
The contents in this document are highly

confidential and should be handled accordingly.

Revolution SDK

Operating System
Version 1.03
© 2006-2009 Nintendo RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
Confidential

These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.
RVL-06-0042-001-E 2 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Contents
Revision History .. 6
1 Overview... 7
2 Initializing the OS.. 8

2.1 OS Initialization... 8
2.2 Getting the Console Type ... 8

3 Memory... 10
3.1 System Memory Map.. 10
3.2 Getting Memory .. 11

3.2.1 Arena Management .. 12
3.3 Managing Memory .. 12

3.3.1 Allocation Alignment ... 13
3.3.2 One Heap.. 13
3.3.3 Multiple Heaps .. 15
3.3.4 Miscellaneous Details ... 16

3.4 Memory Management in C++ Code.. 16
3.5 Restrictions on Running Command Codes in the MEM2 Region 18

4 Error Handling and Notification... 19
4.1 Error Display ... 19
4.2 Memory Protection.. 20

5 Cache Control... 26
5.1 Cache Description .. 26
5.2 Cache Incoherence... 27
5.3 Basic Cache Management.. 28

5.3.1 Efficiency... 30
5.4 Locked Cache Operation .. 31

5.4.1 Locked Cache API Overview .. 31
5.4.2 DMA Engine.. 32
5.4.3 Basic Locked Cache API and Demos ... 32
5.4.4 Low-Level Locked Cache API and Demos.. 34
5.4.5 Additional Locked Cache Functions.. 36
5.4.6 Enabling and Disabling the Locked Cache ... 36
5.4.7 Dangers in Using the Locked Cache... 37

6 Time.. 38
6.1 Real-Time Clock ... 38
6.2 Alarm .. 39

7 Critical Sections.. 41
7.1 Programming Model ... 41

8 Using CPU Idle Time ... 42
9 Threads .. 44

9.1 Initialization ... 44
9.2 Scheduling .. 44

9.2.1 Interaction with Interrupts.. 44
9.3 Thread Creation.. 45
9.4 Synchronization .. 48

9.4.1 Library Access .. 48
9.4.2 Synchronizing by Disabling the Scheduler.. 48
9.4.3 Synchronizing by Sleeping and Waking.. 49
9.4.4 Synchronizing with Messages... 49
9.4.5 Synchronizing with Mutexes.. 51
9.4.6 Synchronizing with Conditional Variables ... 54

9.5 Context Switching ... 56
9.6 Checking the Active Threads.. 56
9.7 Threads and Callbacks ... 57
© 2006-2009 Nintendo 3 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
10 Fast Float/Integer Casting .. 58
10.1 Initializing the Fast Cast API... 58
10.2 Fast Casting Routines .. 58

11 Fonts... 60
11.1 Loading Fonts ... 60
11.2 Character Width.. 60
11.3 Font Header.. 60

12 Relocatable Module System (REL) .. 63
12.1 Relocatable Modules .. 63

13 Profiling... 65
13.1 Stopwatches ... 65
13.2 Performance Monitors .. 66

14 Reset and Shutdown Processing ... 69
14.1 Reset and Shutdown Notes .. 69

14.1.1 Requirements for Conditions That Cause Fatal Errors, Such as System Lockups. 69
14.1.2 Recommendations for Non-Fatal Conditions that Should Be Handled, Such as Possible

