 19
Table 6–2 Emulation with Each Development Device .. 23
RVL-06-0041-001-C 4 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
Revision History

Version
Date

Revised
Item Description Revised By

1.01 2009/02/17 Transferred content from the Optical Disc
Guidelines and re-edited them.

2.1 Updated the total capacity of the optical
disc to be the total capacity that the
developer can use.

3 Added Chapter 3, Discs

5.3.1

5.4

Revised the text.

6.4 Added information regarding the disc
check when the application initiates a
restart.

7.1

7.2

Added an explanation about FST size
restrictions.

9 Added “Multiple Disc Games (Reference
Information).”

1.00 2006/03/01 - First release by Nintendo of America Inc. -
© 2006-2009 Nintendo 5 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK

RVL-06-0041-001-C 6 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

1 Overview
The Wii console from Nintendo uses an optical disc drive for game media. Since this device is based on
DVD technology, function names in the optical disc drive library have “DVD” as a prefix.

This document covers the following topics:

• "2 Main Features" on page 7 introduces you to the main features of the Wii optical disc drive. If you are
not a programmer, you can get basic information on the optical disc drive by reading this chapter. If you
are a programmer, this chapter is a good starting point for you.

• "3 Discs" on page 8 describes the disc structure and the unique ID for each disc.

• "4 Simple Demo" on page 10 is a tour of the Wii optical disc drive through the use of a simple code
demo.

• "5 How to Use APIs" on page 12 describes the APIs and how to use them.

• "6 Error Handling" on page 18 describes APIs for error handling.

• "7 File System" on page 24 briefly describes the Wii file system.

• "8 Directory Access Support Functions" on page 26 describes how to use directory access support
functions.

• "9 Multiple Disc Games (Reference Information)" on page 30 describes, as reference, games that use
multiple discs.

• "10 Optical Disc Drive FAQs" on page 35 offers a FAQ list.

Revolution SDK Optical Disc Drive Library (DVD)

© 2006-2009 Nintendo 7 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

2 Main Features
Here are the main features of the Wii optical disc drive:

• Huge storage size

• Fast read speed

• Simple file system

• Easy error handling

2.1 Size

The total capacity available to a developer is 4,294,967,296 bytes.

2.2 Read Speed

The read speed for a Wii disc is equivalent to the maximum DVD 6x. The Wii disc is always rotating uni-
formly, and data is recorded with the same density throughout the whole disc.

2.3 File System

The Wii disc can be accessed by symbolic string names, so you can read files by name. You don’t have to
specify the position of the file.

Figure 2–1 Applications Use Filenames to Retrieve Data From the Wii Disc

2.4 Error Handling

APIs automatically handle common user errors such as “no disc in drive,” and so on, so you don’t have to
write complicated error-handling programs.

Application code

…………

read “fileA”

…………

fileA

Optical Disc Drive Library (DVD) Revolution SDK
3 Discs

3.1 Disc Structure

The structural elements of a single optical disc can be classified into two categories.

• Program portion (DOL file)

• User file portion

The DOL file is the file converted from the ELF file during ndrun execution and is the game program.
Because ELF files that can be used to build programs can have a slightly different format depending on the
linker, the file is converted to a DOL file, which is a custom format similar to an ELF file, before being stored
on the disc. DOL files can be loaded or run by the Wii menu.

The user file portion is visible as a file from the program portion. Any file application (data, relocatable
module, etc.) is acceptable.

3.2 Disc ID

Each disc has a region to store a unique ID. The ID comprises the following four elements.

• Game Code
A unique code assigned to each game. This is specified by Nintendo Business Division.

• Company Code
A unique code assigned to each developer. This is also specified by the Nintendo Business Division.

• Disc Number
This number is assigned for each disc for each game. The first disc is assigned 0, and subsequent
discs are assigned 1, 2, and so on.

• Game Version
This is assigned for each version of a game. The version is assigned regardless of whether the game
is released.

The Disc ID is used by the disc driver to determine whether the disc is appropriate.
RVL-06-0041-001-C 8 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
© 2006-2009 Nintendo 9 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
4 Simple Demo
Here is some simple code to read a file named testfile1.txt from the optical disc into a prepared
buffer. This demo is stored as dvddemo/src/dvddemo1.c. Please compile it and see how it works.

Code 4–1 Read File Demo

1: // The name of the file we are going to read.
2: char* fileName = "testfile1.txt";
3:
4:
5: void main(void)
6: {
7: DVDFileInfo fileInfo;
8: u32 fileSize;
9: u8* buffer; // pointer to the buffer
10:
11: // Init the OS and heap
12: MyOSInit();
13:
14: DVDInit();
15:
16: // We MUST open the file before accessing the file
17: if (FALSE == DVDOpen(fileName, &fileInfo))
18: {
19: OSHalt("Cannot open file");
20: }
21:
22: // Get the size of the file
23: fileSize = DVDGetLength(&fileInfo);
24:
25: // Allocate a buffer to read the file.
26: // NOTE: Pointers returned by OSAlloc are always 32byte aligned.
27: buffer = (u8*)OSAlloc(OSRoundUp32B(fileSize));
28:
29: // read the entire file here
30: if (0 > DVDRead(&fileInfo, (void*)buffer, OSRoundUp32B(fileSize), 0))
31: {
32: OSHalt("Error occurred when reading file");
33: }
34:
35: // From here, we can use the file
36: :
37: // Close the file
38: DVDClose(&fileInfo);
39: :
40: OSFree(buffer);
41:
42: OSHalt("End of demo");
43:
44: // NOT REACHED HERE
45: }

The lines of code are referenced by number in the following explanations:

7: At this line, you declare a structure called DVDFileInfo. This structure holds the information for the
target file, such as the start position and the length. The application does not have to fill the structure;
DVDOpen handles this (see line 17).

