Revolution

Matrix-Vector Library (MTX)

Version 1.00

The contents in this document are highly confidential and should be handled accordingly.

Confidential

These coded instructions, statements, and computer programs contain proprietary information of Nintendo of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written consent of Nintendo.
Contents
Revision History 7
1 Introduction 8
1.1 This Guide 8
1.2 Useful References 8
1.3 Library Design 8
1.4 Library Overview 9
1.4.1 Projection Transformations 10
1.4.2 General Matrix Transformations and Operations 10
1.4.3 Matrix-Vector Operations 10
1.4.4 Vector-Vector Operations 10
1.4.5 Matrix Stack Operations 11
1.5 C Functions and Paired-Single Optimized Functions 11
2 The Matrix Types 12
2.1 The Mtx Type 12
2.2 The MtxPtr Type 13
2.3 The Mtx44 Type 14
2.4 The Mtx44Ptr Type 15
2.5 The MTXRowCol Macro 15
3 Projection Transformations 16
3.1 MTXPerspective 16
3.2 MTXFrustum 17
3.3 MTXOrtho 18
3.4 MTXLightPerspective 19
3.5 MTXLightFrustum 21
3.6 MTXLightOrtho 22
4 Viewing Transformations 24
4.1 MTXLookAt 24
5 Scale, Rotate and Translate Transformations 25
5.1 MTXIdentity 25
5.2 MTXScale 25
5.3 MTXRotRad, MTXRotDeg 25
5.4 MTXRotTrig 26
5.5 MTXRotAxisRad, MTXRotAxisDeg 27
5.6 MTXTrans 28
5.7 MTXQuat 29
5.8 MTXDegToRad, MTXRadToDeg 29
6 Matrix-matrix Operations 30
6.1 MTXConcat 30
6.2 MTXCopy 30
6.3 MTXTranspose 31
6.4 MTXInverse 31
7 Matrix-vector Operations 33
7.1 MTXMultVec 33
7.2 MTXMultVecArray 33
7.3 MTXMultVecSR 34
7.4 MTXMultVecArraySR 34
8 Vector-vector Operations. 36
8.1 The Vector Type 36
8.2 The Vector Operations 36
9 Stack Operations 38
9.1 The Matrix Stack Type 38
9.2 MTXAllocStack and MTXFreeStack 38
9.3 MTXInitStack 39
9.4 MTXPush, MTXPushFwd, MTXPushInv, MTXPushInvXpose 39
9.5 MTXPop 40
9.6 MTXGetStackPtr 40
10 Traps and Pitfalls 41
10.1 The Standard Matrix Type is $3 x 4$ 41
10.2 Mtx is an Array of 3 Arrays of 4 Floats 41
10.3 Multiple References 42
10.4 Rules-of-use 42
10.5 Macros 42
Appendix A.Tables of API Calls 43
A. 1 Scale, Rotate, and Translate Transformations 43
A. 2 View Transformations 43
A. 3 Projection Transformations 43
A. 4 Texture Projection Transformations 44
A. 5 Matrix-matrix Operations 44
A. 6 Matrix-vector Operations 45
A. 7 Vector-vector Operations 45
A. 8 Stack Operations 46
Code Examples
Code 2-1 Mtx Type Definition 12
Code 2-2 MtxPtr Type Definition 13
Code 2-3 Assignment to a MtxPtr 14
Code 2-4 MtxPtr++ 14
Code 2-5 Mtx44 Type Definition 14
Code 2-6 Mtx44Ptr Type Definition 15
Code 2-7 MTXRowCol Macro Definition 15
Code 2-8 Two MTXRowCol Examples 15
Code 3-1 MTXPerspective 16
Code 3-2 Typical Perspective Projection Matrix Using MTXPerspective 16
Code 3-3 MTXFrustum 17
Code 3-4 Off-Center Projection with MTXFrustum 18
Code 3-5 MTXOrtho 18
Code 3-6 Pixel-Unit Projection with MTXOrtho 19
Code 3-7 MTXLightPerspective 19
Code 3-8 Using MTXLightPerspective 20
Code 3-9 MTXLightFrustum 21
Code 3-10 Using MTXLightFrustum 22
Code 3-11 MTXLightOrtho 22
Code 3-12 Using MTXLightOrtho 23
Code 4-1 MTXLookAt 24
Code 5-1 MTXIdentity 25
Code 5-2 MTXScale 25
Code 5-3 MTXRotRad and MTXRotDeg 25
Code 5-4 MTXRotTrig 26
Code 5-5 Comparison of MTXRotDeg and MTXRotTrig 27
Code 5-6 MTXRotAxisRad and MTXRotAxisDeg 27
Code 5-7 Rotation About the ($x=y=z$) Axis 28
Code 5-8 MTXTrans 28
Code 5-9 MTXQuat 29
Code 5-10 MTXDegToRad and MTXRadToDeg 29
Code 6-1 MTXConcat 30
Code 6-2 MTXConcat Example 30
Code 6-3 MTXCopy 30
Code 6-4 MTXTranspose 31
Code 6-5 MTXInverse 31
Code 6-6 Generating Normal Matrices Using MTXInverse and MTXTranspose 32
Code 7-1 MTXMultVec 33
Code 7-2 MTXMultVecArray 33
Code 7-3 Using MTXMultVec with an Array of Vectors 33
Code 7-4 Using MTXMultVecArray with an Array of Vectors 34
Code 7-5 MTXMultVecSR 34
Code 7-6 MTXMultVecArraySR 34
Code 8-1 Vector and Point Type Definitions 36
Code 8-2 Vector Operations 36
Code 9-1 MtxStack and MtxStackPtr Type Definitions 38
Code 9-2 MTXAllocStack and MTXFreeStack 38
Code 9-3 Using MTXAllocStack to Allocate a Matrix Stack 38
Code 9-4 Not Using MTXAllocStack to Allocate a Matrix Stack 39
Code 9-5 MTXInitStack 39
Code 9-6 MTXPush, MTXPushFwd, MTXPushInv, and MTXPushInvXpose 39
Code 9-7 MTXPop 40
Code 9-8 MTXGetStackPtr 40
Code 10-1 Incrementing a MtxPtr-the right way 41
Code 10-2 Incrementing a MtxPtr-the wrong way 41
Code 10-3 Macros are not Functions 42
Equations
Equation 1-1 Basic Matrix Operators 10
Equation 2-1 3x4 Matrix m 12
Equation 2-2 Full 4x4 Matrix p 15
Equation 2-3 Math and C Array Indexing 15
Equation 3-1 Matrix Assigned by MTXPerspective 16
Equation 3-2 Matrix Assigned by MTXFrustum 18
Equation 3-3 Matrix Assigned by MTXOrtho 19
Equation 3-4 Matrix Assigned by MTXLightPerspective 20
Equation 3-5 Matrix Assigned by MTXLightFrustum 22
Equation 3-6 Matrix Assigned by MTXLightOrtho 23
Equation 4-1 MTXLookAt Direction Vectors. 24
Equation 4-2 Matrix Assigned by MTXLookAt 24
Equation 5-1 Matrix Assigned by MTXIdentity 25
Equation 5-2 Matrix Assigned by MTXScale 25
Equation 5-3 Rotation About Positive X-Axis (1,0,0)m 26
Equation 5-4 Rotation About Positive Y-Axis ($0,1,0$)m 26
Equation 5-5 Rotation About Positive Z-Axis (0,0,1)m 26
Equation 5-6 MTXRotTrig Argument Logic 27
Equation 5-7 MTXRotAxisRad Computations 28
Equation 5-8 Matrix Assigned by MTXRotAxisRad 28
Equation 5-9 Matrix Assigned by MTXTrans 28
Equation 5-10 MTXQuat Computation 29
Equation 5-11 Matrix Assigned by MTXQuat 29
Equation 6-1 MTXTranspose Computations 31
Equation 7-1 MTXMultVec Computations 33
Equation 7-2 MTXMultVecSR Computations 34
Figures
Figure 1-1 Matrix-Vector Library and its Place Within Revolution 9
Figure 1-2 Logical Groups of the Matrix-Vector Library 9
Figure 10-1 MtxPtr Points at a Mtx in Memory 41
Tables
Table 2-1 Methods of Viewing and Indexing the Mtx Type 13
Table A-1 Scale, Rotate, and Translate Transformations 43
Table A-2 View Transformations 43
Table A-3 Projection Transformations 43
Table A-4 Texture Projection Transformations 44
Table A-5 Matrix-matrix Operations 44
Table A-6 Matrix-vector Operations 45
Table A-7 Vector-vector Operations 45
Table A-8 Stack Operations 46

Revision History

Version	Date Revised	Item	Description
1.00	$2006 / 03 / 01$	-	First release by Nintendo of America Inc.

1 Introduction

The Matrix-Vector library (MTX) is a collection of routines and types for 3D graphics generation on Revolution. It is not a general purpose mathematical matrix library. It allows you to create and manipulate matrices in ways which are suited to interactive computer graphics in video games and most particularly to the Revolution Graphics library (GX) and Revolution hardware.

1.1 This Guide

This guide explains how to program using the Matrix-Vector library (MTX). In the remainder of this section, we discuss the library in general. Chapter 2 describes the matrix types. Chapters 3 to 9 cover each library routine in turn. Chapter 10 covers some traps and pitfalls. Appendix A lists a summary table of all API calls in the library.

1.2 Useful References

This document assumes that you know how to program in the C language, and that you have some knowledge of matrix and vector mathematics. Otherwise, you might want to do some preparatory reading. Here are some useful sources (check your local bookstore or library for the latest editions):
Foley, James D., et al., Computer Graphics: Principles and Practice, 2nd Ed., Addison-Wesley, Reading, MA, 1990.

Kempf, Renate and Chris Frazier (eds.), OpenGL Reference Manual, 2nd Ed., Addison-Wesley, Reading, MA, 1997.

Woo, Mason, et al., OpenGL Programming Guide, 2nd Ed., Addison-Wesley, Reading, MA, 1997.

1.3 Library Design

The MTX library is designed to be fairly light-weight and to provide only core functionality, those functions that are essential or extremely useful for most applications on Revolution. It does not provide every matrix type and matrix routine you could possibly need.

- It is designed to be runtime efficient, as far as a general-purpose library for video games can be.
- It is designed to be easy to use; however, ease-of-use is compromised at times to favor of efficiency.
- It is designed to be safe; however, some dangers and pitfalls remain in the interests of efficiency.