Delayed Resets69
14.1.3 Miscellaneous Notes... 70

Code Examples
Code 2–1 OSGetConsoleType ... 8
Code 3–1 OSGetArena API .. 11
Code 3–2 Setting the Arena.. 12
Code 3–3 Heap Allocation .. 13
Code 3–4 OSAlloc APIs.. 14
Code 3–5 Memory Allocation.. 15
Code 3–6 Memory Management for Multiple Heaps .. 16
Code 3–7 Overriding New and Delete Operators ... 17
Code 3–8 OSEnableCodeExecOnMEM* API ... 18
Code 4–1 Debugging Functions ... 19
Code 4–2 OSReport Function... 19
Code 4–3 OSPanic Function .. 20
Code 4–4 OSProtectRange Function ... 21
Code 4–5 OSSetErrorHandler Function ... 21
Code 5–1 Cached and Uncached Access to Memory .. 27
Code 5–2 Address Translation ... 28
Code 5–3 Storing and Invalidating Cache Lines... 29
Code 5–4 Store and Invalidate Output Sample .. 29
Code 5–5 Data and Instruction Cache APIs ... 30
Code 5–6 Basic Locked Cache Demo .. 32
Code 5–7 Basic Locked Cache Functions .. 34
Code 5–8 Low-Level Locked Cache Demo .. 34
Code 5–9 Low-Level Locked Cache Load/Store Functions.. 35
Code 5–10 Additional Locked Cache Functions ... 36
Code 5–11 Dangerous Loop in the Locked Cache ... 37
Code 6–1 Time APIs... 38
Code 6–2 Timer Program ... 39
Code 6–3 Timer APIs.. 40
Code 7–1 Interrupt Reception API .. 41
Code 7–2 Critical Section ... 41
Code 8–1 Idle Function (Background Task) Example .. 42
Code 8–2 Idle Function (Background Task) API... 43
Code 9–1 Thread Creation Example .. 45
RVL-06-0042-001-E 4 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Code 9–2 Basic Thread Creation APIs ... 46
Code 9–3 Using OSJoinThread .. 47
Code 9–4 OSJoinThread API ... 48
Code 9–5 Disabling and Enabling the Scheduler Must Be Done with Interrupts Disabled 49
Code 9–6 Scheduler Control APIs .. 49
Code 9–7 Thread Sleep and Wakeup APIs .. 49
Code 9–8 Message API Example ... 50
Code 9–9 Message APIs .. 51
Code 9–10 Mutex and Yielding Example.. 52
Code 9–11 Code 38 Mutex and Yielding APIs.. 53
Code 9–12 Solving the Bounded Buffer Problem with Condition Variables...................................... 54
Code 9–13 Conditional Variable APIs.. 56
Code 9–14 OSCheckActiveThreads ... 56
Code 10–1 OSInitFastCast ... 58
Code 10–2 Fast Cast APIs ... 59
Code 12–1 _prolog and _epilog Functions ... 64
Code 13–1 Stopwatch Code Example .. 65
Code 13–2 Stopwatch Program Output .. 66
Code 13–3 Stopwatch APIs .. 66
Code 13–4 Stopwatch Intervals .. 66
Code 13–5 Basic Performance Monitor Counter Accessor Functions.. 67
Code 13–6 Performance Monitor Counter Macros ... 67
Code 13–7 Using Performance Monitor Counter Macros ... 68
Code 14–8 Reset and Shutdown Functions ... 69

Figures
Figure 3–1 Game Code Access to the Physical Address Space .. 10
Figure 3–2 Alternate Representation of Virtual and Physical Address Spaces 11
Figure 5–1 Normal Cache Lookup .. 27
Figure 5–2 L1 Data Cache Configured in Locked Cache Mode ... 31

Tables
Table 2–1 Return Values from OSGetConsoleType... 8
Table 4–1 Error Types .. 22
Table 4–2 fpscr Bits .. 23
Table 4–3 __OSFpscrEnableBits Bits... 23
Table 10–1 Quantization Register Values .. 58
Table 11–1 Font Header Members Accessible by Applications... 61
© 2006-2009 Nintendo 5 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
Revision History

Version
Date

Revised
Description

1.03 2008/09/08 Section 9.3: Revised Code 33 to not call the OSInit function.

Section 9.6: Added the "Waiting" status to the statuses of active
threads.

Section 9.7: Updated the Note(s) regarding threads and callbacks.

1.02 2008/07/11 Revised content to apply to the Wii console.