12: Call a local function, MyOSInit (not shown here), to initialize the OS and heap. The heap will be
required to use the OSAlloc function later. Refer to the Revolution SDK Operating System manual for an
explanation of how to use the OSAlloc function.
RVL-06-0041-001-C 10 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
14: You must call the DVDInit function before you issue any function related to the optical disc. This
function handles initialization for optical disc access, such as setting the interrupt handler.

17: Open the file here. The DVDOpen function converts a filename into its file information. When
debugging, we recommend checking the return value to know whether the open is successful.

23: The DVDGetLength function is a macro to get the size of the file, which is used so that this code
knows how large a buffer to allocate for the file to be read.

27: Allocate a buffer to read the file.

Note: We have to round up the file size to a multiple of 32 due to drive hardware restrictions. The size of
a read must be a multiple of 32.

30: This is the way to read files. With the DVDRead function, you can read a file synchronously, which
means that the function returns when the read finishes. Since this function returns –1 if the read fails, you
should check the return value. (For explanations of the arguments, as well as details on both synchronous
and asynchronous reads, see "5.3 Read" on page 12.)

38: If you no longer need to access the file, you should close it.

Notes:

• There is no need to invalidate the data cache; the DVDRead function does that by default.

• In your real games, you should include code for error checking. This is simple to do; see "6 Error
Handling" on page 18 for more details.
© 2006-2009 Nintendo 11 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
5 How to Use APIs

5.1 Initialization

Code 5–1 The DVDInit Function

#include<revolution/dvd.h>

void DVDInit(void);

You must call this function before you can access the disc drive. The DVDInit function handles all
necessary initialization of the drive. You don’t need to call this function more than once, but it doesn’t cause
any trouble if you do.

5.2 Open

Code 5–2 The DVDOpen Function

#include<revolution/dvd.h>

BOOL DVDOpen(const char* fileName, DVDFileInfo* fileInfo);

In order to access a file, you first have to get the DVDFileInfo structure of the file by calling the DVDOpen
function. The information on the file fileName is retrieved and stored in fileInfo.

Filenames can take one of the following styles:

• /texture/mario

• texture/mario

If you use the former style, the optical disc drive device driver takes it as an absolute path name; in
contrast, if you use the latter style, it’s taken as a relative path name to the current directory by the device
driver. There’s no restriction on the length of the filename.

Like other file systems, you can use “..” (parent directory) and “.” (current directory).

To change the current directory, see section "5.6 Change Directory" on page 17.

5.3 Read

There are two types of optical disc read APIs: synchronous, meaning the function does not return until the
read finishes; and asynchronous, meaning the function returns immediately while the read occurs in the
background.
RVL-06-0041-001-C 12 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
5.3.1 Synchronous Read

Code 5–3 The DVDRead Function

#include<revolution/dvd.h>

s32 DVDRead(DVDFileInfo* fileInfo, void* addr, s32 length, s32 offset);

The DVDRead function reads a portion of the file and stores it into the buffer specified by addr. Length and
offset specify which part of the file to read, where offset 0 means the top of the file.

The DVDRead function returns the number of bytes transferred if the read succeeded; it returns –1 if the
read did not.

The programmer must prepare enough memory space for the buffer. To get the size of the file, use the
DVDGetLength macro (see "5.5 Get Size" on page 17).

Because of drive hardware restrictions, addr should be 32-byte aligned, length should be a multiple of 32,
and offset should be a multiple of 4.

As noted above, the DVDRead function does not return until the read finishes, hence the term
“synchronous.” Therefore, if the user ejects the disc, the DVDRead function will keep waiting in the function
for the user to insert a disc. In the meantime, the CPU executes other runnable threads, if any. For more
information on threads, refer to the Operating System.

The application does not need to invalidate the data cache because the DVDRead function does this by
default. To change this behavior, call the DVDSetAutoInvalidation function (described in the SDK
Function Reference). If the read data contains a program, however, you must invalidate the instruction
cache regardless of whether you have changed this default behavior.

5.3.2 Asynchronous Read

Code 5–4 The DVDReadAsync Function

#include<revolution/dvd.h>

typedef void (*DVDCallback)(s32 result, DVDFileInfo* fileInfo);

BOOL DVDReadAsync(DVDFileInfo* fileInfo, void* addr, s32 length,
s32 offset, DVDCallback callback);

DVDReadAsync() issues a command to the drive to read the file into the buffer specified by addr and then
returns immediately. Length and offset specify which part of the file to read, where offset 0 means the top
of the file. The function specified by callback is invoked when the read finishes; however, you can set
callback to NULL if you do not want any callback to be invoked.

As with DVDRead(), you must prepare enough memory space for the buffer. To get the size of the file, use
the DVDGetLength() macro (see "5.5 Get Size" on page 17).

And again, addr should be 32-byte aligned, length should be a multiple of 32, and offset should be a
multiple of 4.

DVDReadAsync() always returns TRUE.

The argument result shows whether the read succeeded or not. If the read was successful, the number of
bytes transferred is set; the function returns –1 if the read was not successful.
© 2006-2009 Nintendo 13 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
Asynchronous means that the read goes on in the background. Therefore, you should call
DVDGetFileInfoStatus() to display the appropriate message to the user while the transfer executes
in the background. (See "6 Error Handling" on page 18 for more details about error handling.)