1.4 Library Overview

The Matrix-Vector library is used by the application to assist in the generation and animation of 3D matrices for 3D graphics. These matrices can be passed to the Graphics library (GX) as position (or modelview) matrices, normal matrices, texture matrices, and projection matrices. GX loads these matrices into the Revolution Graphics Processor matrix register areas (see P, N, T, and Proj in Figure 1-1).

Figure 1-1 Matrix-Vector Library and its Place Within Revolution

Note: The application is not obliged to use MTX to manipulate matrices. However, MTX is designed to match the requirements of GX and is therefore a useful reference point at the very least.

The Matrix-Vector Library contains seven main logical groups of routines. Chapters 3 to 9 of this guide deal with these seven groups in turn.

Figure 1-2 Logical Groups of the Matrix-Vector Library

1.4.1 Projection Transformations

These routines are provided for the generation of perspective and parallel projections, and are suited to the GX library and the Revolution geometry and texture projection hardware. For lighting effects, the library supports geometry projection from 3D (x, y, z) to 3D homogeneous (x, y, z, w), and texture projection from 3D (x, y, z) to 2D homogeneous (s, t, q). The geometry projection routines in the library only generate (or operate on) 4×4 matrices. In contrast, texture projection routines use 3×4 matrices.

1.4.2 General Matrix Transformations and Operations

These matrix routines are suitable for generation and manipulation of position (modelview) matrices, and normal matrices (and possibly also texture matrices). This set of routines includes three main groups:

1.4.2.1 Viewing Transformations

The generation of a Lookat matrix is supported.

1.4.2.2 Scale, Rotate and Translate (SRT) Transformations

The library provides functions to create matrices for scaling, various rotations, and translation. Also included here is identity-matrix creation, conversion from quaternion to matrix, and conversion between degrees and radians. These transformations are the fundamental modeling operations.

1.4.2.3 Matrix-Matrix Operations

Matrix-matrix operations include copying, concatenation (multiplication), transposition, and inversion. From a mathematical viewpoint, these are the basic operators you can apply to matrices:

Equation 1-1 Basic Matrix Operators

$$
\begin{aligned}
& A \leftarrow B \\
& A \leftarrow B \times C \\
& A \leftarrow B^{T} \\
& A \leftarrow B^{-1}
\end{aligned}
$$

1.4.3 Matrix-Vector Operations

Multiplication of a matrix by a vector is provided.

1.4.4 Vector-Vector Operations

Although vector support is not the primary focus of the library, some vector-vector and scalar-vector routines are provided, including:

- Vector addition and subtraction.
- Vector scaling.
- Vector magnitude calculation and normalization.
- Vector dot and cross products.
- Vector distance calculation.
- Vector reflection and half-angle generation.

1.4.5 Matrix Stack Operations

Support is also provided for a simple matrix stack type. The user must define the maximum stack depth. Allocating, freeing, initializing, reading, popping, and four flavors of pushing are implemented.

1.5 C Functions and Paired-Single Optimized Functions

Some of the APIs in the library exist in two versions with similar functionality. One version is written in plain C language, while the other has been optimized with paired-single assembler operations to take advantage of a special feature of the Broadway CPU. Where an API has such two versions, the C function is prefixed with "C_" in the library (as in C_MTXConcat), and the paired-single function is prefixed with "PS" (as in PSMTXConcat).

Although there are two function prototypes, it is not necessary to concern yourself with which one to call in your application. You can simply use non-prefixed function calls (such as MTXConcat). "C_" and "PS" are defined in build-dependent macros which automatically bind them to the relevant non-prefixed function. In debug builds, the SDK default setting references C functions because of the need for detailed error checks. In release (non-debug) builds, the SDK uses paired-single functions in order to speed up computations.

If this general build rule does not suit your needs, you can call the " C_{-}" functions or "PS" functions explicitly. Alternatively, you can make the SDK use the C version of non-prefixed function calls exclusively by defining the flag "MTX_USE_C" (probably as a debug flag) before including mtx. h. Likewise, you can use the flag "MTX_USE_PS" to restrict the library to the paired-single versions of functions in the library.

For simplicity, this document uses non-prefixed definitions in its descriptions of functions.

2 The Matrix Types

2.1 The Mtx Type

The focus of MTX is to support common modeling transformations. For this reason the standard matrix type in the library is a 3×4 matrix. This type is named Mtx, and is defined thus:

Code 2-1 Mtx Type Definition

```
typedef f32 Mtx[3][4];
Mtx m;
```

There are three major ways to view and to index this type.
First, the mathematical view of a 3×4 matrix m :

Equation 2-1 3x4 Matrix m

$\left(\begin{array}{cccc}m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ 0 & 0 & 0 & 1\end{array}\right)$

From this point of view, all matrices are really 4×4 row-major (4 rows by 4 columns): the mtx type has an implicit 4th row of ($0,0,0,1$), and only the upper 12 elements are actually stored in memory.

Because the matrix is row-major, we state the y-coordinate or dimension first (the row), and the x-coordinate or dimension second (the column). This has two consequences. One, the mtx type can be said to represent 3×4 matrices (3 rows by 4 columns). Two, when indexing into the matrix, m_{20} is the bottom left element ($y=2, x=0$).

The second viewpoint is that of the Revolution hardware. Because we want the library to be efficient, the hardware dictates how the matrix elements must be stored in memory. The 3×4 matrix type is defined by the Revolution hardware to be row-major in memory. This means the first row (row 0) is stored first in memory.

The third viewpoint is that of the C language. In order to reference a 3×4 row-major matrix that is stored row-major in memory, you must declare the type to be [3] [4], and index into m[0..2][0..3]. So the example element m_{20} is stored in $\mathrm{m}[2]$ [0]. Therefore, when indexing into a matrix in C , you must type the y-coordinate or dimension (the row) first.

These three viewpoints are summarized in the following table to minimize confusion.
Table 2-1 Methods of Viewing and Indexing the Mtx Type

Address	Mathematical	C Arrays
base $+0 \times 00$	$\mathrm{~m}_{00}$	$\mathrm{~m}[0][0]$
base $+0 \times 04$	$\mathrm{~m}_{01}$	$\mathrm{~m}[0][1]$
base $+0 \times 08$	$\mathrm{~m}_{02}$	$\mathrm{~m}[0][2]$
base $+0 \times 0 \mathrm{c}$	m_{03}	$\mathrm{~m}[0][3]$
base $+0 \times 10$	$\mathrm{~m}_{10}$	$\mathrm{~m}[1][0]$
base $+0 \times 14$	$\mathrm{~m}_{11}$	$\mathrm{~m}[1][1]$
base $+0 \times 18$	$\mathrm{~m}_{12}$	$\mathrm{~m}[1][2]$
base $+0 \times 1 \mathrm{c}$	m_{13}	$\mathrm{~m}[1][3]$
base $+0 \times 20$	$\mathrm{~m}_{20}$	$\mathrm{~m}[2][0]$
base $+0 \times 24$	$\mathrm{~m}_{21}$	$\mathrm{~m}[2][1]$
base $+0 \times 28$	$\mathrm{~m}_{22}$	$\mathrm{~m}[2][2]$
base $+0 \times 2 \mathrm{c}$	m_{23}	$\mathrm{~m}[2][3]$

The Mtx type is "array of 3 (arrays of 4 (f 32 s))", and sizeof (Mtx) is 48 bytes. The Matrix-Vector library does not require any alignment other than word-alignment for matrices.

Note: 8 -byte or 16-byte alignment may be recommended for maximum performance in the future. See "1.5 C Functions and Paired-Single Optimized Functions" on page 11.

2.2 The MtxPtr Type

Code 2-2 MtxPtr Type Definition

```
typedef f32 Mtx[3][4];
typedef f32 (*MtxPtr)[4];
```

The type MtxPtr behaves as a pointer to Mtx in most respects; however, its type is really "pointer to (array of 4 (f32s))". This has two implications:

First, you must assign an Mtx directly to an MtxPtr without using the address-of operator \&. This is demonstrated in the following example:

Code 2-3 Assignment to a MtxPtr

```
#include <revolution.h>
Mtx m;
MtxPtr mp;
void main(void) {
    mp=(MtxPtr)m;
    m[2][0]=1.0; // references m20 (bottom-left element)
    mp[2][0]=2.0; // references m20 (bottom-left element)
}
```

Second, you can't just increment or decrement a MtxPtr, because sizeof (*MtxPtr) is 16 ; it is not 48 . Therefore, we provide the constant MTX_PTR_OFFSET, which holds the integer multiplier necessary to increment or decrement a MtxPtr by one matrix. The correct use of this pointer is illustrated below:

Code 2-4 MtxPtr++

```
#include <revolution.h>
Mtx m[10];
MtxPtr mp;
void main(void) {
    mp=(MtxPtr)m;
    mp[2][0]=2.0; // references first matrix, m[0][2][0]
    mp+=MTX_PTR_OFFSET; // Increment over 3 rows
    mp[2][0]=3.0; // references second matrix, m[1][2][0]
    mp+=MTX_PTR_OFFSET*2; // Increment over 6 rows
    mp[2][0]=4.\overline{0}; // references fourth matrix, m[3][2][0]
}
```


2.3 The Mtx44 Type

This Mtx44 type is required for the routines that generate a projection matrix. These are MTXPerspective, MTXFrustum, and MTXOrtho. A Mtx 44 cannot be passed to any other MTX routine. The type is defined as shown in Code 2-5.

Code 2-5 Mtx44 Type Definition

```
typedef f32 Mtx44[4][4];
Mtx44 p;
```

This represents a full 4×4 matrix p :
Equation 2-2 Full 4x4 Matrix p

$$
\left(\begin{array}{llll}
p_{00} & p_{01} & p_{02} & p_{03} \\
p_{10} & p_{11} & p_{12} & p_{13} \\
p_{20} & p_{21} & p_{22} & p_{23} \\
p_{30} & p_{31} & p_{32} & p_{33}
\end{array}\right)
$$

The mathematical indexing and C array indexing of this type are also equivalent:
Equation 2-3 Math and C Array Indexing

$$
p_{i j}=\mathbf{p}[\mathbf{i}][\mathbf{j}]
$$

2.4 The Mtx44Ptr Type

Just as a mtxPtr points to a Mtx, a Mtx44Ptr points to a Mtx 44 . The types MtxPtr and Mtx44Ptr are alike in all other respects. MTX44_PTR_OFFSET is provided as an index multiplier for mtx44Ptr types.