Noted that since SDK 3.2, it is prohibited to run instruction codes in
the MEM2 region.

1.01 2007/12/01 Applied a standardized format.

2006/10/25 Added description of interrupt handler.

1.00 2006/03/01 First release by Nintendo of America Inc.
RVL-06-0042-001-E 6 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System

© 2006-2009 Nintendo 7 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

1 Overview
This document provides important information for developers using the Wii Operating System (Revolution
OS). Using this information, developers can write real code as soon as possible.

Main features of the Revolution OS:

• Interrupt- and callback-driven programming model

• Simple default memory manager

• Cache management

• Basic timer support

• Basic profiling support

Revolution SDK Operating System Revolution SDK
2 Initializing the OS

2.1 OS Initialization

The OSInit function, called from the C start-up routine, will initialize the OS. This function is called before
all of the global C++ constructors. The application does not need to explicitly call the OSInit function.

This initialization prepares the low-level operating system layers to deal with the machine by:

• Determining the amount of memory available to the application

• Initializing the exception table

• Initializing interrupt handlers

• Initializing the thread interfaces

• Performing floating-point operations in non-IEEE mode

• Configuring the MEM1 arena

• Configuring the MEM2 arena

• Initializing the alarm system

• Initializing REL

• Initializing (enabling) the L1 and L2 cache

• Clearing the arenas

• Reading the system settings

2.2 Getting the Console Type

The OSGetConsoleType function returns information about the current system. If your application
requires a particular console type, use this function.

Code 2–1 OSGetConsoleType

u32 OSGetConsoleType (void);

The OSGetConsoleType function checks the console type. The left-most (most significant) 4 bits are
used to distinguish development systems from retail production systems. In a development system, the
left-most 4 bits are set to 0x1; in a retail production system, these bits are set to 0x0. The remaining 28
bits show the minor revision number of the console.

Table 2–1 Return Values from OSGetConsoleType

Defined Name Value Description

OS_CONSOLE_RVL_NDEV1_0 0x10000010 NDEV 1.0

OS_CONSOLE_RVL_NDEV1_1 0x10000011 NDEV 1.1

OS_CONSOLE_XXXXXX 0x???????? NDEV 2.0

OS_CONSOLE_XXXXXX 0x???????? Production model

OS_CONSOLE_RETAIL4 0x00000004 (for backward compatibility)

OS_CONSOLE_RETAIL3 0x00000003 (for backward compatibility)
RVL-06-0042-001-E 8 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
OS_CONSOLE_RETAIL2 0x00000002 (for backward compatibility)

OS_CONSOLE_DEVHW4 0x10000007 (for backward compatibility)

OS_CONSOLE_DEVHW3 0x10000006 (for backward compatibility)

OS_CONSOLE_DEVHW2 0x10000005 (for backward compatibility)

OS_CONSOLE_TDEVHW4 0x20000007 (for backward compatibility)

OS_CONSOLE_TDEVHW3 0x20000006 (for backward compatibility)

OS_CONSOLE_TDEVHW2 0x20000005 (for backward compatibility)

OS_CONSOLE_EMULATOR 0x10000000 (for backward compatibility)

Table 2–1 Return Values from OSGetConsoleType

Defined Name Value Description
© 2006-2009 Nintendo 9 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
3 Memory
The first and most important resource to be managed is memory. This section presents the Wii memory
map and some simple ways to manage it.

3.1 System Memory Map

The Revolution OS employs a memory map similar to MIPS. Application code can access physical
memory one of two ways—cached or uncached. For every physical address, there are two corresponding
virtual addresses: one which provides cached access, and one which provides uncached access to the
same location.

The physical address space is 256 MB (all system memory and memory-mapped devices exist within a
256 MB address space). Cached accesses to the physical address space take the form 0x8xxxxxxx for
MEM1 and 0x9xxxxxxx for MEM2, while uncached accesses take the form 0xCxxxxxxx for MEM1 and
0xDxxxxxxx for MEM2, as shown in the following table. Only the first 256 MB of each of these segments
are accessible; accessing any other addresses will cause a memory access fault.