DVDReadAsync() invalidates the data cache by default. To change this behavior, call
DVDSetAutoInvalidation() (described in the SDK Function Reference). If the read data contains a
program, however, you must invalidate the instruction cache regardless of whether you have changed this
default behavior.

You can call as many read commands as you want before any previously issued read finishes. In such
cases, the argument fileInfo of callback shows which file transfer has just finished.
RVL-06-0041-001-C 14 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
The following code sample reads a file using DVDReadAsync():

Code 5–5 Asynchronous File Read

1: // This variable should be declared "volatile" because this is shared
2: // by two contexts.
3: volatile s32 readDone = 0;
4:
5: // The name of the file we are going to read.
6: char* fileName = "testfile1.txt";
7:
8:
9: static void callback(s32 result, DVDFileInfo* fileInfo)
10: {
11: if (result == -1)
12: {
13: readDone = -1;
14: }
15: else
16: {
17: readDone = 1;
18: }
19: return;
20: }
21:
22: void main(void)
23: {
24: DVDFileInfo fileInfo;
25: u32 fileSize;
26: u8* buffer; // pointer to the buffer
27:
28: MyOSInit();
29:
30: DVDInit();
31:
32: // We MUST open the file before accessing the file
33: if (FALSE == DVDOpen(fileName, &fileInfo))
34: {
35: OSHalt("Cannot open file");
36: }
37:
38: // Get the size of the file
39: fileSize = DVDGetLength(&fileInfo);
40:
41: // Allocate a buffer to read the file.
42: // NOTE: Pointers returned by OSAlloc are always 32-byte aligned.
43: buffer = (u8*)OSAlloc(OSRoundUp32B(fileSize));
44:
45: // This function only start reading the file.
46: // The read keeps going in the background after the function returns
47: if (FALSE == DVDReadAsync(&fileInfo, (void*)buffer,
48: (s32)OSRoundUp32B(fileSize), 0, callback))
49: {
50: OSHalt("Error occurred when issuing read");
51: }
52:
53: while (1)
54: {
55: switch (readDone)
56: {
57: case 1: // the read succeeded
58: goto exit;
59: // NOT REACHED HERE
60: case -1: // the read failed
© 2006-2009 Nintendo 15 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
61: OSHalt("Error occurred when reading file");
62: // NOT REACHED HERE
63: case 0: // processing...
64: // do something
65: break;
66: }
67: }
68:
69: exit:
70: // From here, we can use the file
71: OSReport("read end\n");
72:
73: // Close the file
74: DVDClose(&fileInfo);
75:
76: :
77:
78: OSFree(buffer);
79:
80: OSHalt("End of demo");
81:
82: // NOT REACHED HERE
83: }

You can do anything (for example, show graphics, play audio, and so forth) while reading the file in the
background. If the read finishes, callback is invoked. You can write whatever you want in the callback
function. In this example, we wrote it to set the flag readDone to verify whether the read finished in the
main loop (lines 53-67).

Note: Volatile is necessary for the variable readDone because readDone is accessed by two contexts,
main and callback. Without volatile, compilers might assign a register for the variable, which will
cause inconsistency between the two contexts.

The above code is stored as “dvddemo/src/dvddemo2.c.” Try it to see how it works.

Although we didn’t document the code here, dvddemo3 shows you how the system works when you issue
a DVDReadAsync() without waiting for the previously issued read command to finish.

Note: You cannot issue DVDReadAsync() with a fileInfo that has already been used in a previously
issued and/or unfinished DVDReadAsync() argument. For example, you might want to write
something like the following code segment to read each half of the file separately, but this is illegal.

Code 5–6 Example of Illegal Code

DVDReadAsync(..., fileInfo, ...);
// Illegal!!
DVDReadAsync(..., fileInfo, ...);

In this next example, the second DVDReadAsync() fails and returns FALSE. To solve this problem, you
have two options. Either you wait for the first read to finish, like this:

Code 5–7 Legal Code, Option 1

DVDReadAsync(..., fileInfo, ...);
:
// Wait to finish the first read
:
DVDReadAsync(..., fileInfo, ...);
RVL-06-0041-001-C 16 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
Or you use a different fileInfo for each part, like this:

Code 5–8 Legal Code, Option 2

DVDOpen(..., fileInfo1);
DVDOpen(..., fileInfo2);

DVDReadAsync(..., fileInfo1, ...);
DVDReadAsync(..., fileInfo2, ...);

It is legal to open one file with multiple fileInfos.

5.4 Close

Code 5–9 DVDClose()

#include<revolution/dvd.h>

BOOL DVDClose(DVDFileInfo* fileInfo);

If you no longer need to access the file, close the file with DVDClose(). If fileInfo is in use (i.e., the
DVDReadAsync() function using fileInfo hasn’t finished yet), call DVDCancel() internally and then close
after the process cancels.

DVDClose() always returns TRUE.

5.5 Get Size

DVDGetLength() gets the size of the file specified by fileInfo. This is useful when you want to allocate
memory to read the data dynamically.

Code 5–10 DVDGetLength()

#include<revolution/dvd.h>

u32 DVDGetLength(DVDFileInfo* fileInfo);

5.6 Change Directory

Code 5–11 DVDChangeDir()

#include<revolution/dvd.h>

BOOL DVDChangeDir(const char* dirName);

This function changes the current directory. As you can imagine, if you specify the directory beginning with
a “/” (as in “/texture”), the function will try to change the current directory to“/texture” as an absolute
path name. If you specify the directory beginning without a “/” (as in “texture”), the function treats the
directory as relative to the current directory.