Code 2-6 Mtx44Ptr Type Definition

```
typedef f32 (*Mtx44Ptr)[4];
```


2.5 The MTXRowCol Macro

We provide the macro mTXRowCol (m,r, c) in mtx.h as a mnemonic to remind you to specify the row index first, then the column index. This macro also insulates the application code from changes in the representation of matrices in memory. It can be used for reading from or writing to individual matrix elements in Mtx, MtxPtr, Mtx44 and Mtx44Ptr types. It is basically defined as:

Code 2-7 MTXRowCol Macro Definition
\#define MTXRowCol (m,r,c) m[r][c]

This macro can be used in all the places that a reference to a matrix element can:
Code 2-8 Two MTXRowCol Examples

```
#include <revolution.h>
Mtx m;
Mtx44 p;
void main(void) {
    MTXIdentity(m); // m=I
    m[2][3]=-10; // Set m to be a translation by -10 along z-axis.
    MTXRowCol(m,2,3)=-10; // The same as the previous line.
    MTXPerspective(p,60,4.0/3,1,10); // Setup p as perspective projection.
    p[0][0]*=0.5; // Double the width of the frustum in p.
    MTXRowCol(p,0,0)*=0.5; // The same as the previous line.
}
```


3 Projection Transformations

3.1 MTXPerspective

Code 3-1 MTXPerspective

void MTXPerspective (Mtx44 m, f32 fovy, f32 aspect, f32 n, f32 f);

MTXPerspective is used to describe the mapping from camera-space coordinates into clip-space. It is designed to be used in tandem with GXSetProjection. However, you can also use the resulting matrix to transform points from world-space to screen-space on the CPU.

Unlike other MTX functions, MTXPerspective, MTXFrustum and MTXOrtho all operate on 4 x 4 matrices.
MTXPerspective will generate 3D perspective transformations, encapsulating some of the properties of a camera, including field-of-view angle and aspect ratio. It also controls the near and far plane positions. It is the most suitable function for creating general purpose 3D-viewing projection matrices.

The argument fovy specifies the desired field-of-view from screen top to screen bottom, in degrees. This argument cannot be 0° or 180°.

The argument aspect specifies the ratio between screen width and height (width/height). It must not be zero.

The arguments n and f specify the position of the near and far planes respectively. MTXPerspective requires that n and f are not equal. Normally, for most projections, n will be less than (or much less than) f, and both n and f will be positive. (Even though the planes are typically thought of as being positioned down the negative z-axis, the values specify positive distances from the eye-point at the origin.)

MTXPerspective assigns the following to the user-allocated 4×4 matrix m :
Equation 3-1 Matrix Assigned by MTXPerspective

$$
\left(\begin{array}{cccc}
1 /(\tan (\text { fovy } / 2) * \text { aspect }) & 0 & 0 & 0 \\
0 & 1 / \tan (\text { fovy } / 2) & 0 & 0 \\
0 & 0 & -(n) /(f-n) & -(f * n) /(f-n) \\
0 & 0 & -1 & 0
\end{array}\right)
$$

The following example sets up and loads a perspective projection matrix with a field-of-view of 70° and near and far planes at 50 units and 1000 units, respectively:

Code 3-2 Typical Perspective Projection Matrix Using MTXPerspective

```
#include <revolution.h>
:
Mtx44 m;
MTXPerspective(m, 70.0, 640.0/480.0, 50.0, 1000.0);
GXSetProjection(m, GX_PERSPECTIVE);
```

Note: GXSetProjection must be passed the GX_PERSPECTIVE flag if the projection matrix has the perspective projection form (shown in Code $\overline{3}-2$).

3.2 MTXFrustum

Code 3-3 MTXFrustum

```
void MTXFrustum (
    Mtx44 m,
    f32 t, f32 b,
    f32 l, f32 r,
    f32 n, f32 f
);
```

MTXFrustum is used to describe the mapping from camera-space coordinates into clip-space. It is designed to be used in tandem with GXSetProjection. However, you can also use the resulting matrix to transform points from world-space to screen-space on the CPU.

Unlike other MTX functions, MTXPerspective, MTXFrustum, and MTXOrtho all operate on 4×4 matrices.

MTXFrustum will generate 3D perspective transformations, encapsulating some of the properties of a camera, including field-of-view angle and aspect ratio. It also controls the near and far plane positions.

MTXFrustum is more flexible, but less commonly used than its cousin MTXPerspective. It is more powerful because it allows you to specify off-center projections. These projections are useful in some applications, for example rendering a high-resolution image by rendering $n x m$ sub-rectangles, one at a time.

The arguments n and f (near and far) specify the position of the near and far planes respectively. Normally, for most projections, n will be less than (or much less than) f, and both n and f will be positive. (Even though the planes are typically thought of as being positioned down the negative z-axis, the values specify positive distances from the eye-point at the origin.)

The arguments I and r (left and right), and t and b (top and bottom) specify the location in camera-space of the front four corners of the viewing frustum. Normally, I will be less than r, and b will be less than t. Reversing one pair allows you to redefine the coordinate axes of object space (that is, you can change from a right-hand to a left-hand coordinate system).

MTXFrustum requires that n and f are not equal, that l and r are not equal, and that t and b are not equal, so that the resulting matrix is well defined.

MTXFrustum generates a projection perspective transformation matrix such that the viewing frustum bounded by the 8 (camera-space) points:

$$
\begin{array}{ll}
(l, t,-n, 1) & \left(I^{*}(f / n), t^{*}(f / n),-f, 1\right) \\
(r, t,-n, 1) & \left(r^{*}(f / n), t^{*}(f / n),-f, 1\right) \\
(l, b,-n, 1) & \left(I^{*}(f / n), b^{*}(f / n),-f, 1\right) \\
(r, b,-n, 1) & \left(r^{*}(f / n), b^{*}(f / n),-f, 1\right)
\end{array}
$$

will be mapped to the 8 (clip-space) points:

$$
\begin{array}{ll}
(-n, n,-n, n) & (-f, f, 0, f) \\
(n, n,-n, n) & (f, f, 0, f) \\
(-n,-n,-n, n) & (-f,-f, 0, f) \\
(n,-n,-n, n) & (f,-f, 0, f)
\end{array}
$$

Once these 8 homogeneous coordinates are divided through by w (the fourth element), they will be simply the 8 corners of a $2 \times 2 \times 2$ cube centered on the origin; that is, the 8 points: $(\pm 1.0, \pm 1.0, \pm 1.0)$.

Therefore, MTXFrustum assigns the following to the user-allocated 4×4 matrix m :

Equation 3-2 Matrix Assigned by MTXFrustum

$$
\left(\begin{array}{cccc}
2 n /(r-l) & 0 & (r+l) /(r-l) & 0 \\
0 & 2 n /(t-b) & (t+b) /(t-b) & 0 \\
0 & 0 & -(n) /(f-n) & -(f * n) /(f-n) \\
0 & 0 & -1 & 0
\end{array}\right)
$$

The example shown in Code 3-4 sets up and loads a perspective projection matrix that will only display the top left quarter of the screen, but will scale this quarter up to fill the viewable area:

Code 3-4 Off-Center Projection with MTXFrustum

```
#include <revolution.h>
:
Mtx44 m;
MTXFrustum(m, 480.0, 0.0, -640.0, 0.0, 20.0, 600.0 ); // Just draw TopLeft Quadrant
GXSetProjection(m, GX_PERSPECTIVE);
```

Note: GXSetProjection must be passed the GX_PERSPECTIVE flag if the projection matrix has the perspective projection form (shown in Code 3-4).

3.3 MTXOrtho

Code 3-5 MTXOrtho

```
void MTXOrtho ( Mtx44 m, f32 t, f32 b, f32 l, f32 r, f32 n, f32 f );
```

MTXOrtho is used to describe the mapping from camera-space coordinates into clip-space. It is designed to be used in tandem with GXSetProjection.

Unlike other MTX functions, MTXPerspective, MTXFrustum, and MTXOrtho all operate on 4×4 matrices.

MTXOrtho will generate 2D non-perspective (or parallel) projection transformations, simulating a camera with an infinite zoom positioned at infinity. It is the most suitable function for creating general purpose 2Dviewing projection matrices.

The arguments n and f specify the position of the near and far planes respectively. MTXOrtho requires that n and f are not equal. Normally, for most projections, n will be less than f, and both n and f will be positive.

The arguments t and b (top and bottom), I and r (left and right), and n and f together specify the location in camera-space of the 8 corners of the viewing frustum. In the case of MTXOrtho, this is a cuboid. Normally l will be less than r, and b will be less than t.

Therefore, MTXOrtho assigns the following to the user-allocated 4×4 matrix m :

Equation 3-3 Matrix Assigned by MTXOrtho

$$
\left(\begin{array}{cccc}
2 /(r-l) & 0 & 0 & -(r+l) /(r-l) \\
0 & 2 /(t-b) & 0 & -(t+b) /(t-b) \\
0 & 0 & -1 /(f-n) & -(f) /(f-n) \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The example shown in Code 3-6 sets up and loads a simple orthogonal projection matrix that will map one unit of camera space (in x and y) onto one pixel of screen space (if used with the correct viewport):

Code 3-6 Pixel-Unit Projection with MTXOrtho

```
#include <revolution.h>
Mtx44 m;
MTXOrtho(m, 480.0,0.0, 0.0,640.0, 0.0,255.0); // Top=480 Bot=0 Left=0 Right=640
GXSetProjection(m, GX_ORTHO) ;
```

Note: GXSetProjection must be passed the GX_ORTHO flag if the projection matrix has the orthogonal or parallel projection form (shown in Code 3-6).

3.4 MTXLightPerspective

Code 3-7 MTXLightPerspective

```
void MTXLightPerspective(
    Mtx m,
    f32 fovY, f32 aspect,
    f32 scaleS, f32 scaleT,
    f32 transS, f32 transT );
```

MTXLightPerspective supports projected texture techniques. It generates a projection transformation that specifies a mapping from light-space (that is, model space for the light) to texture-space (s, t, q). The mapping encapsulates some of the properties of a projective texture light, including the position of the four bounding planes and the placement of the texture, but not including the location and orientation of the light in space. For more details, refer to "3 Texture Projection" in the Graphics Library (Advanced Rendering) manual.

Texture projection is in some ways analogous to geometry projection. In both cases, points in a 3D space are projected along rays, to intersect with a 2D plane. However, unlike geometry projection, texture projection does not involve hardware clipping. Also, unlike mTXPerspective, MTXLightPerspective generates a (smaller) 3×4 projection transformation matrix. A 4×4 matrix is not necessary, because the projection is from a 3D homogeneous space ($x, y, z, 1$) into a 2D homogeneous space (s, t, q). A $4 x 4$ matrix would also be inconvenient, because MTX contains no calls to manipulate 4×4 matrices.

