
The contents in this document are highly

confidential and should be handled accordingly.

© 2006-2007 Nintendo RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution

Matrix-Vector Library (MTX)
Version 1.00

Revolution Matrix-Vector Library (MTX) Revolution SDK

RVL-06-0038-001-B 2 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

Revolution SDK Revolution Matrix-Vector Library (MTX)
Contents
Revision History .. 7
1 Introduction... 8

1.1 This Guide .. 8
1.2 Useful References .. 8
1.3 Library Design... 8
1.4 Library Overview... 9

1.4.1 Projection Transformations ... 10
1.4.2 General Matrix Transformations and Operations.. 10
1.4.3 Matrix-Vector Operations .. 10
1.4.4 Vector-Vector Operations ... 10
1.4.5 Matrix Stack Operations.. 11

1.5 C Functions and Paired-Single Optimized Functions ... 11
2 The Matrix Types.. 12

2.1 The Mtx Type.. 12
2.2 The MtxPtr Type ... 13
2.3 The Mtx44 Type.. 14
2.4 The Mtx44Ptr Type ... 15
2.5 The MTXRowCol Macro ... 15

3 Projection Transformations... 16
3.1 MTXPerspective ... 16
3.2 MTXFrustum ... 17
3.3 MTXOrtho ... 18
3.4 MTXLightPerspective.. 19
3.5 MTXLightFrustum ... 21
3.6 MTXLightOrtho ... 22

4 Viewing Transformations .. 24
4.1 MTXLookAt ... 24

5 Scale, Rotate and Translate Transformations .. 25
5.1 MTXIdentity... 25
5.2 MTXScale ... 25
5.3 MTXRotRad, MTXRotDeg .. 25
5.4 MTXRotTrig .. 26
5.5 MTXRotAxisRad, MTXRotAxisDeg... 27
5.6 MTXTrans ... 28
5.7 MTXQuat .. 29
5.8 MTXDegToRad, MTXRadToDeg.. 29

6 Matrix-matrix Operations .. 30
6.1 MTXConcat... 30
6.2 MTXCopy.. 30
6.3 MTXTranspose ... 31
6.4 MTXInverse .. 31

7 Matrix-vector Operations .. 33
7.1 MTXMultVec ... 33
7.2 MTXMultVecArray... 33
7.3 MTXMultVecSR .. 34
7.4 MTXMultVecArraySR.. 34

8 Vector-vector Operations.. 36
8.1 The Vector Type ... 36
8.2 The Vector Operations.. 36

9 Stack Operations .. 38
9.1 The Matrix Stack Type.. 38
9.2 MTXAllocStack and MTXFreeStack ... 38
9.3 MTXInitStack .. 39
© 2006-2007 Nintendo 3 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
9.4 MTXPush, MTXPushFwd, MTXPushInv, MTXPushInvXpose .. 39
9.5 MTXPop.. 40
9.6 MTXGetStackPtr... 40

10 Traps and Pitfalls.. 41
10.1 The Standard Matrix Type is 3x4.. 41
10.2 Mtx is an Array of 3 Arrays of 4 Floats.. 41
10.3 Multiple References .. 42
10.4 Rules-of-use ... 42
10.5 Macros .. 42

Appendix A.Tables of API Calls .. 43
A.1 Scale, Rotate, and Translate Transformations ... 43
A.2 View Transformations ... 43
A.3 Projection Transformations... 43
A.4 Texture Projection Transformations.. 44
A.5 Matrix-matrix Operations .. 44
A.6 Matrix-vector Operations .. 45
A.7 Vector-vector Operations.. 45
A.8 Stack Operations .. 46

Code Examples
Code 2–1 Mtx Type Definition... 12
Code 2–2 MtxPtr Type Definition .. 13
Code 2–3 Assignment to a MtxPtr .. 14
Code 2–4 MtxPtr++... 14
Code 2–5 Mtx44 Type Definition... 14
Code 2–6 Mtx44Ptr Type Definition .. 15
Code 2–7 MTXRowCol Macro Definition .. 15
Code 2–8 Two MTXRowCol Examples... 15
Code 3–1 MTXPerspective ... 16
Code 3–2 Typical Perspective Projection Matrix Using MTXPerspective... 16
Code 3–3 MTXFrustum... 17
Code 3–4 Off-Center Projection with MTXFrustum .. 18
Code 3–5 MTXOrtho... 18
Code 3–6 Pixel-Unit Projection with MTXOrtho .. 19
Code 3–7 MTXLightPerspective ... 19
Code 3–8 Using MTXLightPerspective ... 20
Code 3–9 MTXLightFrustum... 21
Code 3–10 Using MTXLightFrustum... 22
Code 3–11 MTXLightOrtho ... 22
Code 3–12 Using MTXLightOrtho... 23
Code 4–1 MTXLookAt... 24
Code 5–1 MTXIdentity .. 25
Code 5–2 MTXScale... 25
Code 5–3 MTXRotRad and MTXRotDeg.. 25
Code 5–4 MTXRotTrig .. 26
Code 5–5 Comparison of MTXRotDeg and MTXRotTrig.. 27
Code 5–6 MTXRotAxisRad and MTXRotAxisDeg .. 27
Code 5–7 Rotation About the (x=y=z) Axis... 28
Code 5–8 MTXTrans... 28
Code 5–9 MTXQuat .. 29
Code 5–10 MTXDegToRad and MTXRadToDeg ... 29
Code 6–1 MTXConcat .. 30
Code 6–2 MTXConcat Example ... 30
RVL-06-0038-001-B 4 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
Code 6–3 MTXCopy ... 30
Code 6–4 MTXTranspose... 31
Code 6–5 MTXInverse .. 31
Code 6–6 Generating Normal Matrices Using MTXInverse and MTXTranspose 32
Code 7–1 MTXMultVec... 33
Code 7–2 MTXMultVecArray .. 33
Code 7–3 Using MTXMultVec with an Array of Vectors ... 33
Code 7–4 Using MTXMultVecArray with an Array of Vectors... 34
Code 7–5 MTXMultVecSR.. 34
Code 7–6 MTXMultVecArraySR ... 34
Code 8–1 Vector and Point Type Definitions .. 36
Code 8–2 Vector Operations .. 36
Code 9–1 MtxStack and MtxStackPtr Type Definitions .. 38
Code 9–2 MTXAllocStack and MTXFreeStack ... 38
Code 9–3 Using MTXAllocStack to Allocate a Matrix Stack ... 38
Code 9–4 Not Using MTXAllocStack to Allocate a Matrix Stack... 39
Code 9–5 MTXInitStack .. 39
Code 9–6 MTXPush, MTXPushFwd, MTXPushInv, and MTXPushInvXpose................................... 39
Code 9–7 MTXPop ... 40
Code 9–8 MTXGetStackPtr .. 40
Code 10–1 Incrementing a MtxPtr—the right way .. 41
Code 10–2 Incrementing a MtxPtr—the wrong way ... 41
Code 10–3 Macros are not Functions... 42

Equations
Equation 1–1 Basic Matrix Operators ... 10
Equation 2–1 3x4 Matrix m ... 12
Equation 2–2 Full 4x4 Matrix p ... 15
Equation 2–3 Math and C Array Indexing ... 15
Equation 3–1 Matrix Assigned by MTXPerspective .. 16
Equation 3–2 Matrix Assigned by MTXFrustum.. 18
Equation 3–3 Matrix Assigned by MTXOrtho.. 19
Equation 3–4 Matrix Assigned by MTXLightPerspective .. 20
Equation 3–5 Matrix Assigned by MTXLightFrustum.. 22
Equation 3–6 Matrix Assigned by MTXLightOrtho .. 23
Equation 4–1 MTXLookAt Direction Vectors... 24
Equation 4–2 Matrix Assigned by MTXLookAt.. 24
Equation 5–1 Matrix Assigned by MTXIdentity ... 25
Equation 5–2 Matrix Assigned by MTXScale.. 25
Equation 5–3 Rotation About Positive X-Axis (1,0,0)m... 26
Equation 5–4 Rotation About Positive Y-Axis (0,1,0)m... 26
Equation 5–5 Rotation About Positive Z-Axis (0,0,1)m... 26
Equation 5–6 MTXRotTrig Argument Logic .. 27
Equation 5–7 MTXRotAxisRad Computations .. 28
Equation 5–8 Matrix Assigned by MTXRotAxisRad.. 28
Equation 5–9 Matrix Assigned by MTXTrans.. 28
Equation 5–10 MTXQuat Computation ... 29
Equation 5–11 Matrix Assigned by MTXQuat ... 29
Equation 6–1 MTXTranspose Computations .. 31
Equation 7–1 MTXMultVec Computations .. 33
Equation 7–2 MTXMultVecSR Computations ... 34
© 2006-2007 Nintendo 5 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
Figures
Figure 1–1 Matrix-Vector Library and its Place Within Revolution.. 9
Figure 1–2 Logical Groups of the Matrix-Vector Library ... 9
Figure 10–1 MtxPtr Points at a Mtx in Memory... 41

Tables
Table 2–1 Methods of Viewing and Indexing the Mtx Type .. 13
Table A–1 Scale, Rotate, and Translate Transformations .. 43
Table A–2 View Transformations.. 43
Table A–3 Projection Transformations.. 43
Table A–4 Texture Projection Transformations .. 44
Table A–5 Matrix-matrix Operations ... 44
Table A–6 Matrix-vector Operations ... 45
Table A–7 Vector-vector Operations... 45
Table A–8 Stack Operations ... 46
RVL-06-0038-001-B 6 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
Revision History

Version Date
Revised Item Description

1.00 2006/03/01 - First release by Nintendo of America Inc.
© 2006-2007 Nintendo 7 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
1 Introduction
The Matrix-Vector library (MTX) is a collection of routines and types for 3D graphics generation on Revolu-
tion. It is not a general purpose mathematical matrix library. It allows you to create and manipulate matrices
in ways which are suited to interactive computer graphics in video games and most particularly to the Rev-
olution Graphics library (GX) and Revolution hardware.