If the function succeeded in changing directory, it returns TRUE; otherwise, it returns FALSE.
© 2006-2009 Nintendo 17 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
6 Error Handling
The Wii optical disc API provides a very simple way to handle errors.

6.1 Disc Drive Device Driver Error Processing Policy

The policy for disc drive device drive error processing is polling. There is no need for complex error-
processing routines. The game developer polls for the disc drive status, and then can only display an
appropriate message on the screen as necessary.

For example, when a disc is inserted, the device driver confirms that the disc is appropriate, and then runs
the requested command. Since these processes occur automatically, the game developer does not need
to create a disc identification routine.

6.2 Error Checking

Use the following function to check the status for disc drive errors.

Code 6–1 Function to Acquire Disc Drive Status

#include<revolution/dvd.h>

s32 DVDGetFileInfoStatus(const DVDFileInfo* fileInfo);
s32 DVDGetCommandBlockStatus(const DVDCommandBlock* commandBlock);
s32 DVDGetDriveStatus(void);
RVL-06-0041-001-C 18 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
DVDGetFileInfoStatus() returns the transfer status for the specified fileInfo,
DVDGetCommandlockStatus() returns the status for the specified commandBlock, and
DVDGetDriveStatus() returns the status of the current disc drive. These functions return one of the
following values.

Note: The DVD_STATE_COVER_OPEN, DVD_STATE_COVER_CLOSED, and DVD_STATE_IGNORED errors
messages that existed in Nintendo GameCube were deleted.

Note: Of these errors, the ones that must be processed as errors by the application are
DVD_STATE_FATAL_ERROR, DVD_STATE_NO_DISK, DVD_STATE_WRONG_DISK, and
DVD_STATE_RETRY.

Note: These errors are issued when the issued command does not process normally for some reason. If
no command is issued, no error occurs. For example, if a disc is ejected when there is no
command issued, then the No Disk error (DVD_STATE_NO_DISK) is not issued. In addition, it is
not necessary for the developer to notify the game player of this type of status change that is not
reported as an error. For example, this means that it is unnecessary to display a message on the
screen that a disc has been ejected during a game until an attempt to acess the disc is made.

Table 6–1 Error Messages Returned by the Disc Drive Status Get Functions

Definition Value Meaning

DVD_STATE_FATAL_ERROR –1 A fatal error occurred.

DVD_STATE_END 0 Transfer finished/no transfer requested.

DVD_STATE_BUSY 1 Transfer is being processed.

DVD_STATE_WAITING 2 Transfer is queued and waiting to be
processed.

DVD_STATE_NO_DISK 4 No optical disc in the drive.

DVD_STATE_WRONG_DISK 6 Wrong optical disc in the drive.

DVD_STATE_MOTOR_STOPPED 7 Drive’s motor stopped (use for multiple-disc
games).

DVD_STATE_PAUSING 8 Paused by DVDPause().

DVD_STATE_CANCELED 10 Transfer was canceled.

DVD_STATE_RETRY 11 A retry error was generated.
© 2006-2009 Nintendo 19 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
Here is some sample pseudo-code for how to use this function:

Code 6–2 Error Handling

:
DVDReadAsync(fileInfo);
:
while(1)
{
 :
 // Foreground process
 :
 switch (DVDGetFileInfoStatus(fileInfo))
 {
 case DVD_STATE_FATAL_ERROR:
 // Display “Fatal error occurred”
 // Stop the game
 break;
 case DVD_STATE_END:
 // File is read successfully
 break;
 case DVD_STATE_BUSY:
 // Display "Now loading..."
 break;
 case DVD_STATE_NO_DISK:
 // Display “Open the cover and put in the correct disc”
 break;
 case DVD_STATE_WRONG_DISK:
 // Display “This is not a disc of game XXX. Replace it with the correct disc”
 break;
 case DVD_STATE_RETRY:
 // Display “Cannot read this disk”
 break;
 }
}

Note: The DVDRead() and DVDReadAsync() functions process the following tasks internally.

• Wait for the user to open the cover and then close it (when no optical disc or wrong disc detected)

• Read a certain area, which is called the optical disc ID, to verify if the correct disc is in the drive

• Issue the read function again if the correct optical disc is verified to be in the drive

You need only to check the return value of the status getting functions and display the appropriate
message to the user. No complicated error handling programming is needed.

6.2.1 No Disk Error (DVD_STATE_NO_DISK)

This error is issued when the drive cannot detect a Wii disc.

This error may also be generated even if a disc is inserted in the following circumstances.

• The Wii disc is inserted upside down.

• A disc that is not a Wii disc (such as a 12cm CD) is inserted.

• An extremely dirty Wii disc is inserted.

6.2.2 Wrong Disk Error (DVD_STATE_WRONG_DISK)

This error is issued when the wrong game disc is inserted in the drive.
RVL-06-0041-001-C 20 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
6.2.3 Retry Error (DVD_STATE_RETRY)

This error is issued when a disc cannot be accessed because of dust or fingerprints on the disc. The
device driver will automatically attempt a Retry when a disc is re-inserted after being ejected.

6.2.4 Fatal Error (DVD_STATE_FATAL)

This error is issued when a problem that is irreparable is detected. Because the drive or disc may be
damaged, the game must be stopped after the error message is displayed.

Note: Disable all controller operations and the RESET and POWER buttons while an error message for
this error is being displayed. Display of a fatal error’s error message takes precedence over
anything else.

6.3 State Diagram

The following diagram indicates state (error type) transitions.

Figure 6–1 State Transition Diagram

The following describes the diagram.