Under normal usage, the resulting 3×4 projection matrix would be combined with other 3×4 matrices, and then passed to GXLoadTexMtxImm or GXLoadTexMtxIndx. The common case is to pass TextureProjectionMatrix * LightModelMatrix.
The argument fov Y specifies the height (or t extent) of the projected light. The projected texture will form a rectangle (or square) if projected onto a perpendicular surface, and aspect controls the width to height ratio of this rectangle. For example, a value of 2.0 would result in the texture being scaled up by two in the horizontal (s) direction.

The arguments scaleS, scaleT, transS, and trans T can be used to move and scale the texture. The normal scale and trans values will be $0.5,0.5,0.5$, and 0.5 . These values will cause the center of the texture ($\mathrm{s}=0.5, \mathrm{t}=0.5$) to be projected along the light direction and are therefore suitable for a light texture that is clamped, but not mirrored in s or t.

MTXLightPerspective assigns the following to the user-allocated 3×4 matrix m :
Equation 3-4 Matrix Assigned by MTXLightPerspective
$\left(\begin{array}{cccc}\text { scaleS } /(\tan (\text { fovy } / 2) * a s p e c t) & 0 & -\operatorname{transS} & 0 \\ 0 & \text { scaleT } / \tan (\text { fovy } / 2) & -\operatorname{transT} & 0 \\ 0 & 0 & -1 & 0\end{array}\right)$

Code 3-8 demonstrates a rotating light, projected 10° tall and 10° wide, positioned at the origin:

Code 3-8 Using MTXLightPerspective

```
{
    Mtx txproj;
    Mtx lightmodelview;
    Mtx txmtx;
    /* Setup light modelview */
    MTXRotDeg(lightmodelview,'x',lightdegrees);
    MTXLightPerspective(txproj, 10.0, 1.0, 0.5, 0.5, 0.5, 0.5);
    MTXConcat(txproj, lightmodelview, txmtx);
    GXLoadTexMtxImm(txmtx, GX_TEXMTX0, GX_MAT_3x4);
    }
```


3.5 MTXLightFrustum

Code 3-9 MTXLightFrustum

```
void MTXLightFrustum
    Mtx m,
    f32 t, f32 b,
    f32 l, f32 r,
    f32 n,
    f32 scaleS, f32 scaleT,
    f32 transS, f32 transT );
```

MTXLightFrustum supports projected texture techniques. It generates a projection transformation that specifies a mapping from light-space (that is, model space for the light) to texture-space (s, t, q). The mapping encapsulates some of the properties of a projective texture light, including the position of the four bounding planes and the placement of the texture, but not including the location and orientation of the light in space. For more details, refer to "3 Texture Projection" in the Graphics Library (Advanced Rendering) manual.

Texture projection is in some ways analogous to geometry projection. In both cases, points in a 3D space are projected along rays to intersect with a 2D plane. However, unlike geometry projection, texture projection does not involve hardware clipping. Also, unlike MTXFrustum, MTXLightFrustum generates a (smaller) 3×4 projection transformation matrix. A 4×4 matrix is not necessary, because the projection is from a 3D homogeneous space ($x, y, z, 1$) into a 2D homogeneous space (s, t, q). A $4 x 4$ matrix would also be inconvenient, because MTX contains no calls to manipulate 4×4 matrices.

Under normal usage, the resulting $3 x 4$ projection matrix would be combined with other $3 x 4$ matrices, and then passed to GXLoadTexMatrixImm or GXLoadTexMatrixIndx. The common case is to pass TextureProjectionMatrix * LightModelMatrix.

With normal scale and trans values, the top, bottom, left, and right planes (arguments t, b, l, r) will correspond to the clamp/wrap borders of the texture, that is, the lines $t=1, t=0, s=0, s=1$, respectively. No far plane is specified, and the near plane distance (n) is only used to specify or scale the 4 side planes. Therefore, doubling t, b, l, r, and n will have no effect on the resulting matrix.

The arguments scaleS, scaleT, transS, and transT can be used to move and scale the texture. The normal scale and trans values will be $0.5,0.5,0.5$, and 0.5 . These values will cause the top, bottom, left, and right planes to be mapped to $t=1, t=0, s=0, s=1$ respectively and are therefore suitable for a light texture which is clamped, but not mirrored in s or t.

With unit scale and zero translate, the four planes would be mapped to $s= \pm 1, t= \pm 1$.

MTXLightFrustum assigns the following to the user-allocated 3×4 matrix m :
Equation 3-5 Matrix Assigned by MTXLightFrustum
$\left(\begin{array}{cccc}2 * \operatorname{scaleS} * n /(r-l) & 0 & \operatorname{scaleS}^{*}(r+l) /(r-l)-\operatorname{transS} & 0 \\ 0 & 2 * \operatorname{scaleT} * n /(t-b) & \operatorname{scaleT}^{*}(t+b) /(t-b)-\operatorname{trans} T & 0 \\ 0 & 0 & -1 & 0\end{array}\right)$

The following demonstrates a rotating light at the origin:
Code 3-10 Using MTXLightFrustum

```
{
    Mtx txproj;
    Mtx lightmodelview;
    Mtx txmtx;
    /* Setup light modelview */
    MTXRotDeg(lightmodelview,'x',lightdegrees);
    MTXLightFrustum(txproj, ymin, ymax, xmin, xmax, nnear,
            0.5, 0.5, 0.5, 0.5);
    MTXConcat(txproj, lightmodelview, txmtx);
    GXLoadTexMtxImm(txmtx, GX_TEXMTX0, GX_MAT_3x4);
}
```


3.6 MTXLightOrtho

Code 3-11 MTXLightOrtho

```
void MTXLightOrtho(
    Mtx m,
    f32 t, f32 b,
    f32 l, f32 r,
    f32 scaleS, f32 scaleT,
    f32 transS, f32 transT );
```

MTXLightOrtho supports non-perspective projected texture techniques. It generates a parallel projection transformation that specifies a mapping from light-space (that is, model space for the light) to texturespace ($s, t, 1$). The mapping encapsulates some of the properties of a projective texture light, including the position of the four bounding planes and the placement of the texture, but not including the location and orientation of the light in space. For more details, refer to "3 Texture Projection" in the Graphics Library (Advanced Rendering) manual.
Texture projection is in some ways analogous to geometry projection. In both cases, points in a 3D space are projected along rays, to intersect with a 2D plane. However, unlike geometry projection, texture projection does not involve hardware clipping. Also, unlike mTXOrtho, MTXLightortho generates a (smaller) 3×4 projection transformation matrix. A 4×4 matrix is not necessary, because the projection is from a 3D homogeneous space ($x, y, z, 1$) into a 2D homogeneous space ($s, t, 1$). A 4×4 matrix would also be inconvenient, because MTX contains no calls to manipulate 4×4 matrices. In fact, with MTXOrtho, only a 2×4 is necessary, because $(q=1)$ for all points in space. However, a 2×4 would also be inconvenient — unless a 2×4 matrix library was implemented as well, but this would increase code space. Worse yet, it would increase the instruction cache working set, in return for a fairly small functional gain.

With normal scale and trans values, the top, bottom, left, and right planes (arguments t, b, I, r) will correspond to the clamp/wrap borders of the texture, that is, the lines $t=1, t=0, s=0, s=1$, respectively. No far plane or near plane is specified.

Under normal usage, the resulting 3×4 projection matrix would be combined with other 3×4 matrices and then passed to GXLoadTexMtxImm or GXLoadTexMtxIndx. The common case is to pass TextureProjectionMatrix * LightModelMatrix.
The arguments scaleS, scaleT, transS, and trans T can be used to move and scale the texture. The normal scale and translate values will be $0.5,0.5,0.5$, and 0.5 . These values will cause the center of the texture $(s=0.5, t=0.5)$ to be projected along the light direction and are therefore suitable for a light texture that is clamped, but not mirrored in s or t.

MTXLightortho assigns the following to the user-allocated 3×4 matrix m :

Equation 3-6 Matrix Assigned by MTXLightOrtho

$\left(\begin{array}{cccc}2 * \operatorname{scaleS} /(r-l) & 0 & -\operatorname{scaleS}^{*}(r+l) /(r-l)+\operatorname{transS} & 0 \\ 0 & 2 * \operatorname{scaleT}^{\prime} /(t-b) & -\operatorname{scaleT}^{*}(t+b) /(t-b)+\operatorname{transT} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

The following demonstrates a light at infinity, directed through the origin, and rotating about the origin and the x-axis. The light is slightly taller than it is wide.

Code 3-12 Using MTXLightOrtho

```
    {
    Mtx txproj;
    Mtx lightmodelview;
    Mtx txmtx;
    /* Setup light modelview */
    MTXRotDeg(lightmodelview,'x',lightdegrees);
    MTXLightOrtho(txproj, 10.0,-10.0, -8.0,8.0, 0.5, 0.5, 0.5, 0.5);
    MTXConcat(txproj, lightmodelview, txmtx);
    GXLoadTexMtxImm(txmtx, GX_TEXMTX0, GX_MAT_3x4);
}
```


4 Viewing Transformations

4.1 MTXLookAt

Code 4-1 MTXLookAt

void MTXLookAt (Mtx m, Point3dPtr camPos, VecPtr camUp, Point3dPtr target);

MTXLookAt generates a modelview rotation-and-translation matrix such that an object centered at target will be central on the screen and will be rotated as if seen from a camera at camPos and as if the camera up direction is along camUp. The matrix is assigned to the user-allocated $3 x 4$ matrix m.

The arguments camPos, camUp, and target, can all be considered to be in world-coordinates. MTXLookAt requires that target is not equal to camPos, that camUp has non-zero length, and that camUp does not point exactly along the camPos-target line.
MTXLookAt first computes three direction vectors:
Equation 4-1 MTXLookAt Direction Vectors

$$
\begin{aligned}
\text { look } & =\text { camPos }- \text { target } \\
\text { right } & =\text { camUp } \times \text { look } \\
\text { up } & =\text { look } \times \text { right }
\end{aligned}
$$

These three direction vectors are then normalized to unit-length, and MTXLookAt assigns them to m as shown in Equasion 4-2.

Equation 4-2 Matrix Assigned by MTXLookAt

$$
\left(\begin{array}{cccc}
\text { right }_{x} & \text { night }_{y} & \text { right } & \text {-(right } \cdot \text { camPos) } \\
u p_{x} & u p_{y} & u p_{z} & \text {-(up } \cdot \text { camPos) } \\
\text { look }_{x} & \text { look } & \text { look } & \text {-(look } \cdot \text { camPos) })
\end{array}\right)
$$

MTXLookAt performs two divides, two square-roots, 19 add/subtracts, and 33 multiplications. All calculations are single-precision.