1.1 This Guide
This guide explains how to program using the Matrix-Vector library (MTX). In the remainder of this section,
we discuss the library in general. Chapter 2 describes the matrix types. Chapters 3 to 9 cover each library
routine in turn. Chapter 10 covers some traps and pitfalls. Appendix A lists a summary table of all API calls
in the library.

1.2 Useful References
This document assumes that you know how to program in the C language, and that you have some knowl-
edge of matrix and vector mathematics. Otherwise, you might want to do some preparatory reading. Here
are some useful sources (check your local bookstore or library for the latest editions):

Foley, James D., et al., Computer Graphics: Principles and Practice, 2nd Ed., Addison-Wesley, Reading,
MA, 1990.

Kempf, Renate and Chris Frazier (eds.), OpenGL Reference Manual, 2nd Ed., Addison-Wesley, Reading,
MA, 1997.

Woo, Mason, et al., OpenGL Programming Guide, 2nd Ed., Addison-Wesley, Reading, MA, 1997.

1.3 Library Design
The MTX library is designed to be fairly light-weight and to provide only core functionality, those functions
that are essential or extremely useful for most applications on Revolution. It does not provide every matrix
type and matrix routine you could possibly need.

• It is designed to be runtime efficient, as far as a general-purpose library for video games can be.

• It is designed to be easy to use; however, ease-of-use is compromised at times to favor of efficiency.

• It is designed to be safe; however, some dangers and pitfalls remain in the interests of efficiency.
RVL-06-0038-001-B 8 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
1.4 Library Overview
The Matrix-Vector library is used by the application to assist in the generation and animation of 3D matri-
ces for 3D graphics. These matrices can be passed to the Graphics library (GX) as position (or modelview)
matrices, normal matrices, texture matrices, and projection matrices. GX loads these matrices into the
Revolution Graphics Processor matrix register areas (see P, N, T, and Proj in Figure 1–1).

Figure 1–1 Matrix-Vector Library and its Place Within Revolution

Note: The application is not obliged to use MTX to manipulate matrices. However, MTX is designed to
match the requirements of GX and is therefore a useful reference point at the very least.

The Matrix-Vector Library contains seven main logical groups of routines. Chapters 3 to 9 of this guide deal
with these seven groups in turn.

Figure 1–2 Logical Groups of the Matrix-Vector Library

Application

MTX GX

Dolphin Graphics Processor
P N

TProj

Matrix Stack Operations
(Chapter 9)

Projection
Transformations

(Chapter 3)

Matrix-Vector
(Chapter 7)

General Matrix Transformations and Operations

Matrix-Matrix
Operations
(Chapter 6)

SRT
Transformations

(Chapter 5)

Viewing
(Chapter 4)

Vector-Vector
Operations
(Chapter 8)
© 2006-2007 Nintendo 9 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
1.4.1 Projection Transformations
These routines are provided for the generation of perspective and parallel projections, and are suited to
the GX library and the Revolution geometry and texture projection hardware. For lighting effects, the library
supports geometry projection from 3D (x, y, z) to 3D homogeneous (x, y, z, w), and texture projection from
3D (x, y, z) to 2D homogeneous (s, t, q). The geometry projection routines in the library only generate (or
operate on) 4x4 matrices. In contrast, texture projection routines use 3x4 matrices.

1.4.2 General Matrix Transformations and Operations
These matrix routines are suitable for generation and manipulation of position (modelview) matrices, and
normal matrices (and possibly also texture matrices). This set of routines includes three main groups:

1.4.2.1 Viewing Transformations
The generation of a Lookat matrix is supported.

1.4.2.2 Scale, Rotate and Translate (SRT) Transformations
The library provides functions to create matrices for scaling, various rotations, and translation. Also
included here is identity-matrix creation, conversion from quaternion to matrix, and conversion between
degrees and radians. These transformations are the fundamental modeling operations.

1.4.2.3 Matrix-Matrix Operations
Matrix-matrix operations include copying, concatenation (multiplication), transposition, and inversion. From
a mathematical viewpoint, these are the basic operators you can apply to matrices:

Equation 1–1 Basic Matrix Operators

1.4.3 Matrix-Vector Operations
Multiplication of a matrix by a vector is provided.

1.4.4 Vector-Vector Operations
Although vector support is not the primary focus of the library, some vector-vector and scalar-vector rou-
tines are provided, including:

• Vector addition and subtraction.

• Vector scaling.

• Vector magnitude calculation and normalization.

• Vector dot and cross products.

• Vector distance calculation.

• Vector reflection and half-angle generation.
RVL-06-0038-001-B 10 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
1.4.5 Matrix Stack Operations
Support is also provided for a simple matrix stack type. The user must define the maximum stack depth.
Allocating, freeing, initializing, reading, popping, and four flavors of pushing are implemented.

1.5 C Functions and Paired-Single Optimized Functions
Some of the APIs in the library exist in two versions with similar functionality. One version is written in plain
C language, while the other has been optimized with paired-single assembler operations to take advantage
of a special feature of the Broadway CPU. Where an API has such two versions, the C function is prefixed
with “C_” in the library (as in C_MTXConcat), and the paired-single function is prefixed with “PS” (as in
PSMTXConcat).

Although there are two function prototypes, it is not necessary to concern yourself with which one to call in
your application. You can simply use non-prefixed function calls (such as MTXConcat). “C_” and “PS” are
defined in build-dependent macros which automatically bind them to the relevant non-prefixed function. In
debug builds, the SDK default setting references C functions because of the need for detailed error
checks. In release (non-debug) builds, the SDK uses paired-single functions in order to speed up computa-
tions.

If this general build rule does not suit your needs, you can call the “C_” functions or “PS” functions explicitly.
Alternatively, you can make the SDK use the C version of non-prefixed function calls exclusively by defin-
ing the flag “MTX_USE_C” (probably as a debug flag) before including mtx.h. Likewise, you can use the
flag “MTX_USE_PS” to restrict the library to the paired-single versions of functions in the library.

For simplicity, this document uses non-prefixed definitions in its descriptions of functions.
© 2006-2007 Nintendo 11 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
2 The Matrix Types

2.1 The Mtx Type
The focus of MTX is to support common modeling transformations. For this reason the standard matrix
type in the library is a 3x4 matrix. This type is named Mtx, and is defined thus:

Code 2–1 Mtx Type Definition

typedef f32 Mtx[3][4];
Mtx m;

There are three major ways to view and to index this type.

First, the mathematical view of a 3x4 matrix m:

Equation 2–1 3x4 Matrix m

From this point of view, all matrices are really 4x4 row-major (4 rows by 4 columns): the Mtx type has an
implicit 4th row of (0,0,0,1), and only the upper 12 elements are actually stored in memory.

Because the matrix is row-major, we state the y-coordinate or dimension first (the row), and the x-coordi-
nate or dimension second (the column). This has two consequences. One, the Mtx type can be said to
represent 3x4 matrices (3 rows by 4 columns). Two, when indexing into the matrix, m20 is the bottom left
element (y=2, x=0).

The second viewpoint is that of the Revolution hardware. Because we want the library to be efficient, the
hardware dictates how the matrix elements must be stored in memory. The 3x4 matrix type is defined by
the Revolution hardware to be row-major in memory. This means the first row (row 0) is stored first in mem-
ory.

The third viewpoint is that of the C language. In order to reference a 3x4 row-major matrix that is stored
row-major in memory, you must declare the type to be [3][4], and index into m[0..2][0..3]. So the
example element m20 is stored in m[2][0]. Therefore, when indexing into a matrix in C, you must type the
y-coordinate or dimension (the row) first.
RVL-06-0038-001-B 12 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
These three viewpoints are summarized in the following table to minimize confusion.

The Mtx type is “array of 3 (arrays of 4 (f32s))”, and sizeof(Mtx) is 48 bytes. The Matrix-Vector library
does not require any alignment other than word-alignment for matrices.

Note: 8-byte or 16-byte alignment may be recommended for maximum performance in the future. See
"1.5 C Functions and Paired-Single Optimized Functions" on page 11.