• Changing from No Disc, Wrong Disc, or Retry to Busy
This state change occurs while a disc is inserted. Be aware that the state does not change when
the disc is ejected.

• Calibration time while a disc is inserted
While a disc is inserted, be aware that more time is needed for the drive calibration process. For
example, it takes time when a disc is replaced in the Wrong Disc state for the driver to check the
Disc ID.
© 2006-2009 Nintendo 21 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
6.4 Disc Check by the Application during Restart

A disc check using the DVDCheckDiskAsync function must be performed when a restart is performed by
the application, before beginning any other processing. If disc removal is detected during the reset
process, the application should not restart. Instead, call the OSReturnToMenu function and return
execution to the Wii Menu.

Code 6–3 The DVDCheckDiskAsync Function

#include<revolution/dvd.h>

typedef void (*DVDCBCallback)(s32 result, DVDCommandBlock* block);

BOOL DVDCheckDiskAsync(DVDCommandBlock* block, DVDCBCallback callback);

After it has been confirmed that the last inserted disc was the correct disc, the DVDCheckDiskAsync
function checks whether the disc has been removed even once. TRUE is always returned. After reading
completes, the function specified in callback is called.

The result parameter indicates whether the read was successful. If the correct disc is set, 1 is returned; if
the correct disc was not inserted, 0 is set.

For example, while playing Game A, a player replaces the disc with Game B, and presses the reset button.
At that time, the player probably expects Game B to start up. If Game A was created to restart with the
application as the reset process and there is no disc check, then even when the reset button is pressed,
Game A continues to run and the operation is counter to the player’s intentions. Therefore, when
performing a restart with the application, a disc check is required.

Even when the result of the disc check is that the disc has been removed at least once, it is possible that
the correct disc was inserted thereafter. However, if the disc has been removed at least once, it will take a
few seconds to determine whether the correct disc is inserted. For this reason, it is required that the disc
not be identified and execution be returned to the Wii Menu with the OSReturnToMenu function. If disc
identification is done and the result is that the wrong disc is inserted, then the system must be rebooted
and several seconds will be needed for the disc to boot up.

Even if a disc is removed during a game, the device driver will automatically determine if the correct disc is
inserted when the disc is next accessed (a process that requires several seconds). When the reset button
is pressed after it has been verified that the correct disc is inserted as the result of that determination, the
disc check will return confirmed so there is no need to reboot the system. The disc check is to verify
whether a disc has been removed even once after the final determination, as in this case.

When restarting with the OSRestart or OSExec function, a disc check is performed in the API. When the
result is anormal, a system reboot is performed automatically. For this reason, there is no need to do a disc
check before running either the OSRestart or OSExec function.

When a disc has been removed, we do not recommend always rebooting the system. Rather, reboot the
system when the reset button has been pressed and the disc has been confirmed. Please exercise
caution.

6.5 Emulating Errors

The developer must verify that errors are handled appropriately by the program (for example, displaying an
appropriate message on the TV). If NDEV is used, all error types, including the Wrong Disc, Retry, and
Fatal errors, can be emulated.
RVL-06-0041-001-C 22 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
NDEV:

Can emulate all errors. See the NDEV manual for details.

1. An error will occur when the button is continuously pressed until the next disc access.

2. The Disc ID of the new disc should be different than the Disc ID of the disc prior to the exchange.

Table 6–2 Emulation with Each Development Device

Retry Error Fatal Error (Note 1) Wrong Disc Error No Disc Error

NDEV ODEM
(RETRY Button)

ODEM
(FATAL Button)

ODEM
(Select DLF file)

ODEM (Eject)

ODEM (Load)

ODEM (No Disc)

ODEM (Eject)

ODEM (Load)

RVT-R
Reader

None None Exchange the disc
(Note 2)

Remove disc
© 2006-2009 Nintendo 23 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
7 File System
This chapter briefly describes how the Wii file system works and contains some tips for developers.

The Wii file system uses a conversion table called FST (for File Symbol Table). Every time the DVDOpen
function is called, the Wii searches for the filename in the FST and retrieves the file information from it. In
this chapter, we will mainly discuss the following:

• Size of the FST

• Location of the FST

• Speed of conversion

• Character set usable for file/directory names

7.1 FST Size

FST size can be calculated easily from the following equation:

Equation 7-1 Calculating FST File Size

12 + (length of filename + 1) (bytes / entry)

So, if we have a file named “foo,” it consumes 12 + 3 + 1 = 16 bytes in the FST (the last +1 is for the
termination NULL).

The same logic can be applied to directories. If we have a file named “foo” under “/baa1/baa2/”, and
there are no other files or directories on the optical disc, the size of the FST is going to be:

Equation 7-2 Calculating FST Directory Size

12[root directory] + (12 + 4 + 1) [baa1] + (12 + 4 + 1) [baa2] (12 + 3 + 1) [foo] = 62[bytes]

FST size must not be more than 1,048,576 bytes.

7.2 FST Location

The boot program loads the FST at the highest memory point, higher than arena hi. Therefore, using
Equation 7-2, which uses 62 bytes for FST, the FST is loaded to 0x817f_ffc0 (24MB – 64 bytes; note that it
is 32-byte aligned) and arena hi is set to the same location.

Since the FST upper size limit is 1,048,576 bytes, the lower limit for the FST and arena hi location is
0x8170_0000. If the FST is placed under 0x8170_0000, the application will fail to run.

7.3 Tips to Reduce FST Size and Speed

In general, having fewer files improves the conversion speed. Changing the directory is also a good idea.
Since the DVDOpen function starts searching for files in the current directory, changing the directory to that
of the target file before you call the DVDOpen function improves the conversion speed if you need to open
more than one file.