5 Scale, Rotate and Translate Transformations

5.1 MTXIdentity

Code 5-1 MTXIdentity

```
void MTXIdentity (Mtx m);
```

MTXIdentity assigns the following to the user-allocated 3×4 matrix m :
Equation 5-1 Matrix Assigned by MTXIdentity
$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$

5.2 MTXScale

Code 5-2 MTXScale

```
void MTXScale (Mtx m, f32 x, f32 y, f32 z);
```

MTXScale assigns the following to the user-allocated 3×4 matrix m :

Equation 5-2 Matrix Assigned by MTXScale

$$
\left(\begin{array}{llll}
x & 0 & 0 & 0 \\
0 & y & 0 & 0 \\
0 & 0 & z & 0
\end{array}\right)
$$

This matrix represents a transformation which scales by a factor of x in the x-axis, y in the y-axis, and z in the z-axis.

If all three arguments are equal, $x=y=z$, the resulting scaling transformation will be isotropic (or proportional). Otherwise, the resulting scaling transformation will be anisotropic (or non-proportional). If you use any anisotropic scale factors in modelview matrices or modelview matrix stacks, and you use lighting (Graphics Processor vertex-normal-based lighting calculations), you will probably need to calculate and load inverse-transposes of modelview matrices.

5.3 MTXRotRad, MTXRotDeg

Code 5-3 MTXRotRad and MTXRotDeg

```
void MTXRotRad (Mtx m, u8 axis, f32 rad);
#define MTXRotDeg(m, axis, deg) MTXRotRad(m, axis, MTXDegToRad(deg))
```

MTXRotRad generates a rotation about one of three major axes: the positive x-axis, y-axis, or z-axis. The rotation is assigned to the user-allocated 3×4 matrix m.

The argument axis indicates the major axis and should be a lower or upper-case character " x," " y," or " z."

The argument rad specifies in radians the counter-clockwise rotation about the major axis.
MTXRotRad provides the result to the system functions $\operatorname{sinf}()$ and cosf () from math. h (this math library is provided by Metrowerks). The resulting values are then inserted into m as follows: axis $=$ " x ": rotation about positive x-axis $(1,0,0)$:

Equation 5-3 Rotation About Positive X-Axis (1,0,0)m

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos f(d e g) & -\sin f(d e g) & 0 \\
0 & \sin f(d e g) & \cos f(d e g) & 0
\end{array}\right)
$$

axis $=$ " y ": rotation about positive y-axis ($0,1,0$):
Equation 5-4 Rotation About Positive Y-Axis (0,1,0)m

$$
\left(\begin{array}{cccc}
\cos \mathrm{f}(d e g) & 0 & -\sin \mathrm{f}(d e g) & 0 \\
0 & 1 & 0 & 0 \\
\sin \mathrm{f}(d e g) & 0 & \cos \mathrm{f}(d e g) & 0
\end{array}\right)
$$

axis = "z": rotation about positive z-axis ($0,0,1$):
Equation 5-5 Rotation About Positive Z-Axis (0,0,1)m

$$
\left(\begin{array}{cccc}
\cos \mathrm{f}(d e g) & -\sin \mathrm{f}(d e g) & 0 & 0 \\
\sin \mathrm{f}(d e g) & \cos \mathrm{f}(d e g) & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

There is a convenience macro, MTXRotDeg, that specifies rotation angles in degrees.
MTXRotRad is a convenience wrapper for MTXRotTrig (see section 5.4).

5.4 MTXRotTrig

Code 5-4 MTXRotTrig

MTXRotTrig generates a rotation matrix about one of three axes and assigns this matrix to m in precisely the same manner as MTXRotRad (see "5.3 MTXRotRad, MTXRotDeg" on page 25). In this case, however, the user must compute the sine and cosine and convert to radians. Therefore, the following two MTX calls are exactly equivalent:

Code 5-5 Comparison of MTXRotDeg and MTXRotTrig

```
#include <revolution.h>
#include <math.h>
    Mtx m;
    MTXRotDeg(m,'x',45.0); // 45 degrees
    MTXRotTrig(
        m,
        'x',
        sin(MTXDegToRad(45.0)),
        cos(MTXDegToRad(45.0)));
```

Although MTXRotRad is probably the most convenient, using MTXRotTrig will be more efficient in some circumstances. For example, you could pre-compute a table of sin () values and re-use those values multiple times, or you could use a less precise version of the $\sin ()$ and $\cos ()$ functions.

Note: The arguments $\sin A$ and $\cos A$ should conform with the following formula.

Equation 5-6 MTXRotTrig Argument Logic

$\sin A 2+\cos A 2=1$
Otherwise, the resulting matrix m will also perform an anisotropic scale.

5.5 MTXRotAxisRad, MTXRotAxisDeg
 Code 5-6 MTXRotAxisRad and MTXRotAxisDeg

void MTXRotAxisRad (Mtx m, VecPtr axis, f32 rad);
\#define MTXRotAxisDeg(m, axis, deg) MTXRotAxisRad(m, axis, MTXDegToRad(deg))

MTXRotAxisRad generates a rotation about the user-provided axis. The rotation is assigned to the userallocated 3×4 matrix m.

The vector argument axis must be non-zero in length. It need not be unit-length.
The argument rad (in radians) is provided to the system functions $\operatorname{sinf}()$ and cosf () (from math.h). MTXRotAxisDeg is a convenience macro to specify rotation angles in degrees.

MTXRotAxisRad is used to perform the following computations.
Equation 5-7 MTXRotAxisRad Computations

$$
\begin{aligned}
& \mathrm{u}=\operatorname{axis} /|a \times i s| \\
& c=\cos \mathrm{f}(\text { deg }) \\
& s=\sin \mathrm{f}(\text { deg }) \\
& t=1-\cos \mathrm{f}(\text { deg })
\end{aligned}
$$

Then MTXRotAxisRad assigns the following to m :
Equation 5-8 Matrix Assigned by MTXRotAxisRad

$$
\left(\begin{array}{cccc}
t u_{x}^{2}+c & t u_{x} u_{y}-s u_{z} & t u_{x} u_{z}+s u_{y} & 0 \\
t u_{y} u_{x}+s u_{z} & t u_{y}^{2}+c & t u_{y} u_{z}-s u_{x} & 0 \\
t u_{z} u_{x}-s u_{y} & t u_{z} u_{y}+s u_{x} & t u_{z}^{2}+c & 0
\end{array}\right)
$$

For example, Code 5-7 shows an expensive way to compute a simple matrix:
Code 5-7 Rotation About the ($x=y=z$) Axis

```
#include <revolution.h>
    :
    Mtx m;
    Vec axis={1.0,1.0,1.0};
    MTXRotAxisDeg(m,axis,120.0);
```

MTXRotAxisRad performs one $\operatorname{sinf}()$, one $\operatorname{cosf}()$, one $\operatorname{sqrtf(),~one~divide,~and~} 30$ multiplies. All calculations are single-precision floating point.

5.6 MTXTrans

Code 5-8 MTXTrans

void MTXTrans
(Mtx m, f32 x, f32 y, f32 z);

MTXTrans generates a translation matrix from x, y, and z.
It assigns the following to the user-allocated 3×4 matrix m :
Equation 5-9 Matrix Assigned by MTXTrans

$$
\left(\begin{array}{llll}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z
\end{array}\right)
$$

5.7 MTXQuat

Code 5-9 MTXQuat

void MTXQuat (Mtx m, QuaternionPtr q);

MTXQuat converts the quaternion q (which can be seen to represent a rotation in R^{3}) into the corresponding rotation matrix. Quaternions are the best way to represent rotations which require interpolation.

The argument q must have non-zero length. It need not be unit-length.
If q is:

$$
\left(\begin{array}{llll}
q_{1} & q_{2} & q_{3} & q_{4}
\end{array}\right)
$$

MTXQuat calculates:

Equation 5-10 MTXQuat Computation

$$
s=2 /\left(q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}\right)
$$

MTXQuat then assigns the following to the user-allocated 3×4 matrix m :
Equation 5-11 Matrix Assigned by MTXQuat

$$
\left(\begin{array}{cccc}
1-s\left(q_{2}^{2}+q_{3}^{2}\right) & s q_{1} q_{2}-s q_{4} q_{3} & s q_{1} q_{3}+s q_{4} q_{2} & 0 \\
s q_{1} q_{2}+s q_{4} q_{3} & 1-s\left(q_{1}^{2}+q_{3}^{2}\right) & s q_{2} q_{3}-s q_{4} q_{1} & 0 \\
s q_{1} q_{3}-s q_{4} q_{2} & s q_{2} q_{3}+s q_{4} q_{1} & 1-s\left(q_{1}^{2}+q_{2}^{2}\right) & 0
\end{array}\right)
$$

MTXQuat performs one divide and 16 multiplies. All calculations are single-precision.

5.8 MTXDegToRad, MTXRadToDeg

Code 5-10 MTXDegToRad and MTXRadToDeg

```
f32 MTXDegToRad
(f32 degrees);
f32 MTXRadToDeg (f32 radians);
```

MTXDegToRad converts a single-precision floating point (f32) value from degrees to radians. MTXRadToDeg converts a single-precision floating point (f32) value from radians to degrees. Neither is fully precise for 64-bit double-precision floating point (f64) computations.

These functions are actually implemented as macros.

6 Matrix-matrix Operations

6.1 MTXConcat

Code 6-1 MTXConcat

void MTXConcat (Mtx a, Mtx b, Mtx axb);

MTXConcat concatenates (or multiplies) two $3 x 4$ matrices a and b to produce the result $a \cdot b$ and assigns this result to the user-allocated $3 x 4$ matrix $a x b$. Any of the arguments a, b, and $a x b$ can reference the same matrix.