2.2 The MtxPtr Type
Code 2–2 MtxPtr Type Definition

typedef f32 Mtx[3][4];
typedef f32 (*MtxPtr)[4];

Table 2–1 Methods of Viewing and Indexing the Mtx Type

Address Mathematical C Arrays

base + 0x00 m00 m[0][0]

base + 0x04 m01 m[0][1]

base + 0x08 m02 m[0][2]

base + 0x0c m03 m[0][3]

base + 0x10 m10 m[1][0]

base + 0x14 m11 m[1][1]

base + 0x18 m12 m[1][2]

base + 0x1c m13 m[1][3]

base + 0x20 m20 m[2][0]

base + 0x24 m21 m[2][1]

base + 0x28 m22 m[2][2]

base + 0x2c m23 m[2][3]
© 2006-2007 Nintendo 13 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
The type MtxPtr behaves as a pointer to Mtx in most respects; however, its type is really “pointer to
(array of 4 (f32s))”. This has two implications:

First, you must assign an Mtx directly to an MtxPtr without using the address-of operator &. This is dem-
onstrated in the following example:

Code 2–3 Assignment to a MtxPtr

#include <revolution.h>

Mtx m;
MtxPtr mp;

void main(void) {
 mp=(MtxPtr)m;
 m[2][0]=1.0; // references m20 (bottom-left element)
 mp[2][0]=2.0; // references m20 (bottom-left element)
}

Second, you can’t just increment or decrement a MtxPtr, because sizeof(*MtxPtr) is 16; it is not 48.
Therefore, we provide the constant MTX_PTR_OFFSET, which holds the integer multiplier necessary to
increment or decrement a MtxPtr by one matrix. The correct use of this pointer is illustrated below:

Code 2–4 MtxPtr++

#include <revolution.h>

Mtx m[10];
MtxPtr mp;

void main(void) {
 mp=(MtxPtr)m;
 mp[2][0]=2.0; // references first matrix, m[0][2][0]
 mp+=MTX_PTR_OFFSET; // Increment over 3 rows
 mp[2][0]=3.0; // references second matrix, m[1][2][0]
 mp+=MTX_PTR_OFFSET*2; // Increment over 6 rows
 mp[2][0]=4.0; // references fourth matrix, m[3][2][0]
}

2.3 The Mtx44 Type
This Mtx44 type is required for the routines that generate a projection matrix. These are
MTXPerspective, MTXFrustum, and MTXOrtho. A Mtx44 cannot be passed to any other MTX routine.
The type is defined as shown in Code 2–5.

Code 2–5 Mtx44 Type Definition

typedef f32 Mtx44[4][4];
Mtx44 p;
RVL-06-0038-001-B 14 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
This represents a full 4x4 matrix p:

Equation 2–2 Full 4x4 Matrix p

The mathematical indexing and C array indexing of this type are also equivalent:

Equation 2–3 Math and C Array Indexing

2.4 The Mtx44Ptr Type
Just as a MtxPtr points to a Mtx, a Mtx44Ptr points to a Mtx44. The types MtxPtr and Mtx44Ptr are
alike in all other respects. MTX44_PTR_OFFSET is provided as an index multiplier for Mtx44Ptr types.

Code 2–6 Mtx44Ptr Type Definition

typedef f32 (*Mtx44Ptr)[4];

2.5 The MTXRowCol Macro
We provide the macro MTXRowCol(m, r, c) in mtx.h as a mnemonic to remind you to specify the row
index first, then the column index. This macro also insulates the application code from changes in the rep-
resentation of matrices in memory. It can be used for reading from or writing to individual matrix elements
in Mtx, MtxPtr, Mtx44 and Mtx44Ptr types. It is basically defined as:

Code 2–7 MTXRowCol Macro Definition

#define MTXRowCol(m,r,c) m[r][c]

This macro can be used in all the places that a reference to a matrix element can:

Code 2–8 Two MTXRowCol Examples

#include <revolution.h>

Mtx m;
Mtx44 p;

void main(void) {

 MTXIdentity(m); // m=I
 m[2][3]=-10; // Set m to be a translation by -10 along z-axis.
 MTXRowCol(m,2,3)=-10; // The same as the previous line.

 MTXPerspective(p,60,4.0/3,1,10); // Setup p as perspective projection.
 p[0][0]*=0.5; // Double the width of the frustum in p.
 MTXRowCol(p,0,0)*=0.5; // The same as the previous line.
}

© 2006-2007 Nintendo 15 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
3 Projection Transformations

3.1 MTXPerspective
Code 3–1 MTXPerspective

void MTXPerspective (Mtx44 m, f32 fovy, f32 aspect, f32 n, f32 f);

MTXPerspective is used to describe the mapping from camera-space coordinates into clip-space. It is
designed to be used in tandem with GXSetProjection. However, you can also use the resulting matrix
to transform points from world-space to screen-space on the CPU.

Unlike other MTX functions, MTXPerspective, MTXFrustum and MTXOrtho all operate on 4x4 matrices.

MTXPerspective will generate 3D perspective transformations, encapsulating some of the properties of
a camera, including field-of-view angle and aspect ratio. It also controls the near and far plane positions. It
is the most suitable function for creating general purpose 3D-viewing projection matrices.

The argument fovy specifies the desired field-of-view from screen top to screen bottom, in degrees. This
argument cannot be 0° or 180°.

The argument aspect specifies the ratio between screen width and height (width/height). It must not be
zero.

The arguments n and f specify the position of the near and far planes respectively. MTXPerspective
requires that n and f are not equal. Normally, for most projections, n will be less than (or much less than) f,
and both n and f will be positive. (Even though the planes are typically thought of as being positioned down
the negative z-axis, the values specify positive distances from the eye-point at the origin.)

MTXPerspective assigns the following to the user-allocated 4x4 matrix m:

Equation 3–1 Matrix Assigned by MTXPerspective

The following example sets up and loads a perspective projection matrix with a field-of-view of 70° and
near and far planes at 50 units and 1000 units, respectively:

Code 3–2 Typical Perspective Projection Matrix Using MTXPerspective

#include <revolution.h>
 :

Mtx44 m;

 MTXPerspective(m, 70.0, 640.0/480.0, 50.0, 1000.0);
GXSetProjection(m, GX_PERSPECTIVE);

Note: GXSetProjection must be passed the GX_PERSPECTIVE flag if the projection matrix has the
perspective projection form (shown in Code 3–2).
RVL-06-0038-001-B 16 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
3.2 MTXFrustum
Code 3–3 MTXFrustum

void MTXFrustum (
 Mtx44 m,
 f32 t, f32 b,
 f32 l, f32 r,
 f32 n, f32 f
);

MTXFrustum is used to describe the mapping from camera-space coordinates into clip-space. It is
designed to be used in tandem with GXSetProjection. However, you can also use the resulting matrix
to transform points from world-space to screen-space on the CPU.

Unlike other MTX functions, MTXPerspective, MTXFrustum, and MTXOrtho all operate on 4x4 matri-
ces.

MTXFrustum will generate 3D perspective transformations, encapsulating some of the properties of a
camera, including field-of-view angle and aspect ratio. It also controls the near and far plane positions.

MTXFrustum is more flexible, but less commonly used than its cousin MTXPerspective. It is more pow-
erful because it allows you to specify off-center projections. These projections are useful in some applica-
tions, for example rendering a high-resolution image by rendering nxm sub-rectangles, one at a time.

The arguments n and f (near and far) specify the position of the near and far planes respectively. Normally,
for most projections, n will be less than (or much less than) f, and both n and f will be positive. (Even
though the planes are typically thought of as being positioned down the negative z-axis, the values specify
positive distances from the eye-point at the origin.)

The arguments l and r (left and right), and t and b (top and bottom) specify the location in camera-space of
the front four corners of the viewing frustum. Normally, l will be less than r, and b will be less than t. Revers-
ing one pair allows you to redefine the coordinate axes of object space (that is, you can change from a
right-hand to a left-hand coordinate system).

MTXFrustum requires that n and f are not equal, that l and r are not equal, and that t and b are not equal,
so that the resulting matrix is well defined.
© 2006-2007 Nintendo 17 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
MTXFrustum generates a projection perspective transformation matrix such that the viewing frustum
bounded by the 8 (camera-space) points:

will be mapped to the 8 (clip-space) points:

Once these 8 homogeneous coordinates are divided through by w (the fourth element), they will be simply
the 8 corners of a 2x2x2 cube centered on the origin; that is, the 8 points: (±1.0, ±1.0, ±1.0).

Therefore, MTXFrustum assigns the following to the user-allocated 4x4 matrix m:

Equation 3–2 Matrix Assigned by MTXFrustum

The example shown in Code 3–4 sets up and loads a perspective projection matrix that will only display
the top left quarter of the screen, but will scale this quarter up to fill the viewable area:

Code 3–4 Off-Center Projection with MTXFrustum

#include <revolution.h>
 :

Mtx44 m;

 MTXFrustum(m, 480.0, 0.0, -640.0, 0.0, 20.0, 600.0); // Just draw TopLeft Quadrant
GXSetProjection(m, GX_PERSPECTIVE);

Note: GXSetProjection must be passed the GX_PERSPECTIVE flag if the projection matrix has the
perspective projection form (shown in Code 3–4).

3.3 MTXOrtho
Code 3–5 MTXOrtho

void MTXOrtho (Mtx44 m, f32 t, f32 b, f32 l, f32 r, f32 n, f32 f);

MTXOrtho is used to describe the mapping from camera-space coordinates into clip-space. It is designed
to be used in tandem with GXSetProjection.

(l, t, -n, 1) (l*(f/n), t*(f/n), -f, 1)

(r, t, -n, 1) (r*(f/n), t*(f/n), -f, 1)

(l, b, -n, 1) (l*(f/n), b*(f/n), -f, 1)

(r, b, -n, 1) (r*(f/n), b*(f/n), -f, 1)

(-n, n, -n, n) (-f, f, 0, f)

(n, n, -n, n) (f, f, 0, f)

(-n, -n, -n, n) (-f, -f, 0, f)

(n, -n, -n, n) (f, -f, 0, f)
RVL-06-0038-001-B 18 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
Unlike other MTX functions, MTXPerspective, MTXFrustum, and MTXOrtho all operate on 4x4 matri-
ces.

MTXOrtho will generate 2D non-perspective (or parallel) projection transformations, simulating a camera
with an infinite zoom positioned at infinity. It is the most suitable function for creating general purpose 2D-
viewing projection matrices.

The arguments n and f specify the position of the near and far planes respectively. MTXOrtho requires that
n and f are not equal. Normally, for most projections, n will be less than f, and both n and f will be positive.