For example, say you need to open two files, “/foo/bar/dummy1” and “/foo/bar/dummy2”. If you
simply call the DVDOpen function twice, the DVDOpen function will need to search two separate times from
the beginning of the optical disc. However, if you call the DVDChangeDir function to change the current
directory to “/foo/bar”, the two subsequent DVDOpen function calls using relative path names will be
faster, even allowing for the time it takes the DVDChangeDir function to search the directory (it uses the
same algorithm as the DVDOpen function).
RVL-06-0041-001-C 24 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
7.4 Character Set Usable for File/Directory Names

You can use 7-bit ASCII characters for file/directory names, except the following.

• " * , / : ; < > ? \ |

• Control codes

In other words, you can use the following characters.

• Numerals

• Alphabets

• Spaces

• ! # $ % & ' () + - . = [] ^ _ @ ` { } ~

Examples of unusable characters include Kanji, “Hankaku kana,” Japanese letters, and accents (such as
the “é” in “Pokémon”).

Note: File and directory names are case-insensitive. For example, foo.txt and FOO.TXT and
FoO.tXt would all be considered the same file. You can use any combination of lowercase and
capital letters to open files and directories.

There is no restriction on the length of file and directory names. As far as the tool (or to be more precise,
Windows) allows, you can use as long name as you want.
© 2006-2009 Nintendo 25 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
8 Directory Access Support Functions
Sometimes you may want to read all of the files in a certain directory without knowing the name of each
file. Or you may want to create common functions which change their behavior according to the files within
a directory. To facilitate directory access, the disc drive library provides BSD UNIX-like directory access
functions.

In most cases, you can write code using three functions, open, read, and close, to access directories. So
first we’ll discuss how to use the three functions, and then introduce a simple code sample that uses these
three functions. After that, we’ll look at other useful functions.

8.1 Open Directory

Code 8–1 The DVDOpenDir Function

#include<revolution/dvd.h>

typedef struct
{
 u32 entryNum;
 u32 location;
 u32 next;
} DVDDir;

BOOL DVDOpenDir(const char* dirName, DVDDir* dir);

The DVDOpenDir function opens a directory specified by dirName and associates dir with that directory.
It returns TRUE if it found the directory; otherwise, it returns FALSE.

You can use both relative and absolute path names for dirName. If you use a relative path name (i.e.,
dirName starts without a “/”), it will mean relative to the current directory.

8.2 Read Directory

Code 8–2 The DVDReadDir Function

#include<revolution/dvd.h>

typedef struct
{
 u32 entryNum;
 BOOL isDir;
 char* name;
} DVDDirEntry;

BOOL DVDReadDir(DVDDir* dir, DVDDirEntry* dirent);

The DVDReadDir function gets information on the next directory entry. The directory entry is either a
directory or a file. If it's a directory, dirent->isDir is TRUE. You can call the DVDOpenDir function to
open the subdirectory using dirent->name. If it's a file, dirent->isDir is FALSE. You can call the
DVDOpen function to open the file using dirent->name as well.

The function returns FALSE upon reaching the end of the directory or detecting an invalid location was set
by the DVDSeekDir function.
RVL-06-0041-001-C 26 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
8.3 Close Directory

Code 8–3 The DVDCloseDir Function

#include<revolution/dvd.h>

BOOL DVDCloseDir(DVDDir* dir);

DVDCloseDir() closes the specified directory structure. It returns TRUE on success; otherwise, it returns
FALSE.

8.4 Sample Code for Accessing a Directory

This is a very simple sample code to show how to access a directory. This code opens a directory “foo/
baa” (relative to the current directory) and show all the files and directories under there.

Code 8–4 Sample Code for Accessing a Directory

 DVDDir dirFooBaa;
 DVDDirEntry dirent;

 if (FALSE == DVDOpenDir("foo/baa", &dirFooBaa))
 {
 // print "can't open the directory" and exit
 }

 while(TRUE == DVDReadDir(&dirFooBaa, &dirent))
 {
 OSReport("name: %s, type: %s\n", dirent.name,
 (dirent.isDir)? dir : file);
 }

 if (FALSE == DVDCloseDir(&dirFooBaa))
 {
 // print "can't close the directory" and exit
 }

8.5 Tell Directory

Code 8–5 The DVDTellDir Function

#include<revolution/dvd.h>

u32 DVDTellDir(DVDDir* dir);

The DVDTellDir function is a macro that returns the current location of the specified directory structure.

This function should be used with the DVDSeekDir function to provide save and restore features for
directory access. You can use the DVDTellDir function to get the current location of the directory
structure, then restore it using the DVDSeekDir function to read the directory from the previous location
again.
© 2006-2009 Nintendo 27 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
8.6 Seek Directory

Code 8–6 The DVDSeekDir Function

#include<revolution/dvd.h>

void DVDSeekDir(DVDDir* dir, u32 loc);

The DVDSeekDir function is a macro that sets the position of the next DVDReadDir function on the
directory structure.

This function should be used with the DVDTellDir function to provide save and restore features for
directory access. It’s dangerous to use a number for loc that is not returned by the DVDTellDir function.
It’s also dangerous to use a value for loc that is returned by the DVDTellDir function but for the other
directory structure.

Note: This function is a macro and performs no argument checking, but if you happened to specify an
invalid value for loc, the DVDReadDir function can detect it and return FALSE.