If you ask, any mathematician will explain that you can't multiply two $3 x 4$ matrices together. Fortunately, you can, and here's how. If a and b are respectively:

$$
\left(\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{20} & a_{21} & a_{22} & a_{23}
\end{array}\right) \quad\left(\begin{array}{llll}
b_{00} & b_{01} & b_{02} & b_{03} \\
b_{10} & b_{11} & b_{12} & b_{13} \\
b_{20} & b_{21} & b_{22} & b_{23}
\end{array}\right)
$$

Then axb is:

$$
\left(\begin{array}{cccc}
a_{00} b_{00}+a_{01} b_{10}+a_{02} b_{20} & a_{00} b_{01}+a_{01} b_{11}+a_{02} b_{21} & a_{00} b_{02}+a_{01} b_{12}+a_{02} b_{22} & a_{00} b_{03}+a_{01} b_{13}+a_{02} b_{23}+a_{03} \\
a_{10} b_{00}+a_{11} b_{10}+a_{12} b_{20} & a_{10} b_{01}+a_{11} b_{11}+a_{12} b_{21} & a_{10} b_{02}+a_{11} b_{12}+a_{12} b_{22} & a_{10} b_{03}+a_{11} b_{13}+a_{12} b_{23}+a_{13} \\
a_{20} b_{00}+a_{21} b_{10}+a_{22} b_{20} & a_{20} b_{01}+a_{21} b_{11}+a_{22} b_{21} & a_{20} b_{02}+a_{21} b_{12}+a_{22} b_{22} & a_{20} b_{03}+a_{21} b_{13}+a_{22} b_{23}+a_{23}
\end{array}\right)
$$

This is mathematically correct, if you recall that every 3×4 matrix has an (implicit) 4th row of $(0,0,0,1)$.
Code 6-2 calculates the square of the matrix m:
Code 6-2 MTXConcat Example

```
#include <revolution.h>
.
MTXConcat (m,m,m); // m*m->m
```

MTXConcat performs 36 multiplies. All calculations are single-precision.

6.2 MTXCopy

Code 6-3 MTXCopy

MTXCopy copies the 3×4 matrix src into the user-allocated $3 x 4$ matrix dst. The previous contents of dst are lost. The arguments src and dst can reference the same 3×4 matrix with no ill effects.

6.3 MTXTranspose

Code 6-4 MTXTranspose

void MTXTranspose (Mtx src, Mtx xPose);

MTXTranspose computes the transpose of the 3×4 matrix src and assigns the result to the user-allocated 3×4 matrix x Pose. The arguments src and x Pose can reference the same 3×4 matrix with no ill effects.

Because src and x Pose are only $3 x 4$ (not 4×4), the 4 th column of src (the translation part) is lost, and the resulting 4th column of x Pose (the translation part) is zero:

Equation 6-1 MTXTranspose Computations

$$
\left(\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{20} & a_{21} & a_{22} & a_{23}
\end{array}\right)^{T}=\left(\begin{array}{llll}
a_{00} & a_{10} & a_{20} & 0 \\
a_{01} & a_{11} & a_{21} & 0 \\
a_{02} & a_{12} & a_{22} & 0
\end{array}\right)
$$

However, the most common reason you need to compute a transpose is to calculate the inverse-transpose of a modelview matrix, in order to correctly transform vertex normals and perform (CPU or GX) lighting. The translation part of the matrix is not relevant in this case.

6.4 MTXInverse

Code 6-5 MTXInverse

```
u32 MTXInverse ( Mtx src, Mtx inv );
```

If the $3 x 4$ matrix src has an inverse, MTXInverse computes that inverse, assigns the result to the userallocated $3 x 4$ matrix inv and returns 1 , meaning success. Otherwise, if src is singular (non-invertible), MTXInverse will return 0 , meaning failure, and inv will be unaffected.

The arguments src and inv may reference the same matrix.
Matrix inverse operations on 4×4 matrices with a 4 th row of $(0,0,0,1)$ yield a 4×4 matrix which still has a 4 th row of ($0,0,0,1$). Therefore, no information is "lost" when using MTXInverse (in contrast to MTXTranspose).

This implementation of matrix inverse assumes src and inv both have an implicit 4th row of ($0,0,0,1$). It requires one divide and 48 multiplies. All calculations are single-precision.

The typical application of MTXInverse is in computing inverse-transpose matrices for lighting:

Code 6-6 Generating Normal Matrices Using MTXInverse and MTXTranspose

```
#include <revolution.h>
:
Mtx mv; // Modelview
Mtx mvIT; // Inverse-Tranpose of modelview
generate_modelview(mv);
MTXInverse(mv,mvIT);
MTXTranspose(mvIT,mvIT);
GXLoadPosMatrixImm(&mv, GX_PNMTX0); // Load (modelview) into Graphics Processor
GXLoadNormMatrixImm(&mvIT, GX_PNMTXO); // Load (modelview)-1T
    enable_lighting();
    draw_model();
```

Note: It is not necessary to use MTXI nverse and MTXTranspose to compute the inverse-transpose of the modelview matrix, if that matrix is a concatenation of only proportional (isotropic) scales, rotations, and translations. In this case, the modelview matrix will function as its own inverse-transpose, and can be passed to the Graphics Processor twice-once as the modelview matrix and once as the Normal matrix.

In contrast, if you do use significantly non-proportional (anisotropic) scales, or if you use other nonlength preserving transformations (such as shears) in your modelview matrix, you will need to use MTXInverse and MTXTranspose to support lighting.

7 Matrix-vector Operations

7.1 MTXMuItVec

Code 7-1 MTXMultVec

void MTXMultVec (Mtx m, VecPtr src, VecPtr dst);

MTXMultVec multiplies the 3×4 matrix m by the 3-element vector src, and assigns the result to the userallocated 3-element vector $d s t$. The vectors src and dst are assumed to have an implicit fourth element (w) of 1 , and the matrix m is assumed to have an implicit fourth row of $(0,0,0,1)$. For this reason, MTXMultVec is not suitable for projecting points through a perspective projection matrix on the CPU.

The arguments src and dst may reference the same vector.
MTXMultVec computes:

> Equation 7-1 MTXMultVec Computations
> $d s t_{x}=s r c_{x} m_{00}+s r c_{y} m_{01}+s r c_{z} m_{02}+m_{03}$
> $d s t_{y}=s r c_{x} m_{10}+s r c_{y} m_{11}+s r c_{z} m_{12}+m_{13}$
> $d s t_{z}=s r c_{x} m_{20}+s r c_{y} m_{21}+s r c_{z} m_{22}+m_{23}$

It performs 9 multiplication operations.

7.2 MTXMultVecArray

Code 7-2 MTXMultVecArray
void MTXMultVecArray (Mtx m, VecPtr srcBase, VecPtr dstBase, u32 count);

MTXMultVecArray multiplies the 3×4 matrix m by each vector in the array of 3 element vectors src[], and assigns each result to the user-allocated array of 3 element vectors dst[]. All vectors are assumed to have an implicit 4th element (w) of 1 , and the matrix m is assumed to have an implicit 4th row of $(0,0,0,1$). (For this reason, MTXMultVecArray is not suitable for projecting points through a perspective projection matrix on the CPU). The argument count indicates the number of 3-element vectors in both src[] and dst[].

Note: MTXMultVecArray is a convenience wrapper for MTXMultVec. The following two examples are equivalent, except that MTXMultVecArray is a little more efficient. In the future, MTXMultVecArray may be significantly more efficient.

Code 7-3 Using MTXMultVec with an Array of Vectors

```
#include <revolution.h>
    int i;
    Vec src[50],dst[50];
    Mtx m;
    :
    for (i=0; i<50; i++) MTXMultVec(m,src+i,dst+i);
```


Code 7-4 Using MTXMultVecArray with an Array of Vectors

\#include <revolution.h>

```
:
int i;
Vec src[50],dst[50];
Mtx m;
:
MTXMultVecArray(m,src,dst,50);
```

The arguments $s r c$ and dst may reference precisely the same vector array ($s r c==d s t$). Otherwise, $\operatorname{src}[0] . . s r c[c o u n t-1]$ must not overlap dst[0]..dst[count-1].

MTXMultVecArray performs 9*count multiplications.

7.3 MTXMultVecSR

Code 7-5 MTXMultVecSR

```
void MTXMultVecSR ( Mtx m, VecPtr src, VecPtr dst );
```

MTXMultVecSR multiplies the $3 x 3$ sub-matrix (scale-and-rotate component) of 3×4 matrix m by the 3-element vector src and assigns the result to the user-allocated 3 -element vector $d s t$. The translation component of matrix m is ignored.

The arguments src and dst may reference the same vector.
MTXMultVecSR computes:

Equation 7-2 MTXMultVecSR Computations

$$
\begin{aligned}
& d s t_{x}=s r c_{x} m_{00}+s r c_{y} m_{01}+s r c_{z} m_{02} \\
& d s t_{y}=s r c_{x} m_{10}+s r c_{y} m_{11}+s r c_{z} m_{12} \\
& d s t_{z}=s r c_{x} m_{20}+s r c_{y} m_{21}+s r c_{z} m_{22}
\end{aligned}
$$

It performs 9 multiplication operations.
It may help to convert a vector of direction into another coordinate system (e.g., light direction vector into view space).

7.4 MTXMultVecArraySR

Code 7-6 MTXMultVecArraySR

void MTXMultVecArraySR (Mtx m, VecPtr srcBase, VecPtr dstBase, u32 count);

MTXMultVecArraySR multiplies the $3 x 3$ sub-matrix (scale and rotate component) of 3×4 matrix m by each vector in the array of 3-element vectors src[] and assigns each result to the user-allocated array of 3element vectors $d s t[]$. The argument count indicates the number of 3-element vectors in both src[] and dst[].

[^0]The arguments $s r c$ and $d s t$ may reference precisely the same vector array ($s r c==d s t$). Otherwise, src[0]..src[count-1] must not overlap dst[0]..dst[count-1].

MTXMultVecArraySR performs 9*count multiplications.

8 Vector-vector Operations

8.1 The Vector Type

The basic type of these vector operations is the Vec, passed by reference using a vecPtr:

Code 8-1 Vector and Point Type Definitions

```
typedef struct
{
    f32 x;
    f32 y;
    f32 z;
} Vec;
typedef Vec* VecPtr;
typedef Vec Point3d;
typedef Vec* Point3dPtr;
```


8.2 The Vector Operations

Code 8-2 Vector Operations

```
void VECAdd
( VecPtr a VecPtr b, VecPtr a ) );
void VECScale (VecPtr src, VecPtr dst, f32 šcale );
void VECNormalize ( VecPtr src, VecPtr unit );
f32 VECDotProduct ( VecPtr a, VecPtr b );
void VECCrossProduct ( VecPtr a, VecPtr b, VecPtr axb );
void VECHalfAngle ( VecPtr a, VecPtr b, VecPtr half );
void VECReflect ( VecPtr src, VecPtr normal, VecPtr dst );
f32 VECSquareMag ( VecPtr v );
f32 VECMag ( VecPtr v );
f32 VECSquareDistance ( VecPtr a, VecPtr b );
f32 VECDistance ( VecPtr a, VecPtr b );
```

All these vector-vector operations act on one or two 3-element vector arguments and return either a scalar result (f32) or a vector result in a user-allocated 3-element vector argument. Any of the one, two, or three vector arguments may reference the same vector. All calculations are single-precision.