The arguments t and b (top and bottom), l and r (left and right), and n and f together specify the location in
camera-space of the 8 corners of the viewing frustum. In the case of MTXOrtho, this is a cuboid. Normally
l will be less than r, and b will be less than t.

Therefore, MTXOrtho assigns the following to the user-allocated 4x4 matrix m:

Equation 3–3 Matrix Assigned by MTXOrtho

The example shown in Code 3–6 sets up and loads a simple orthogonal projection matrix that will map one
unit of camera space (in x and y) onto one pixel of screen space (if used with the correct viewport):

Code 3–6 Pixel-Unit Projection with MTXOrtho

#include <revolution.h>
 :

Mtx44 m;

 MTXOrtho(m, 480.0,0.0, 0.0,640.0, 0.0,255.0); // Top=480 Bot=0 Left=0 Right=640
GXSetProjection(m, GX_ORTHO);

Note: GXSetProjection must be passed the GX_ORTHO flag if the projection matrix has the orthogonal
or parallel projection form (shown in Code 3–6).

3.4 MTXLightPerspective
Code 3–7 MTXLightPerspective

void MTXLightPerspective(
 Mtx m,
 f32 fovY, f32 aspect,
 f32 scaleS, f32 scaleT,

f32 transS, f32 transT);

MTXLightPerspective supports projected texture techniques. It generates a projection transformation
that specifies a mapping from light-space (that is, model space for the light) to texture-space (s, t, q). The
mapping encapsulates some of the properties of a projective texture light, including the position of the four
bounding planes and the placement of the texture, but not including the location and orientation of the light
in space. For more details, refer to "3 Texture Projection" in the Graphics Library (Advanced Rendering)
manual.
© 2006-2007 Nintendo 19 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
Texture projection is in some ways analogous to geometry projection. In both cases, points in a 3D space
are projected along rays, to intersect with a 2D plane. However, unlike geometry projection, texture projec-
tion does not involve hardware clipping. Also, unlike MTXPerspective, MTXLightPerspective generates a
(smaller) 3x4 projection transformation matrix. A 4x4 matrix is not necessary, because the projection is
from a 3D homogeneous space (x,y,z,1) into a 2D homogeneous space (s, t, q). A 4x4 matrix would also
be inconvenient, because MTX contains no calls to manipulate 4x4 matrices.

Under normal usage, the resulting 3x4 projection matrix would be combined with other 3x4 matrices, and
then passed to GXLoadTexMtxImm or GXLoadTexMtxIndx. The common case is to pass TextureProjection-
Matrix * LightModelMatrix.

The argument fovY specifies the height (or t extent) of the projected light. The projected texture will form a
rectangle (or square) if projected onto a perpendicular surface, and aspect controls the width to height ratio
of this rectangle. For example, a value of 2.0 would result in the texture being scaled up by two in the hori-
zontal (s) direction.

The arguments scaleS, scaleT, transS, and transT can be used to move and scale the texture. The normal
scale and trans values will be 0.5, 0.5, 0.5, and 0.5. These values will cause the center of the texture
(s=0.5, t=0.5) to be projected along the light direction and are therefore suitable for a light texture that is
clamped, but not mirrored in s or t.

MTXLightPerspective assigns the following to the user-allocated 3x4 matrix m:

Equation 3–4 Matrix Assigned by MTXLightPerspective

Code 3–8 demonstrates a rotating light, projected 10° tall and 10° wide, positioned at the origin:

Code 3–8 Using MTXLightPerspective

{
Mtx txproj;
Mtx lightmodelview;
Mtx txmtx;

/* Setup light modelview */
MTXRotDeg(lightmodelview,'x',lightdegrees);

MTXLightPerspective(txproj, 10.0, 1.0, 0.5, 0.5, 0.5, 0.5);

MTXConcat(txproj, lightmodelview, txmtx);

GXLoadTexMtxImm(txmtx, GX_TEXMTX0, GX_MAT_3x4);
}

RVL-06-0038-001-B 20 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
3.5 MTXLightFrustum
Code 3–9 MTXLightFrustum

void MTXLightFrustum (
 Mtx m,
 f32 t, f32 b,
 f32 l, f32 r,
 f32 n,
 f32 scaleS, f32 scaleT,

f32 transS, f32 transT);

MTXLightFrustum supports projected texture techniques. It generates a projection transformation that
specifies a mapping from light-space (that is, model space for the light) to texture-space (s, t, q). The map-
ping encapsulates some of the properties of a projective texture light, including the position of the four
bounding planes and the placement of the texture, but not including the location and orientation of the light
in space. For more details, refer to "3 Texture Projection" in the Graphics Library (Advanced Rendering)
manual.

Texture projection is in some ways analogous to geometry projection. In both cases, points in a 3D space
are projected along rays to intersect with a 2D plane. However, unlike geometry projection, texture projec-
tion does not involve hardware clipping. Also, unlike MTXFrustum, MTXLightFrustum generates a (smaller)
3x4 projection transformation matrix. A 4x4 matrix is not necessary, because the projection is from a 3D
homogeneous space (x,y,z,1) into a 2D homogeneous space (s, t, q). A 4x4 matrix would also be inconve-
nient, because MTX contains no calls to manipulate 4x4 matrices.

Under normal usage, the resulting 3x4 projection matrix would be combined with other 3x4 matrices, and
then passed to GXLoadTexMatrixImm or GXLoadTexMatrixIndx. The common case is to pass Texture-
ProjectionMatrix * LightModelMatrix.

With normal scale and trans values, the top, bottom, left, and right planes (arguments t, b, l, r) will corre-
spond to the clamp/wrap borders of the texture, that is, the lines t=1, t=0, s=0, s=1, respectively. No far
plane is specified, and the near plane distance (n) is only used to specify or scale the 4 side planes. There-
fore, doubling t, b, l, r, and n will have no effect on the resulting matrix.

The arguments scaleS, scaleT, transS, and transT can be used to move and scale the texture. The normal
scale and trans values will be 0.5, 0.5, 0.5, and 0.5. These values will cause the top, bottom, left, and right
planes to be mapped to t=1, t=0, s=0, s=1 respectively and are therefore suitable for a light texture which is
clamped, but not mirrored in s or t.

With unit scale and zero translate, the four planes would be mapped to s=±1, t=±1.
© 2006-2007 Nintendo 21 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
MTXLightFrustum assigns the following to the user-allocated 3x4 matrix m:

Equation 3–5 Matrix Assigned by MTXLightFrustum

The following demonstrates a rotating light at the origin:

Code 3–10 Using MTXLightFrustum

{
Mtx txproj;
Mtx lightmodelview;
Mtx txmtx;

/* Setup light modelview */
MTXRotDeg(lightmodelview,'x',lightdegrees);

MTXLightFrustum(txproj, ymin, ymax, xmin, xmax, nnear,
 0.5, 0.5, 0.5, 0.5);

MTXConcat(txproj, lightmodelview, txmtx);

GXLoadTexMtxImm(txmtx, GX_TEXMTX0, GX_MAT_3x4);
}

3.6 MTXLightOrtho
Code 3–11 MTXLightOrtho

void MTXLightOrtho(
 Mtx m,
 f32 t, f32 b,
 f32 l, f32 r,
 f32 scaleS, f32 scaleT,

f32 transS, f32 transT);

MTXLightOrtho supports non-perspective projected texture techniques. It generates a parallel projection
transformation that specifies a mapping from light-space (that is, model space for the light) to texture-
space (s,t,1). The mapping encapsulates some of the properties of a projective texture light, including the
position of the four bounding planes and the placement of the texture, but not including the location and
orientation of the light in space. For more details, refer to "3 Texture Projection" in the Graphics Library
(Advanced Rendering) manual.

Texture projection is in some ways analogous to geometry projection. In both cases, points in a 3D space
are projected along rays, to intersect with a 2D plane. However, unlike geometry projection, texture projec-
tion does not involve hardware clipping. Also, unlike MTXOrtho, MTXLightOrtho generates a (smaller) 3x4
projection transformation matrix. A 4x4 matrix is not necessary, because the projection is from a 3D homo-
geneous space (x,y,z,1) into a 2D homogeneous space (s,t,1). A 4x4 matrix would also be inconvenient,
because MTX contains no calls to manipulate 4x4 matrices. In fact, with MTXOrtho, only a 2x4 is neces-
sary, because (q=1) for all points in space. However, a 2x4 would also be inconvenient — unless a 2x4
matrix library was implemented as well, but this would increase code space. Worse yet, it would increase
the instruction cache working set, in return for a fairly small functional gain.
RVL-06-0038-001-B 22 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
With normal scale and trans values, the top, bottom, left, and right planes (arguments t, b, l, r) will corre-
spond to the clamp/wrap borders of the texture, that is, the lines t=1, t=0, s=0, s=1, respectively. No far
plane or near plane is specified.

Under normal usage, the resulting 3x4 projection matrix would be combined with other 3x4 matrices and
then passed to GXLoadTexMtxImm or GXLoadTexMtxIndx. The common case is to pass TextureProjection-
Matrix * LightModelMatrix.

The arguments scaleS, scaleT, transS, and transT can be used to move and scale the texture. The normal
scale and translate values will be 0.5, 0.5, 0.5, and 0.5. These values will cause the center of the texture
(s=0.5, t=0.5) to be projected along the light direction and are therefore suitable for a light texture that is
clamped, but not mirrored in s or t.

MTXLightOrtho assigns the following to the user-allocated 3x4 matrix m:

Equation 3–6 Matrix Assigned by MTXLightOrtho

The following demonstrates a light at infinity, directed through the origin, and rotating about the origin and
the x-axis. The light is slightly taller than it is wide.