8.7 Rewind Directory

Code 8–7 The DVDRewindDir Function

#include<revolution/dvd.h>

void DVDRewindDir(DVDDir* dir);

The DVDRewindDir function resets the position of the specified directory structure to the beginning of the
directory. A call to the DVDReadDir function after this function behaves as if the directory had just been
opened.
RVL-06-0041-001-C 28 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
© 2006-2009 Nintendo 29 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
9 Multiple Disc Games (Reference Information)
When multiple discs are required for a single game, the discs must be exchanged at an appropriate place
within the game. Perform this by specifying the Disc ID (see Chapter 3.2) of the next disc to insert. This
section broadly describes the different methods for multiple disc games, how to specify discs, and a
general procedure for exchanging discs. An example of instructing the user to exchange the disc is
provided.

9.1 Disc Exchange Processing Pattern

When exchanging discs for a multiple disc game, two major methods exist depending on whether the DOL
program portion (Chapter 3.1) of the new disc is loaded and executed. The following examples assume
that Disc 2 is being exchanged for Disc 1.

A When the DOL file of Disc 2 is loaded and executed
After Disc 1 is replaced with Disc 2, perform the restart process. The DOL file on Disc 2 is booted
when restart is performed.

B When the DOL file of Disc 2 is not loaded or executed
After Disc 1 is replaced with Disc 2, the user file (Chapter 3.1) on Disc 2 can be accessed. You do
not need to do anything after the exchange. For this case, you may either request an independent
boot of Disc 2 or not request such a boot.

B1 When an independent boot of Disc 2 is requested
This case can be when the program for Disc 1 and Disc 2 are the same and only the user file
portion is different. Depending on the progress of the game in the Wii console NAND memory,
there may be times when the user is instructed to return to Disc 1.

B2 When an independent boot of Disc 2 is not requested
This case can be when Disc 2 is a data-dedicated file. Even in this case, when performing an
independent boot, be sure to provide appropriate instructions to the user.

We do not recommend B2 because disc exchange may occur frequently during game play. Unless there is
a specific reason why a data-dedicated Disc is needed, it is more convenient for game play to have the
same DOL file on both first and second discs, and allow the second disc to be independently booted.

Compared to Method A, B1 does not load the DOL program portion of Disc 2 and can complete the
transition to Disc 2 a little faster. If the DOL program potion for the first and second discs can be the same,
B1 is the best option.

In either case, we recommend that data be saved before the disc exchange. The reasons for this are listed
below.

• To be able to avoid data loss when a disc read error occurs after the exchange.

• To simplify debugging after transitioning to the disc after exchange (For Method A only: by limiting the
passing of data from Disc 1 to Disc 2 to go through the Wii console NAND memory, when a bug occurs
during the exchange, Disc 2 can be booted for debugging).

Note: Because there is old information in the structure of the file opened before the exchange, do not
use it after the exchange. Even if the file has the same name in Discs 1 and 2, be sure to reopen
the file. We also recommend closing all files that were opened before the disc exchange.

9.2 Disc Specification during Exchange

Use the Disc ID (see Chapter 3.2) when specifying a disc for exchange. For details, see the
DVDChangeDisk* function references.
RVL-06-0041-001-C 30 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
A feature of the DVDChangeDisk* functions allows you to specify wildcards in the Disc ID element. For
example, this feature allows a disc to be used for disc exchange of any version by setting the Game
Version to 0xff as long as the other three elements (Game Code, Company Code, and Disc Number)
match.

The following sections indicate precautions regarding the use of wildcards.

9.2.1 Wildcard Use Restriction (excluding Game Version)

Do not use wildcards for elements other than the game version. These elements are the Game Code,
Company Code, and Disc Number. Specify these explicitly. If wildcards are used for these elements,
operation check combinations become enormous and difficult.

If you are considering using a wildcard in these elements, please contact Nintendo first.

9.2.2 Wildcard Use Restriction (Game Version)

There are advantages and disadvantages for using or not using (explicitly specifying) wildcards for the
Game Version. The following lists those advantages and disadvantages; make your selection after
considering them carefully.

A When the Game Version is explicitly specified

Advantages

• Because supported disc versions have a one-to-one correspondence, operations need to be
verified only for those combinations.

Disadvantages

• When the version is upgraded in the future, both disc versions must be upgraded. In other words,
if the Disc 2 version is specified as 0 in Disc 1, then when Disc 2 becomes the corrected version 1
after sales, after correcting Disc 1, both disc versions must be upgraded and resubmitted.

• If friends each own the same game but have different versions of that game, if the discs get mixed
up, the discs will not work and will hang at the check when the discs are exchanged.

• A mark to distinguish different versions at the level are necessary to identify the version.

B When wildcards are used in the Game Version

Advantages

• Future upgrades of disc versions can occur independently.

• Because operations can occur in combination with different versions of the disc, there is no
problem if the disc is mixed up with a friend’s disc.

Disadvantages

• Caution is required during future version upgrades. In other words, when Disc 2 is upgraded, it
must be guaranteed that disc exchange is possible with all previously sold Disc 1 versions.
© 2006-2009 Nintendo 31 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
9.3 Disc Exchange Procedure

The following is the procedure for the player to exchange discs and then to access the newly inserted disc.

1. Stop the disc drive motor.

2. Verify that the disc drive motor has stopped. Indicate to the player to exchange the disc (see Chapter
9.4).

3. Eject the disc, then wait until a disc is inserted.

4. Determine whether the ID of the inserted disc is appropriate.

5. Load the FST (File Symbol Table) of the disc. The disc files are now accessible.

With the exception of displaying the message in Step (2), all of these steps are processed automatically by
the DVDChangeDisk function (see Chapter 9.6).