VECAdd performs the operation $\mathbf{a b}=\boldsymbol{a}+\boldsymbol{b}$. It computes the sum $(a+b)$ of the two vectors a and b and assigns the result to $a b$.

VECSubtract performs the operation $\boldsymbol{a}_{\mathbf{\prime}} \boldsymbol{b}=\mathbf{a}-\boldsymbol{b}$. It computes the difference $(a-b)$ of the two vectors a and b and assigns the result to $a _b$.
VECScale performs the operation dst=scale•src. It scales the vector src by the scalar scale, and assigns the result (scale•src) to dst.

VECNormalize performs the operation unit = src/|src|. It calculates the length or magnitude of the vector $s r c$, and normalizes the vector, storing the result in unit. The vector src must have non-zero length. The computation requires one square-root, one divide, and six multiply operations.

VECDotProduct returns the scalar $\mathbf{a} \cdot \boldsymbol{b}$. This is a vector dot-product operation. It requires three multiplies.
VECCrossProduct performs the operation $\mathbf{a x b}=\mathbf{a} \times \boldsymbol{b}$. This is a vector cross-product operation. It requires 6 multiplications.

VECHalfAngle performs the operation half $=(|\boldsymbol{b}| \cdot \mathbf{a}+|\mathbf{a}| \cdot \boldsymbol{b}) /|(|\boldsymbol{b}| \cdot \mathbf{a}+|\boldsymbol{a}| \cdot \boldsymbol{b})|$. This calculates a unit vector half, which lies halfway between the two vectors a and b. This is suitable for specular highlight halfangle computations. The vectors a and b must both have non-zero length, and they must not point in exactly opposite directions. VECHalfAngle requires three square-roots, one division, and 18 multiplications.

VECReflect reflects the vector src in the plane defined by all points \mathbf{n}, such that $\mathbf{n} \cdot \boldsymbol{n o r m a l}=\mathbf{0}$, using the rule "angle-of-reflection equals angle-of-incidence". The unit-length result is assigned to dst. The entire computation requires three square-root operations, three divisions, and 24 multiplications.

VECSquareMag returns $|\boldsymbol{v}|^{2}$, the square of the magnitude of the vector src. It requires three multiplications.
VECMag returns $|\boldsymbol{v}|$, the scalar length or magnitude of the vector src. It requires three multiplications and one square-root operation.

VECSquareDistance calculates $|\mathbf{a}-\boldsymbol{b}|^{2}$, or the square of the distance between vectors \boldsymbol{a} and b. It requires three multiplications.

VECDistance calculates $|\mathbf{a}-\boldsymbol{b}|$, or the distance between vectors a and b. It requires three multiplications and one square root operation.

9 Stack Operations

9.1 The Matrix Stack Type

The MtxStack is used to record the location of the allocated array, the current position in the array, and the size of the array. MtxStackPtr is used as a handle to a stack. This handle is passed to all matrix stack calls, and indicates the stack on which to operate.

Code 9-1 MtxStack and MtxStackPtr Type Definitions

```
typedef struct
{
    u32 numMtx;
    MtxPtr stackBase;
    MtxPtr stackPtr;
} MtxStack;
typedef MtxStack* MtxStackPtr;
```


9.2 MTXAllocStack and MTXFreeStack

Code 9-2 MTXAllocStack and MTXFreeStack

```
void MTXAllocStack ( MtxStackPtr sPtr, u32 numMtx );
void MTXFreeStack ( MtxStackPtr sPtr );
```

MTXAllocStack allocates an array of numMtx $3 x 4$ matrices (type Mtx). The memory is allocated using OSAlloc (). (The user must allocate the MtxStackPtr structure).

MTXFreeStack frees the allocated array, using OSFree ().
MTXAllocStack and MTXFreeStack are implemented as macros in mtx.h. They are provided for your convenience - it is not essential to allocate and free a stack using MTXAllocStack/MTXFreeStack. Code 9-3 and Code 9-4 show two ways to allocate a matrix stack:

Code 9-3 Using MTXAllocStack to Allocate a Matrix Stack

```
#include <revolution.h>
MtxStackPtr mstack;
    MTXAllocStack(mstack,10); // calls OSAlloc to allocate 10*(3*4)*4 bytes
    MTXInitStack(mstack,10);
    do_some_work();
    MTXFreeStack(mstack);
```

Code 9-4 Not Using MTXAllocStack to Allocate a Matrix Stack

```
#include <revolution.h>
MtxStackPtr mstack;
Mtx mstackspace[10];
    :
    mstack.stackbase = mstackspace;
    MTXInitStack(mstack,10);
```


9.3 MTXInitStack

Code 9-5 MTXInitStack

```
void MTXInitStack ( MtxStackPtr sPtr, u32 numMtx );
```

MTXInitStack sets up the MtxStack structure referenced by sPtr. It must be called before any stack operations are performed on the stack. The argument numMtx indicates the maximum legal size for the stack-that is, the maximum number of 3×4 matrices that can be pushed. It must not be zero.

9.4 MTXPush, MTXPushFwd, MTXPushInv, MTXPushInvXpose
 Code 9-6 MTXPush, MTXPushFwd, MTXPushInv, and MTXPushInvXpose

```
MtxPtr MTXPush ( MtxStackPtr sPtr, Mtx m );
MtxPtr MTXPushFwd ( MtxStackPtr sPtr, Mtx m );
MtxPtr MTXPushInv ( MtxStackPtr sPtr, Mtx m );
MtxPtr MTXPushInvXpose ( MtxStackPtr sPtr, Mtx m );
```

These operations push a 3×4 matrix onto the matrix stack referenced by sPtr. There must be room in the matrix stack for a new 3×4 matrix. They return a MtxPtr reference to the new top-of-stack matrix.

MTXPush pushes the matrix \boldsymbol{m} onto the top of the stack. The matrix is not concatenated or multiplied with any other. The remaining three operations pre- or post-concatenate $\boldsymbol{m}, \boldsymbol{m}^{-1}$, or $\left(\boldsymbol{m}^{-1}\right)^{\top}$ with the matrix on the top of the stack ($\mathbf{t})$, and push the result:

MTXPush pushes \boldsymbol{m}.
MTXPushFwd pushes $\mathbf{t x}$ m.
MTXPushInv pushes $\boldsymbol{m}^{-1} \mathbf{x} \mathbf{t}$.
MTXPushInvXpose pushes $\mathbf{t} \mathbf{x}\left(\boldsymbol{m}^{-1}\right)^{\top}$.
If the stack is empty, \mathbf{t} is taken to be the identity matrix (I).
MTXPush always performs a MTXCopy operation. The remaining three operations perform a MTXCopy if the stack was empty, otherwise they perform a MTXConcat.

MTXPushInv and MTXPushInvXpose also perform a MTXInverse. Therefore, must be non-singular (invertible). MTXPushInvXpose also performs a MTXTranspose.

9.5 MTXPop

Code 9-7 MTXPop

MtxPtr MTXPop (MtxStackPtr sPtr);

MTXPop discards the top 3×4 matrix element in the stack. It then returns a MtxPtr reference to the new top-of-stack, or NULL if the stack is now empty.

If the stack is already empty, MTXPop has no effect, and returns NULL.

9.6 MTXGetStackPtr

Code 9-8 MTXGetStackPtr

MtxPtr MTXGetStackPtr (MtxStackPtr sPtr);

MTXGetStackPtr returns a MtxPtr reference to (\mathbf{t}), the top $3 x 4$ matrix element in the stack. If the stack is empty, it returns NULL.

10 Traps and Pitfalls

Because the library is designed to be runtime efficient first, and easy-to-use second, some warnings and cautions are necessary.

10.1 The Standard Matrix Type is 3×4

The standard matrix type is Mtx, a 3×4 matrix with an assumed, implicit 4th row of $(0,0,0,1)$. This size was selected because it is sufficient for all 3D scale, rotation, and translate operations and combinations thereof. Although 4×4 matrices could be used as the general standard, they have some disadvantages compared to 3×4 matrices:

- 4×4 matrices require extra memory storage (33% extra).
- In memory-limited situations, 4×4 matrix computations will be 33% slower.
- In CPU-speed limited situations, many general 4×4 operations are computationally much slower (for example, MTXConcat requires 64 multiplies verses 36).

However, 3×4 is not adequate for 3 D projection matrices (perspective or parallel). Therefore, a mtx44 type is used in the special cases of MTXPerspective, MTXFrustum, and MTXOrtho. This type is incompatible with Mtx and cannot be passed to any other API calls in the library. This is slightly inconvenient in some circumstances.

10.2 Mtx is an Array of 3 Arrays of 4 Floats

The definitions of Mtx and MtxPtr (and their 4×4 cousins) deserve some careful attention-it is possible to get confused.

For example, MtxPtr is not a pointer to an Mtx, it is a pointer to an array of floats:
Figure 10-1 MtxPtr Points at a Mtx in Memory

Therefore, it is important to always remember to increment as shown in the example below:
Code 10-1 Incrementing a MtxPtr-the right way

```
MtxPtr mp;
Mtx m[2];
mp=(MtxPtr)m;
mp+=MTX_PTR_OFFSET; // Increment to next matrix
```

...instead of:
Code 10-2 Incrementing a MtxPtr-the wrong way

```
MtxPtr mp;
Mtx m[2];
mp=(MtxPtr)m;
mp++; // Increment to next matrix (actually to next column).
```


10.3 Multiple References

Although it is safe to pass a reference to one matrix or vector to any routine in the library multiple times, some routines will have to perform an additional copy of the input type. For example, MTXConcat (a, a, a) may perform a MTXCopy (a, temp).

10.4 Rules-of-use

Many of these library routines have rules-of-use. These are generally associated with divide-by-zero conditions (but some are associated with Matrix stack bounds-checking). For example, VECNormalize () must not be called with a zero-length vector. The library routines are unforgiving. No error conditions or flags are returned to the calling environment (except MTXInverse). In this respect, mtx.h is unlike math. h , for example.

If one of these rules-of-use is broken, the library routine will ASSERT () and halt the game, provided you are using the debug libraries.
Note: With the non-debug libraries, error behavior is undefined. (In most cases, one or more single-precision floating-point \pm infinity value(s) will be yielded in the returned scalar/vector/matrix. These will spread through future operations, until (for example) an infinity is multiplied by zero. An exception will then be raised. However, the exception may be raised a long distance from and a long time after the source of the problem. Your mileage may vary.)