Code 3–12 Using MTXLightOrtho

{
Mtx txproj;
Mtx lightmodelview;
Mtx txmtx;

/* Setup light modelview */
MTXRotDeg(lightmodelview,'x',lightdegrees);

MTXLightOrtho(txproj, 10.0,-10.0, -8.0,8.0, 0.5, 0.5, 0.5, 0.5);

MTXConcat(txproj, lightmodelview, txmtx);

GXLoadTexMtxImm(txmtx, GX_TEXMTX0, GX_MAT_3x4);
}

© 2006-2007 Nintendo 23 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK

RVL-06-0038-001-B 24 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

4 Viewing Transformations

4.1 MTXLookAt
Code 4–1 MTXLookAt

void MTXLookAt (Mtx m, Point3dPtr camPos, VecPtr camUp, Point3dPtr target);

MTXLookAt generates a modelview rotation-and-translation matrix such that an object centered at target
will be central on the screen and will be rotated as if seen from a camera at camPos and as if the camera
up direction is along camUp. The matrix is assigned to the user-allocated 3x4 matrix m.

The arguments camPos, camUp, and target, can all be considered to be in world-coordinates. MTXLookAt
requires that target is not equal to camPos, that camUp has non-zero length, and that camUp does not
point exactly along the camPos—target line.

MTXLookAt first computes three direction vectors:

Equation 4–1 MTXLookAt Direction Vectors

These three direction vectors are then normalized to unit-length, and MTXLookAt assigns them to m as
shown in Equasion 4–2.

Equation 4–2 Matrix Assigned by MTXLookAt

MTXLookAt performs two divides, two square-roots, 19 add/subtracts, and 33 multiplications. All calcula-
tions are single-precision.

Revolution SDK Revolution Matrix-Vector Library (MTX)
5 Scale, Rotate and Translate Transformations

5.1 MTXIdentity
Code 5–1 MTXIdentity

void MTXIdentity (Mtx m);

MTXIdentity assigns the following to the user-allocated 3x4 matrix m:

Equation 5–1 Matrix Assigned by MTXIdentity

5.2 MTXScale
Code 5–2 MTXScale

void MTXScale (Mtx m, f32 x, f32 y, f32 z);

MTXScale assigns the following to the user-allocated 3x4 matrix m:

Equation 5–2 Matrix Assigned by MTXScale

This matrix represents a transformation which scales by a factor of x in the x-axis, y in the y-axis, and z in
the z-axis.

If all three arguments are equal, x=y=z, the resulting scaling transformation will be isotropic (or propor-
tional). Otherwise, the resulting scaling transformation will be anisotropic (or non-proportional). If you use
any anisotropic scale factors in modelview matrices or modelview matrix stacks, and you use lighting
(Graphics Processor vertex-normal-based lighting calculations), you will probably need to calculate and
load inverse-transposes of modelview matrices.

5.3 MTXRotRad, MTXRotDeg
Code 5–3 MTXRotRad and MTXRotDeg

void MTXRotRad (Mtx m, u8 axis, f32 rad);

#define MTXRotDeg(m, axis, deg) MTXRotRad(m, axis, MTXDegToRad(deg))

MTXRotRad generates a rotation about one of three major axes: the positive x-axis, y-axis, or z-axis. The
rotation is assigned to the user-allocated 3x4 matrix m.

The argument axis indicates the major axis and should be a lower or upper-case character “x,” “y,” or “z.”
© 2006-2007 Nintendo 25 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
The argument rad specifies in radians the counter-clockwise rotation about the major axis.

MTXRotRad provides the result to the system functions sinf() and cosf() from math.h (this math
library is provided by Metrowerks). The resulting values are then inserted into m as follows:

axis = “x”: rotation about positive x-axis (1,0,0):

Equation 5–3 Rotation About Positive X-Axis (1,0,0)m

axis = “y”: rotation about positive y-axis (0,1,0):

Equation 5–4 Rotation About Positive Y-Axis (0,1,0)m

axis = “z”: rotation about positive z-axis (0,0,1):

Equation 5–5 Rotation About Positive Z-Axis (0,0,1)m

There is a convenience macro, MTXRotDeg, that specifies rotation angles in degrees.

MTXRotRad is a convenience wrapper for MTXRotTrig (see section 5.4).

5.4 MTXRotTrig
Code 5–4 MTXRotTrig

void MTXRotTrig (Mtx m, u8 axis, f32 sinA, f32 cosA);
RVL-06-0038-001-B 26 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
MTXRotTrig generates a rotation matrix about one of three axes and assigns this matrix to m in precisely
the same manner as MTXRotRad (see "5.3 MTXRotRad, MTXRotDeg" on page 25). In this case, however,
the user must compute the sine and cosine and convert to radians. Therefore, the following two MTX calls
are exactly equivalent:

Code 5–5 Comparison of MTXRotDeg and MTXRotTrig

#include <revolution.h>
#include <math.h>

 Mtx m;

 MTXRotDeg(m,'x',45.0); // 45 degrees
 MTXRotTrig(
 m,
 'x',
 sin(MTXDegToRad(45.0)),

cos(MTXDegToRad(45.0)));

Although MTXRotRad is probably the most convenient, using MTXRotTrig will be more efficient in some
circumstances. For example, you could pre-compute a table of sin() values and re-use those values mul-
tiple times, or you could use a less precise version of the sin() and cos() functions.

Note: The arguments sinA and cosA should conform with the following formula.

Equation 5–6 MTXRotTrig Argument Logic

Otherwise, the resulting matrix m will also perform an anisotropic scale.

5.5 MTXRotAxisRad, MTXRotAxisDeg
Code 5–6 MTXRotAxisRad and MTXRotAxisDeg

void MTXRotAxisRad (Mtx m, VecPtr axis, f32 rad);

#define MTXRotAxisDeg(m, axis, deg) MTXRotAxisRad(m, axis, MTXDegToRad(deg))

MTXRotAxisRad generates a rotation about the user-provided axis. The rotation is assigned to the user-
allocated 3x4 matrix m.

The vector argument axis must be non-zero in length. It need not be unit-length.

The argument rad (in radians) is provided to the system functions sinf() and cosf() (from math.h).

MTXRotAxisDeg is a convenience macro to specify rotation angles in degrees.
© 2006-2007 Nintendo 27 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
MTXRotAxisRad is used to perform the following computations.

Equation 5–7 MTXRotAxisRad Computations

Then MTXRotAxisRad assigns the following to m:

Equation 5–8 Matrix Assigned by MTXRotAxisRad

For example, Code 5–7 shows an expensive way to compute a simple matrix:

Code 5–7 Rotation About the (x=y=z) Axis

#include <revolution.h>
 :

Mtx m;
 Vec axis={1.0,1.0,1.0};

MTXRotAxisDeg(m,axis,120.0);

MTXRotAxisRad performs one sinf(), one cosf(), one sqrtf(), one divide, and 30 multiplies. All
calculations are single-precision floating point.

5.6 MTXTrans
Code 5–8 MTXTrans

void MTXTrans (Mtx m, f32 x, f32 y, f32 z);

MTXTrans generates a translation matrix from x, y, and z.

It assigns the following to the user-allocated 3x4 matrix m:

Equation 5–9 Matrix Assigned by MTXTrans
RVL-06-0038-001-B 28 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
5.7 MTXQuat
Code 5–9 MTXQuat

void MTXQuat (Mtx m, QuaternionPtr q);

MTXQuat converts the quaternion q (which can be seen to represent a rotation in R3) into the correspond-
ing rotation matrix. Quaternions are the best way to represent rotations which require interpolation.

The argument q must have non-zero length. It need not be unit-length.

If q is:

MTXQuat calculates:

Equation 5–10 MTXQuat Computation

MTXQuat then assigns the following to the user-allocated 3x4 matrix m:

Equation 5–11 Matrix Assigned by MTXQuat

MTXQuat performs one divide and 16 multiplies. All calculations are single-precision.

5.8 MTXDegToRad, MTXRadToDeg
Code 5–10 MTXDegToRad and MTXRadToDeg

f32 MTXDegToRad (f32 degrees);
f32 MTXRadToDeg (f32 radians);

MTXDegToRad converts a single-precision floating point (f32) value from degrees to radians.
MTXRadToDeg converts a single-precision floating point (f32) value from radians to degrees. Neither is
fully precise for 64-bit double-precision floating point (f64) computations.

These functions are actually implemented as macros.
© 2006-2007 Nintendo 29 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
6 Matrix-matrix Operations

6.1 MTXConcat
Code 6–1 MTXConcat

void MTXConcat (Mtx a, Mtx b, Mtx axb);

MTXConcat concatenates (or multiplies) two 3x4 matrices a and b to produce the result a·b and assigns
this result to the user-allocated 3x4 matrix axb. Any of the arguments a, b, and axb can reference the same
matrix.

If you ask, any mathematician will explain that you can’t multiply two 3x4 matrices together. Fortunately,
you can, and here’s how. If a and b are respectively:

Then axb is:

This is mathematically correct, if you recall that every 3x4 matrix has an (implicit) 4th row of (0,0,0,1).

Code 6–2 calculates the square of the matrix m:

Code 6–2 MTXConcat Example

#include <revolution.h>
 :

MTXConcat(m,m,m); // m*m->m

MTXConcat performs 36 multiplies. All calculations are single-precision.