The display time for the message in Step (2) can be found by performing a device driver status check using
the DVDGetDriveStatus function. The method for checking the device driver status is the same as for
error handling. See Chapter 6.2. When the disc drive motor stops, the device driver status is
DVD_STATE_MOTOR_STOPPED, so display the message in Step (2) only when in this status.

If the inserted disc is not appropriate or if there is no disc inserted, display an appropriate message as in
Chapter 9.4. The disc exchange can also be cancelled by having DVDChangeDisk*() call
DVDCancel().

9.4 Error Handling and Messages During Disc Exchange

Display messages to the player during disc exchange.

• When instructing to exchange the disc
While the device driver state is DVD_STATE_MOTOR_STOPPED, display a message to the player
instructing the player to insert an appropriate disc. Specifically, clearly indicate which of the
multiple discs to insert.

In addition, perform the same error handled when running the DVDChangeDisk function as for the
DVDRead function. See Chapter 6.2 for details (when a disc that was not specified is inserted, a Wrong
Disc error occurs).

9.5 Multiple Disc Emulation

Currently, emulation of multiple discs is not supported.

9.6 Multiple Disc Functions

The following functions are for multiple discs. See the function reference for more information on these
functions.

• DVDChangeDisk* (DVDChangeDisk or DVDChangeDiskAsync)

• DVDCompareDiskID

• DVDGenerateDiskID

• DVDGetCurrentDiskID
RVL-06-0041-001-C 32 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
9.7 Cautions Regarding Multiple Disc Games

A File Symbol Table (FST) is overwritten by that of a disc inserted later when the correct disc is inserted. At
this time, there is no problem if the size of the FST of the new disc is smaller than the disc before the
exchange. However, if the size is larger, then the disc cannot be loaded, and the system hangs after giving
an ASSERT message.

For multiple disc games, be sure to specify enough memory that is secured for FST.

See the development environment manuals for more detail.
© 2006-2009 Nintendo 33 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
RVL-06-0041-001-C 34 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Optical Disc Drive Library (DVD)
10 Optical Disc Drive FAQs
1. Is the data recorded in one spiral, similar to CDs?

Yes.

2. How fast are the optical disc drive's random-access capabilities?

Compared to ROM cartridges, which have very fast seek times, we must accept that the optical disc
drive will have a poorer random-access capability. To minimize any negative impact, you should place
data as often as possible in the order that the game will need it. You can also solve this problem by
duplicating data many times on the optical disc, but of course this trades data capacity for speed.

3. How many files can I open at one time?

There is no limit; you can open as many files as you want.

4. Can I call DVD*() from within a callback?

Yes. For example, you can call the DVDClose function when the read of the file finishes, like this:

Code 10–1 FAQ Code Sample

void callback(s32 result, DVDFileInfo* fileInfo)
{
 if (result == DVDGetLength(fileInfo))
 {
 DVDClose(fileInfo);
 }
 ...
}

As another example, you can call the DVDReadAsync function from within an audio callback routine
while accessing audio data.
© 2006-2009 Nintendo 35 RVL-06-0041-001-C
CONFIDENTIAL Released: March 27, 2009

Optical Disc Drive Library (DVD) Revolution SDK
Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.

Microsoft, Windows, Internet Explorer and Visual Studio and registered trademarks and/or trademarks of Microsoft Corporation in the
US and elsewhere.

IBM is a trademark of International Business Machines Corporation.

Roland GS Sound Set is a trademark of Roland Corporation US.

All other trademarks and copyrights are property of their respective owners.
RVL-06-0041-001-C 36 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

© 2006-2009 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

	1 Overview
	2 Main Features
	2.1 Size
	2.2 Read Speed
	2.3 File System
	2.4 Error Handling

	3 Discs
	3.1 Disc Structure
	3.2 Disc ID

	4 Simple Demo
	5 How to Use APIs
	5.1 Initialization
	5.2 Open
	5.3 Read
	5.3.1 Synchronous Read
	5.3.2 Asynchronous Read

	5.4 Close
	5.5 Get Size
	5.6 Change Directory

	6 Error Handling
	6.1 Disc Drive Device Driver Error Processing Policy
	6.2 Error Checking
	6.2.1 No Disk Error (DVD_STATE_NO_DISK)
	6.2.2 Wrong Disk Error (DVD_STATE_WRONG_DISK)
	6.2.3 Retry Error (DVD_STATE_RETRY)
	6.2.4 Fatal Error (DVD_STATE_FATAL)

	6.3 State Diagram
	6.4 Disc Check by the Application during Restart
	6.5 Emulating Errors

	7 File System
	7.1 FST Size
	7.2 FST Location
	7.3 Tips to Reduce FST Size and Speed
	7.4 Character Set Usable for File/Directory Names

	8 Directory Access Support Functions
	8.1 Open Directory
	8.2 Read Directory
	8.3 Close Directory
	8.4 Sample Code for Accessing a Directory
	8.5 Tell Directory
	8.6 Seek Directory
	8.7 Rewind Directory

	9 Multiple Disc Games (Reference Information)
	9.1 Disc Exchange Processing Pattern
	9.2 Disc Specification during Exchange
	9.2.1 Wildcard Use Restriction (excluding Game Version)
	9.2.2 Wildcard Use Restriction (Game Version)

	9.3 Disc Exchange Procedure
	9.4 Error Handling and Messages During Disc Exchange
	9.5 Multiple Disc Emulation
	9.6 Multiple Disc Functions
	9.7 Cautions Regarding Multiple Disc Games

	10 Optical Disc Drive FAQs