10.5 Macros

Some routines are in fact C-preprocessor macros (MTXDegToRad, MTXRadToDeg, MTXAllocStack, MTXFreeStack, MTXRowCol). Although macros and functions appear to the user to be identical, macros behave slightly differently in some circumstances. In general, they are slightly more dangerous.

For example, the following will compile (and probably run) without errors or warnings:

Code 10-3 Macros are not Functions

```
#include <revolution.h>
void main(void) {
        MTXAllocStack(main /*or-any-ptr/scalar-type*/ ,10);
            // self-modifying main() code
}
```


Appendix A. Tables of API Calls

A. 1 Scale, Rotate, and Translate Transformations

Table A-1 Scale, Rotate, and Translate Transformations

API	Arguments	Summary	
MTXIdentity	(Mtx m)	$\mathrm{M}=1$	
MTXScale	(Mtx m, f32 x, f32 y, f32 z)	$\mathrm{M}=$ Scale by (x, y, z)	
MTXRotRad	(Mtx m, u8 axis, f32 rad)	$M=$ Rotate about positive axis ['x'\|'y'	'z'] counter-clockwise rad radians
MTXRotTrig	(Mtx m, u8 axis, $\mathrm{f} 32 \sin \mathrm{~A}, \mathrm{f} 32$ $\cos \mathrm{A}$)	$M=$ Rotate about positive axis ['x'\|'y'	'z'] counter-clockwise angle A
MTXRotAxisRad	(Mtx m, VecPtr axis, f32 rad)	$M=$ Rotate about $v_{\text {axis }}$ counter-clockwise by rad radians	
MTXTrans	(Mtx m, f32 x, f32 y, f32 z)	$\mathrm{M}=$ Translate by ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	
MTXQuat	(Mtx m, QuaternionPtr q)	$\mathrm{M}=\mathrm{q}$	
MTXDegToRad	(f32 degrees)	Return degrees/180.0*pi	
MTXRadToDeg	(f32 radians)	Return radians/pi*180.0	

A. 2 View Transformations

Table A-2 View Transformations

API	Arguments	Summary
MTXLookAt	(Mtx m, Point3dPtr camPos, VecPtr camUp, Point3dPtr target)	$M=$ Look at: $v_{\text {target }}$ from: $v_{\text {camPos }}$, up is: $v_{\text {camUp }}$

A. 3 Projection Transformations

Table A-3 Projection Transformations

API	Arguments	Summary		
MTXPerspective	(Mtx44 m, f32 fovY, f32 aspect, f32 n, f32 f)	M: Models camera with field-of-view fov Y degrees high, fovY*aspect wide, near n, farf		
MTXFrustum	$\begin{aligned} & (\mathrm{Mtx} 44 \mathrm{~m}, \mathrm{f} 32 \mathrm{t}, \mathrm{f} 32 \mathrm{~b}, \mathrm{f} 32 \mathrm{l}, \mathrm{f} 32 \mathrm{r}, \\ & \mathrm{f} 32 \mathrm{n}, \mathrm{f} 32 \mathrm{f}) \end{aligned}$	M: Maps frustum 4 corners ([r\|], [b	t], -n) to ($\pm 1.0, \pm 1.0,1.0$)
MTXOrtho	$\begin{aligned} & (\mathrm{Mtx} 44 \mathrm{~m}, \mathrm{f} 32 \mathrm{t}, \mathrm{f} 32 \mathrm{~b}, \mathrm{f} 32 \mathrm{l}, \mathrm{f} 32 \mathrm{r}, \\ & \mathrm{f} 32 \mathrm{n}, \mathrm{f} 32 \mathrm{f}) \end{aligned}$	M: Maps cube with corners ($[\|\mid r],[b \mid t]$,$[f \mid n])$ to ($\pm 1.0, \pm 1.0, \pm 1.0$)		

A. 4 Texture Projection Transformations

Table A-4 Texture Projection Transformations

API	Arguments	Summary
MTXLightPerspective	(Mtx m, f32 fovY, f32 aspect, f 32 scaleS, f32 scaleT, f32 transS, f32 transT)	M: Maps (x, y, z) to (s, t, q) for a light with a rectangular aperture fovY degrees tall, aspect ratio (X/Y) aspect. The scales and the translates position the texture; use $(0.5,0.5,0.5,0.5)$ to obtain a single, centralized image of a non-mirrored texture.
MTXLightFrustum	(Mtx m, f32 t, f32 b, f32 I, f32 r, f32 n, f32 scaleS, f32 scaleT, f32 transS, f32 transT)	M: Maps (x, y, z) to (s, t, q) for a light with a rectangular aperture bounded by the points ($1 / r, t / b, n$) in light space. The scales and translates position the texture; use ($0.5,0.5,0.5,0.5$) to obtain a single, centralized image of a non-mirrored texture.
MTXLightOrtho	```(Mtx m, f32 t, f32 b, f32 I, f32 r, f32 scaleS, f32 scaleT, f32 transS, f32 transT)```	M: Maps (x, y, z) to (s, t, q) for a light at infinity with a (much closer) rectangular aperture bounded by the points ($1 / r, t / b, ?$) in light space. The scales and translates position the texture; use ($0.5,0.5,0.5,0.5$) to obtain a single, centralized image of a non-mirrored texture.

A. 5 Matrix-matrix Operations

Table A-5 Matrix-matrix Operations

API	Arguments	Summary
MTXConcat	(Mtx a, Mtx b, Mtx axb)	$M_{a x b}=M_{a} \times M_{b}$
MTXCopy	(Mtx src, Mtx dst)	$M_{d s t}=M_{\text {src }}$
MTXTranspose	(Mtx src, Mtx xPose)	$M_{d s t}=M_{s r c}{ }^{\top}$
MTXInverse	(Mtx src, Mtx inv)	$M_{d s t}=M_{s r c}{ }^{-1} \quad$ Returns 0 if singular

A. 6 Matrix-vector Operations

Table A-6 Matrix-vector Operations

API	Arguments	Summary
MTXMultVec	(Mtx m, VecPtr src, VecPtr dst)	$v_{d s t}=M \times v_{\text {src }}$
MTXMultVecArray	(Mtx m, VecPtr srcBase, VecPtr dst- Base, int count)	forall(i): $\mathrm{v}_{\mathrm{dst}, \mathrm{i}}=M \times \mathrm{v}_{\text {src }, \mathrm{i}}$
MTXMultVecSR	(Mtx m, VecPtr src, VecPtr dst)	$\mathrm{v}_{\mathrm{dst}}=\mathrm{M}_{3 \times 3} \times \mathrm{v}_{\text {src }}$
MTXMultVecArraySR	(Mtx m, VecPtr srcBase, VecPtr dst- Base, int count)	forall(i): $\mathrm{v}_{\mathrm{dst}, \mathrm{i}}=\mathrm{M}_{3 \times 3} \times \mathrm{v}_{\text {src, } \mathrm{i}}$

A. 7 Vector-vector Operations

Table A-7 Vector-vector Operations

API	Arguments	Summary	
VECScale	(VecPtr src, VecPtr dst, f32 scale)	$\mathrm{v}_{\mathrm{dst}}=$ scale $\times \mathrm{v}_{\text {src }}$	
VECMag	(VecPtr src)	return $\left\|\mathrm{v}_{\text {src }}\right\|$	
VECNormalize	(VecPtr src, VecPtr unit)	$\mathrm{v}_{\text {unit }}=\mathrm{v}_{\text {src }} / / \mathrm{v}_{\text {src }} \mid$	
VECDotProduct	(VecPtr a, VecPtr b)	return $\mathrm{v}_{\mathrm{a}} \cdot \mathrm{v}_{\mathrm{b}}$	
VECCrossProduct	(VecPtr a, VecPtr b, VecPtr axb)	$\mathrm{v}_{\mathrm{axb}}=\mathrm{v}_{\mathrm{a}} \times \mathrm{v}_{\mathrm{b}}$	
VECHalfAngle	(VecPtr a, VecPtr b, VecPtr half)	$\mathrm{v}_{\text {half }}=\left(\left\|\mathrm{v}_{\mathrm{b}}\right\| \cdot \mathrm{v}_{\mathrm{a}}+\left\|\mathrm{v}_{\mathrm{a}}\right\| \cdot \mathrm{v}_{\mathrm{b}}\right) /$ length	
VECReflect	(VecPtr src, VecPtr normal, VecPtr dst)	$v_{\text {dst }}=$ reflection of $v_{\text {src }}$ in plane $\mathrm{n} . \mathrm{v}_{\text {normal }}=0$	
VECSquareDistance	(VecPtr a, VecPtr b)	return \|va-vb	2
VECDistance	(VecPtr a, VecPtr b)	return \|va-vb	

A. 8 Stack Operations

Table A-8 Stack Operations

API	Arguments	Summary
MTXAllocStack	(MtxStackPtr sPtr, u32 numMtx)	sPtr=OSAlloc(numMtx*sizeof(Mtx))
MTXFreeStack	(MtxStackPtr sPtr)	OSFree(sPtr)
MTXInitStack	(MtxStackPtr sPtr, u32 numMtx)	stack = \{ \}; at=0; maxlen=numMtx
MTXPush	(MtxStackPtr sPtr, Mtx m)	stack[at] = M; return \&stack[++at]
MTXPushFwd	(MtxStackPtr sPtr, Mtx m)	stack[at] = stack[at-1] a x M; return \&stack[++at]
MTXPushInv	(MtxStackPtr sPtr, Mtx m)	stack[at] = M ${ }^{-1}$ \& stack[at-1]; return \&stack[++at]
MTXPushInvXpose	(MtxStackPtr sPtr, Mtx m)	stack[at] = stack[at-1] x (M-1) ${ }^{\text {T }}$; return \&stack[++at]
MTXPop	(MtxStackPtr sPtr)	return \&stack[--at]
MTXGetStackPtr	(MtxStackPtr sPtr)	return \&stack[at]

a. The Identity matrix is substituted for references to stack[-1]

TM and $®$ are trademarks of Nintendo.
Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.
IBM is a trademark of International Business Machines Corporation.
Roland GS Sound Set is a trademark of Roland Corporation U.S.
All other trademarks and copyrights are property of their respective owners.

© 2006-2007 Nintendo

The contents of this document cannot be duplicated, copied, reprinted, transferred, distributed or loaned in whole or in part without the prior approval of Nintendo.

[^0]: MTXMultVecArraySR is a convenience wrapper for MTXMultVecSR (See MTXMultVecArray)