6.2 MTXCopy
Code 6–3 MTXCopy

void MTXCopy (Mtx src, Mtx dst);

MTXCopy copies the 3x4 matrix src into the user-allocated 3x4 matrix dst. The previous contents of dst are
lost. The arguments src and dst can reference the same 3x4 matrix with no ill effects.
RVL-06-0038-001-B 30 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
6.3 MTXTranspose
Code 6–4 MTXTranspose

void MTXTranspose (Mtx src, Mtx xPose);

MTXTranspose computes the transpose of the 3x4 matrix src and assigns the result to the user-allocated
3x4 matrix xPose. The arguments src and xPose can reference the same 3x4 matrix with no ill effects.

Because src and xPose are only 3x4 (not 4x4), the 4th column of src (the translation part) is lost, and the
resulting 4th column of xPose (the translation part) is zero:

Equation 6–1 MTXTranspose Computations

However, the most common reason you need to compute a transpose is to calculate the inverse-transpose
of a modelview matrix, in order to correctly transform vertex normals and perform (CPU or GX) lighting.
The translation part of the matrix is not relevant in this case.

6.4 MTXInverse
Code 6–5 MTXInverse

u32 MTXInverse (Mtx src, Mtx inv);

If the 3x4 matrix src has an inverse, MTXInverse computes that inverse, assigns the result to the user-
allocated 3x4 matrix inv and returns 1, meaning success. Otherwise, if src is singular (non-invertible),
MTXInverse will return 0, meaning failure, and inv will be unaffected.

The arguments src and inv may reference the same matrix.

Matrix inverse operations on 4x4 matrices with a 4th row of (0,0,0,1) yield a 4x4 matrix which still has a 4th
row of (0,0,0,1). Therefore, no information is “lost” when using MTXInverse (in contrast to
MTXTranspose).

This implementation of matrix inverse assumes src and inv both have an implicit 4th row of (0,0,0,1). It
requires one divide and 48 multiplies. All calculations are single-precision.

The typical application of MTXInverse is in computing inverse-transpose matrices for lighting:
© 2006-2007 Nintendo 31 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
Code 6–6 Generating Normal Matrices Using MTXInverse and MTXTranspose

#include <revolution.h>
 :

Mtx mv; // Modelview
 Mtx mvIT; // Inverse-Tranpose of modelview

:

generate_modelview(mv);

 MTXInverse(mv,mvIT);
 MTXTranspose(mvIT,mvIT);
 GXLoadPosMatrixImm(&mv, GX_PNMTX0); // Load (modelview) into Graphics Processor
 GXLoadNormMatrixImm(&mvIT, GX_PNMTX0); // Load (modelview)-1T

 enable_lighting();
draw_model();

Note: It is not necessary to use MTXInverse and MTXTranspose to compute the inverse-transpose of
the modelview matrix, if that matrix is a concatenation of only proportional (isotropic) scales, rota-
tions, and translations. In this case, the modelview matrix will function as its own inverse-trans-
pose, and can be passed to the Graphics Processor twice—once as the modelview matrix and
once as the Normal matrix.

In contrast, if you do use significantly non-proportional (anisotropic) scales, or if you use other non-
length preserving transformations (such as shears) in your modelview matrix, you will need to use
MTXInverse and MTXTranspose to support lighting.
RVL-06-0038-001-B 32 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
7 Matrix-vector Operations

7.1 MTXMultVec
Code 7–1 MTXMultVec

void MTXMultVec (Mtx m, VecPtr src, VecPtr dst);

MTXMultVec multiplies the 3x4 matrix m by the 3-element vector src, and assigns the result to the user-
allocated 3-element vector dst. The vectors src and dst are assumed to have an implicit fourth element (w)
of 1, and the matrix m is assumed to have an implicit fourth row of (0,0,0,1). For this reason, MTXMultVec
is not suitable for projecting points through a perspective projection matrix on the CPU.

The arguments src and dst may reference the same vector.

MTXMultVec computes:

Equation 7–1 MTXMultVec Computations

It performs 9 multiplication operations.

7.2 MTXMultVecArray
Code 7–2 MTXMultVecArray

void MTXMultVecArray (Mtx m, VecPtr srcBase, VecPtr dstBase, u32 count);

MTXMultVecArray multiplies the 3x4 matrix m by each vector in the array of 3 element vectors src[], and
assigns each result to the user-allocated array of 3 element vectors dst[]. All vectors are assumed to have
an implicit 4th element (w) of 1, and the matrix m is assumed to have an implicit 4th row of (0,0,0,1). (For
this reason, MTXMultVecArray is not suitable for projecting points through a perspective projection
matrix on the CPU). The argument count indicates the number of 3-element vectors in both src[] and dst[].

Note: MTXMultVecArray is a convenience wrapper for MTXMultVec. The following two examples are
equivalent, except that MTXMultVecArray is a little more efficient. In the future,
MTXMultVecArray may be significantly more efficient.

Code 7–3 Using MTXMultVec with an Array of Vectors

#include <revolution.h>

:

int i;
 Vec src[50],dst[50];
 Mtx m;
 :

for (i=0; i<50; i++) MTXMultVec(m,src+i,dst+i);
© 2006-2007 Nintendo 33 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
Code 7–4 Using MTXMultVecArray with an Array of Vectors

#include <revolution.h>

:

int i;
 Vec src[50],dst[50];
 Mtx m;
 :

MTXMultVecArray(m,src,dst,50);

The arguments src and dst may reference precisely the same vector array (src==dst). Otherwise,
src[0]..src[count-1] must not overlap dst[0]..dst[count-1].

MTXMultVecArray performs 9*count multiplications.

7.3 MTXMultVecSR
Code 7–5 MTXMultVecSR

void MTXMultVecSR (Mtx m, VecPtr src, VecPtr dst);

MTXMultVecSR multiplies the 3x3 sub-matrix (scale-and-rotate component) of 3x4 matrix m by the 3-ele-
ment vector src and assigns the result to the user-allocated 3-element vector dst. The translation compo-
nent of matrix m is ignored.

The arguments src and dst may reference the same vector.

MTXMultVecSR computes:

Equation 7–2 MTXMultVecSR Computations

It performs 9 multiplication operations.

It may help to convert a vector of direction into another coordinate system (e.g., light direction vector into
view space).

7.4 MTXMultVecArraySR
Code 7–6 MTXMultVecArraySR

void MTXMultVecArraySR (Mtx m, VecPtr srcBase, VecPtr dstBase, u32 count);

MTXMultVecArraySR multiplies the 3x3 sub-matrix (scale and rotate component) of 3x4 matrix m by
each vector in the array of 3-element vectors src[] and assigns each result to the user-allocated array of 3-
element vectors dst[]. The argument count indicates the number of 3-element vectors in both src[] and
dst[].

MTXMultVecArraySR is a convenience wrapper for MTXMultVecSR (See MTXMultVecArray)
RVL-06-0038-001-B 34 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
The arguments src and dst may reference precisely the same vector array (src==dst). Otherwise,
src[0]..src[count-1] must not overlap dst[0]..dst[count-1].

MTXMultVecArraySR performs 9*count multiplications.
© 2006-2007 Nintendo 35 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
8 Vector-vector Operations

8.1 The Vector Type
The basic type of these vector operations is the Vec, passed by reference using a VecPtr:

Code 8–1 Vector and Point Type Definitions

typedef struct
{

f32 x;
 f32 y;
 f32 z;
} Vec;

typedef Vec* VecPtr;
typedef Vec Point3d;
typedef Vec* Point3dPtr;

8.2 The Vector Operations
Code 8–2 Vector Operations

void VECAdd (VecPtr a, VecPtr b, VecPtr ab);
void VECSubtract (VecPtr a, VecPtr b, VecPtr a_b);
void VECScale (VecPtr src, VecPtr dst, f32 scale);
void VECNormalize (VecPtr src, VecPtr unit);
f32 VECDotProduct (VecPtr a, VecPtr b);
void VECCrossProduct (VecPtr a, VecPtr b, VecPtr axb);
void VECHalfAngle (VecPtr a, VecPtr b, VecPtr half);
void VECReflect (VecPtr src, VecPtr normal, VecPtr dst);
f32 VECSquareMag (VecPtr v);
f32 VECMag (VecPtr v);
f32 VECSquareDistance (VecPtr a, VecPtr b);
f32 VECDistance (VecPtr a, VecPtr b);

All these vector-vector operations act on one or two 3-element vector arguments and return either a scalar
result (f32) or a vector result in a user-allocated 3-element vector argument. Any of the one, two, or three
vector arguments may reference the same vector. All calculations are single-precision.

VECAdd performs the operation ab = a + b. It computes the sum (a + b) of the two vectors a and b and
assigns the result to ab.

VECSubtract performs the operation a_b = a - b. It computes the difference (a - b) of the two vectors a
and b and assigns the result to a_b.

VECScale performs the operation dst = scale·src. It scales the vector src by the scalar scale, and assigns
the result (scale·src) to dst.

VECNormalize performs the operation unit = src/|src|. It calculates the length or magnitude of the vector
src, and normalizes the vector, storing the result in unit. The vector src must have non-zero length. The
computation requires one square-root, one divide, and six multiply operations.

VECDotProduct returns the scalar a·b. This is a vector dot-product operation. It requires three multiplies.

VECCrossProduct performs the operation axb = a x b. This is a vector cross-product operation. It
requires 6 multiplications.
RVL-06-0038-001-B 36 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
VECHalfAngle performs the operation half = (|b|·a + |a|·b) / | (|b|·a + |a|·b) |. This calculates a unit vec-
tor half, which lies halfway between the two vectors a and b. This is suitable for specular highlight half-
angle computations. The vectors a and b must both have non-zero length, and they must not point in
exactly opposite directions. VECHalfAngle requires three square-roots, one division, and 18 multiplica-
tions.

VECReflect reflects the vector src in the plane defined by all points n, such that n·normal = 0, using the
rule “angle-of-reflection equals angle-of-incidence”. The unit-length result is assigned to dst. The entire
computation requires three square-root operations, three divisions, and 24 multiplications.

VECSquareMag returns |v|2, the square of the magnitude of the vector src. It requires three multiplications.

VECMag returns |v|, the scalar length or magnitude of the vector src. It requires three multiplications and
one square-root operation.

VECSquareDistance calculates |a-b|2, or the square of the distance between vectors a and b. It requires
three multiplications.

VECDistance calculates |a-b|, or the distance between vectors a and b. It requires three multiplications
and one square root operation.
© 2006-2007 Nintendo 37 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
9 Stack Operations

9.1 The Matrix Stack Type
The MtxStack is used to record the location of the allocated array, the current position in the array, and
the size of the array. MtxStackPtr is used as a handle to a stack. This handle is passed to all matrix
stack calls, and indicates the stack on which to operate.

Code 9–1 MtxStack and MtxStackPtr Type Definitions

typedef struct
{

u32 numMtx;
 MtxPtr stackBase;
 MtxPtr stackPtr;
} MtxStack;

typedef MtxStack* MtxStackPtr;

9.2 MTXAllocStack and MTXFreeStack
Code 9–2 MTXAllocStack and MTXFreeStack

void MTXAllocStack (MtxStackPtr sPtr, u32 numMtx);
void MTXFreeStack (MtxStackPtr sPtr);

MTXAllocStack allocates an array of numMtx 3x4 matrices (type Mtx). The memory is allocated using
OSAlloc(). (The user must allocate the MtxStackPtr structure).

MTXFreeStack frees the allocated array, using OSFree().

MTXAllocStack and MTXFreeStack are implemented as macros in mtx.h. They are provided for your
convenience — it is not essential to allocate and free a stack using MTXAllocStack/MTXFreeStack.
Code 9–3 and Code 9–4 show two ways to allocate a matrix stack:

Code 9–3 Using MTXAllocStack to Allocate a Matrix Stack

#include <revolution.h>

 MtxStackPtr mstack;

 :
MTXAllocStack(mstack,10); // calls OSAlloc to allocate 10*(3*4)*4 bytes

 MTXInitStack(mstack,10);

 do_some_work();

 MTXFreeStack(mstack);
RVL-06-0038-001-B 38 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
Code 9–4 Not Using MTXAllocStack to Allocate a Matrix Stack

#include <revolution.h>

 MtxStackPtr mstack;
 Mtx mstackspace[10];

 :
mstack.stackbase = mstackspace;

MTXInitStack(mstack,10);

9.3 MTXInitStack
Code 9–5 MTXInitStack

void MTXInitStack (MtxStackPtr sPtr, u32 numMtx);

MTXInitStack sets up the MtxStack structure referenced by sPtr. It must be called before any stack
operations are performed on the stack. The argument numMtx indicates the maximum legal size for the
stack—that is, the maximum number of 3x4 matrices that can be pushed. It must not be zero.

9.4 MTXPush, MTXPushFwd, MTXPushInv, MTXPushInvXpose
Code 9–6 MTXPush, MTXPushFwd, MTXPushInv, and MTXPushInvXpose

MtxPtr MTXPush (MtxStackPtr sPtr, Mtx m);
MtxPtr MTXPushFwd (MtxStackPtr sPtr, Mtx m);
MtxPtr MTXPushInv (MtxStackPtr sPtr, Mtx m);
MtxPtr MTXPushInvXpose (MtxStackPtr sPtr, Mtx m);

These operations push a 3x4 matrix onto the matrix stack referenced by sPtr. There must be room in the
matrix stack for a new 3x4 matrix. They return a MtxPtr reference to the new top-of-stack matrix.

MTXPush pushes the matrix m onto the top of the stack. The matrix is not concatenated or multiplied with
any other. The remaining three operations pre- or post-concatenate m, m-1, or (m-1)T with the matrix on
the top of the stack (t), and push the result:

MTXPush pushes m.

MTXPushFwd pushes t x m.

MTXPushInv pushes m-1 x t.

MTXPushInvXpose pushes t x (m-1)T.

If the stack is empty, t is taken to be the identity matrix (I).

MTXPush always performs a MTXCopy operation. The remaining three operations perform a MTXCopy if
the stack was empty, otherwise they perform a MTXConcat.

MTXPushInv and MTXPushInvXpose also perform a MTXInverse. Therefore, m must be non-singular
(invertible). MTXPushInvXpose also performs a MTXTranspose.
© 2006-2007 Nintendo 39 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
9.5 MTXPop
Code 9–7 MTXPop

MtxPtr MTXPop (MtxStackPtr sPtr);

MTXPop discards the top 3x4 matrix element in the stack. It then returns a MtxPtr reference to the new
top-of-stack, or NULL if the stack is now empty.

If the stack is already empty, MTXPop has no effect, and returns NULL.

9.6 MTXGetStackPtr
Code 9–8 MTXGetStackPtr

MtxPtr MTXGetStackPtr (MtxStackPtr sPtr);

MTXGetStackPtr returns a MtxPtr reference to (t), the top 3x4 matrix element in the stack. If the stack
is empty, it returns NULL.
RVL-06-0038-001-B 40 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
10 Traps and Pitfalls
Because the library is designed to be runtime efficient first, and easy-to-use second, some warnings and
cautions are necessary.

10.1 The Standard Matrix Type is 3x4
The standard matrix type is Mtx, a 3x4 matrix with an assumed, implicit 4th row of (0,0,0,1). This size was
selected because it is sufficient for all 3D scale, rotation, and translate operations and combinations
thereof. Although 4x4 matrices could be used as the general standard, they have some disadvantages
compared to 3x4 matrices:

• 4x4 matrices require extra memory storage (33% extra).

• In memory-limited situations, 4x4 matrix computations will be 33% slower.

• In CPU-speed limited situations, many general 4x4 operations are computationally much slower (for
example, MTXConcat requires 64 multiplies verses 36).

However, 3x4 is not adequate for 3D projection matrices (perspective or parallel). Therefore, a Mtx44 type
is used in the special cases of MTXPerspective, MTXFrustum, and MTXOrtho. This type is incompati-
ble with Mtx and cannot be passed to any other API calls in the library. This is slightly inconvenient in
some circumstances.

10.2 Mtx is an Array of 3 Arrays of 4 Floats
The definitions of Mtx and MtxPtr (and their 4x4 cousins) deserve some careful attention—it is possible
to get confused.

For example, MtxPtr is not a pointer to an Mtx, it is a pointer to an array of floats:

Figure 10–1 MtxPtr Points at a Mtx in Memory

Therefore, it is important to always remember to increment as shown in the example below:

Code 10–1 Incrementing a MtxPtr—the right way

MtxPtr mp;
 Mtx m[2];
 mp=(MtxPtr)m;

mp+=MTX_PTR_OFFSET; // Increment to next matrix

…instead of:

Code 10–2 Incrementing a MtxPtr—the wrong way

MtxPtr mp;
 Mtx m[2];
 mp=(MtxPtr)m;

mp++; // Increment to next matrix (actually to next column).

1.0 -4.01.000-3.001.00-2.000

MtxPtr MtxPtr+1 MtxPtr+3
© 2006-2007 Nintendo 41 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
10.3 Multiple References
Although it is safe to pass a reference to one matrix or vector to any routine in the library multiple times,
some routines will have to perform an additional copy of the input type. For example, MTXConcat(a, a,
a) may perform a MTXCopy(a, temp).

10.4 Rules-of-use
Many of these library routines have rules-of-use. These are generally associated with divide-by-zero condi-
tions (but some are associated with Matrix stack bounds-checking). For example, VECNormalize() must
not be called with a zero-length vector. The library routines are unforgiving. No error conditions or flags are
returned to the calling environment (except MTXInverse). In this respect, mtx.h is unlike math.h, for
example.

If one of these rules-of-use is broken, the library routine will ASSERT() and halt the game, provided you
are using the debug libraries.

Note: With the non-debug libraries, error behavior is undefined. (In most cases, one or more single-pre-
cision floating-point ±infinity value(s) will be yielded in the returned scalar/vector/matrix. These will
spread through future operations, until (for example) an infinity is multiplied by zero. An exception
will then be raised. However, the exception may be raised a long distance from and a long time
after the source of the problem. Your mileage may vary.)

10.5 Macros
Some routines are in fact C-preprocessor macros (MTXDegToRad, MTXRadToDeg, MTXAllocStack,
MTXFreeStack, MTXRowCol). Although macros and functions appear to the user to be identical, macros
behave slightly differently in some circumstances. In general, they are slightly more dangerous.

For example, the following will compile (and probably run) without errors or warnings:

Code 10–3 Macros are not Functions

#include <revolution.h>
 void main(void) {
 MTXAllocStack(main /*or-any-ptr/scalar-type*/ ,10);
 // self-modifying main() code

}

RVL-06-0038-001-B 42 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
Appendix A. Tables of API Calls

A.1 Scale, Rotate, and Translate Transformations

A.2 View Transformations

A.3 Projection Transformations

Table A–1 Scale, Rotate, and Translate Transformations

API Arguments Summary

MTXIdentity (Mtx m) M = I

MTXScale (Mtx m, f32 x, f32 y, f32 z) M = Scale by (x, y, z)

MTXRotRad (Mtx m, u8 axis, f32 rad) M = Rotate about positive axis ['x'|'y'|'z']
counter-clockwise rad radians

MTXRotTrig (Mtx m, u8 axis, f32 sinA, f32
cosA)

M = Rotate about positive axis ['x'|'y'|'z']
counter-clockwise angle A

MTXRotAxisRad (Mtx m, VecPtr axis, f32 rad) M = Rotate about vaxis counter-clockwise
by rad radians

MTXTrans (Mtx m, f32 x, f32 y, f32 z) M = Translate by (x, y, z)

MTXQuat (Mtx m, QuaternionPtr q) M = q

MTXDegToRad (f32 degrees) Return degrees/180.0*pi

MTXRadToDeg (f32 radians) Return radians/pi*180.0

Table A–2 View Transformations

API Arguments Summary

MTXLookAt (Mtx m, Point3dPtr camPos,
VecPtr camUp, Point3dPtr target)

M = Look at: vtarget from: vcamPos, up is:
 vcamUp

Table A–3 Projection Transformations

API Arguments Summary

MTXPerspective (Mtx44 m, f32 fovY, f32 aspect,
f32 n, f32 f)

M: Models camera with field-of-view fovY
degrees high, fovY*aspect wide, near n,
far f

MTXFrustum (Mtx44 m, f32 t, f32 b, f32 l, f32 r,
f32 n, f32 f)

M: Maps frustum 4 corners ([r|l], [b|t], -n)
to (±1.0, ±1.0, 1.0)

MTXOrtho (Mtx44 m, f32 t, f32 b, f32 l, f32 r,
f32 n, f32 f)

M: Maps cube with corners ([l|r],[b|t],-
[f|n]) to (±1.0, ±1.0, ±1.0)
© 2006-2007 Nintendo 43 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
A.4 Texture Projection Transformations

A.5 Matrix-matrix Operations

Table A–4 Texture Projection Transformations

API Arguments Summary

MTXLightPerspective (Mtx m, f32 fovY, f32 aspect, f32
scaleS, f32 scaleT, f32 transS,
f32 transT)

M: Maps (x, y, z) to (s, t, q) for a light with
a rectangular aperture fovY degrees tall,
aspect ratio (X/Y) aspect.

The scales and the translates position
the texture; use (0.5, 0.5, 0.5, 0.5) to
obtain a single, centralized image of a
non-mirrored texture.

MTXLightFrustum (Mtx m, f32 t, f32 b, f32 l, f32 r,
f32 n, f32 scaleS, f32 scaleT, f32
transS, f32 transT)

M: Maps (x, y, z) to (s, t, q) for a light with
a rectangular aperture bounded by the
points (l/r, t/b, n) in light space.

The scales and translates position the
texture; use (0.5, 0.5, 0.5, 0.5) to obtain a
single, centralized image of a non-mir-
rored texture.

MTXLightOrtho (Mtx m, f32 t, f32 b, f32 l, f32 r, f32
scaleS, f32 scaleT, f32 transS, f32
transT)

M: Maps (x, y, z) to (s, t, q) for a light at
infinity with a (much closer) rectangular
aperture bounded by the points (l/r, t/b, ?)
in light space.

The scales and translates position the
texture; use (0.5, 0.5, 0.5, 0.5) to obtain a
single, centralized image of a non-mir-
rored texture.

Table A–5 Matrix-matrix Operations

API Arguments Summary

MTXConcat (Mtx a, Mtx b, Mtx axb) Maxb = Ma x Mb

MTXCopy (Mtx src, Mtx dst) Mdst = Msrc

MTXTranspose (Mtx src, Mtx xPose) Mdst = Msrc
T

MTXInverse (Mtx src, Mtx inv) Mdst = Msrc
-1 Returns 0 if singular
RVL-06-0038-001-B 44 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
A.6 Matrix-vector Operations

A.7 Vector-vector Operations

Table A–6 Matrix-vector Operations

API Arguments Summary

MTXMultVec (Mtx m, VecPtr src, VecPtr dst) vdst = M x vsrc

MTXMultVecArray (Mtx m, VecPtr srcBase, VecPtr dst-
Base, int count)

forall(i): vdst, i = M x vsrc, i

MTXMultVecSR (Mtx m, VecPtr src, VecPtr dst) vdst = M3x3 x vsrc

MTXMultVecArraySR (Mtx m, VecPtr srcBase, VecPtr dst-
Base, int count)

forall(i): vdst, i = M3x3 x vsrc, i

Table A–7 Vector-vector Operations

API Arguments Summary

VECScale (VecPtr src, VecPtr dst, f32 scale) vdst = scale x vsrc

VECMag (VecPtr src) return |vsrc|

VECNormalize (VecPtr src, VecPtr unit) vunit = vsrc / |vsrc|

VECDotProduct (VecPtr a, VecPtr b) return va·vb

VECCrossProduct (VecPtr a, VecPtr b, VecPtr axb) vaxb = va x vb

VECHalfAngle (VecPtr a, VecPtr b, VecPtr half) vhalf = (|vb|·va + |va|·vb) / length

VECReflect (VecPtr src, VecPtr normal, VecPtr
dst)

vdst = reflection of vsrc in plane
n.vnormal=0

VECSquareDistance (VecPtr a, VecPtr b) return |va-vb|2

VECDistance (VecPtr a, VecPtr b) return |va-vb|
© 2006-2007 Nintendo 45 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
A.8 Stack Operations
Table A–8 Stack Operations

API Arguments Summary

MTXAllocStack (MtxStackPtr sPtr, u32 numMtx) sPtr=OSAlloc(numMtx*sizeof(Mtx))

MTXFreeStack (MtxStackPtr sPtr) OSFree(sPtr)

MTXInitStack (MtxStackPtr sPtr, u32 numMtx) stack = { }; at=0; maxlen=numMtx

MTXPush (MtxStackPtr sPtr, Mtx m) stack[at] = M; return &stack[++at]

MTXPushFwd (MtxStackPtr sPtr, Mtx m) stack[at] = stack[at-1] a x M; return
&stack[++at]

a. The Identity matrix is substituted for references to stack[-1]

MTXPushInv (MtxStackPtr sPtr, Mtx m) stack[at] = M-1 x stack[at-1]; return
&stack[++at]

MTXPushInvXpose (MtxStackPtr sPtr, Mtx m) stack[at] = stack[at-1] x (M-1)T; return
&stack[++at]

MTXPop (MtxStackPtr sPtr) return &stack[--at]

MTXGetStackPtr (MtxStackPtr sPtr) return &stack[at]
RVL-06-0038-001-B 46 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution Matrix-Vector Library (MTX)
TM and ® are trademarks of Nintendo.
Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.
IBM is a trademark of International Business Machines Corporation.
Roland GS Sound Set is a trademark of Roland Corporation U.S.
All other trademarks and copyrights are property of their respective owners.
© 2006-2007 Nintendo 47 RVL-06-0038-001-B
CONFIDENTIAL Released: October 22, 2007

Revolution Matrix-Vector Library (MTX) Revolution SDK
RVL-06-0038-001-B 48 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

© 2006-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

	1 Introduction
	1.1 This Guide
	1.2 Useful References
	1.3 Library Design
	1.4 Library Overview
	1.4.1 Projection Transformations
	1.4.2 General Matrix Transformations and Operations
	1.4.2.1 Viewing Transformations
	1.4.2.2 Scale, Rotate and Translate (SRT) Transformations
	1.4.2.3 Matrix-Matrix Operations

	1.4.3 Matrix-Vector Operations
	1.4.4 Vector-Vector Operations
	1.4.5 Matrix Stack Operations

	1.5 C Functions and Paired-Single Optimized Functions

	2 The Matrix Types
	2.1 The Mtx Type
	2.2 The MtxPtr Type
	2.3 The Mtx44 Type
	2.4 The Mtx44Ptr Type
	2.5 The MTXRowCol Macro

	3 Projection Transformations
	3.1 MTXPerspective
	3.2 MTXFrustum
	3.3 MTXOrtho
	3.4 MTXLightPerspective
	3.5 MTXLightFrustum
	3.6 MTXLightOrtho

	4 Viewing Transformations
	4.1 MTXLookAt

	5 Scale, Rotate and Translate Transformations
	5.1 MTXIdentity
	5.2 MTXScale
	5.3 MTXRotRad, MTXRotDeg
	5.4 MTXRotTrig
	5.5 MTXRotAxisRad, MTXRotAxisDeg
	5.6 MTXTrans
	5.7 MTXQuat
	5.8 MTXDegToRad, MTXRadToDeg

	6 Matrix-matrix Operations
	6.1 MTXConcat
	6.2 MTXCopy
	6.3 MTXTranspose
	6.4 MTXInverse

	7 Matrix-vector Operations
	7.1 MTXMultVec
	7.2 MTXMultVecArray
	7.3 MTXMultVecSR
	7.4 MTXMultVecArraySR

	8 Vector-vector Operations
	8.1 The Vector Type
	8.2 The Vector Operations

	9 Stack Operations
	9.1 The Matrix Stack Type
	9.2 MTXAllocStack and MTXFreeStack
	9.3 MTXInitStack
	9.4 MTXPush, MTXPushFwd, MTXPushInv, MTXPushInvXpose
	9.5 MTXPop
	9.6 MTXGetStackPtr

	10 Traps and Pitfalls
	10.1 The Standard Matrix Type is 3x4
	10.2 Mtx is an Array of 3 Arrays of 4 Floats
	10.3 Multiple References
	10.4 Rules-of-use
	10.5 Macros

	Appendix A. Tables of API Calls