Figure 3–1 Game Code Access to the Physical Address Space

256 MB Physical Address Space

256 MB Cached Address Space
(0x8xxxxxxx, 0x9xxxxxxx)

256 MB Uncached Address Space
(0xCxxxxxxx, 0xDxxxxxxx)

Game Code

MEM1 (24 MB)

Memory Mapped
Devices MEM2 (64/128 MB)
RVL-06-0042-001-E 10 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Figure 3–2 Alternate Representation of Virtual and Physical Address Spaces

3.2 Getting Memory

After loading the game program into the system, the pool of remaining memory (called the arena) is
available to the game. The MEM1 and MEM2 arenas are configured when the OS is initialized. You can get
and change the region for each arena using the following functions.

Code 3–1 OSGetArena API

void* OSGetMEM1ArenaHi(void);
void* OSGetMEM1ArenaLo(void);
void OSSetMEM1ArenaHi(void* newHi);
void OSSetMEM1ArenaLo(void* newLo);
void* OSGetMEM2ArenaHi(void);
void* OSGetMEM2ArenaLo(void);
void OSSetMEM2ArenaHi(void* newHi);
void OSSetMEM2ArenaLo(void* newLo);

0x40000000Inva lid

V irtu a l A d d re ss S pa ce P hys ica l A d d ress S p ace

C ache d
A cce ss

U ncach ed
A cce ss

M E M 1
(24 M B)

M E M 2
(64 M B)

M em ory M apped
I/O

0x00000000

0x80000000

0xFFFFFFFF

0xC0000000

0x97FFFFFF

0x94000000
0x93FFFFFF
0x90000000
0x817FFFFF

0xD7FFFFFF
0xD4000000
0xD3FFFFFF
0xD0000000
0xCFFFFFFF

0x40000000

M E M 2 :
d eve lopm en t co nso le

on ly

(64 M B)

0x01800000

0x10000000

0x14000000

0x17FFFFFF
© 2006-2009 Nintendo 11 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
Therefore, the first few lines of any program should look like this:

Code 3–2 Setting the Arena

#include <revolution.h>

#define MY_FIRST_MEMORY_AREA_SIZE 1024
#define MY_SECOND_MEMORY_AREA_SIZE 2048

void * MyFirstMemoryArea;
void * MySecondMemoryArea;

void main ()
{
 u8* arenaLo;
 u8* arenaHi;

 arenaLo = (u8*)OSGetMEM1ArenaLo();
 arenaHi = (u8*)OSGetMEM1ArenaHi();

 MyFirstMemoryArea = arenaLo;
 arenaLo += MY_FIRST_MEMORY_AREA_SIZE;
 OSSetMEM1ArenaLo(arenaLo);

 MySecondMemoryArea = arenaLo;
 arenaLo += MY_SECOND_MEMORY_AREA_SIZE;
 OSSetMEM1ArenaLo(arenaLo);
 :

This program grabs some memory from the bottom of the arena. Initially, the arena boundaries will be at
least word-aligned.

3.2.1 Arena Management

Typically, the only entity manipulating the arena after the program starts (i.e., after main()), is the
application program. It is only necessary to get the arena boundaries once without changing them.
However, well-modularized code will not want to share global arena variables across the entire application.
In that case, manipulating the arena through OSGetMEM*Arena* and OSSetMEM*Arena* is the proper
way to manage the arena.

3.3 Managing Memory

Setting the boundaries of the arena manually may not be the most effective means to manage memory.
Therefore, we have provided a simple memory manager that allows you to allocate and free arbitrary-sized
blocks of memory from any number of heaps.

Note: The memory management functions (OSAlloc, OSFree, and others) provided by the Revolution
OS still remain for GameCube compatibility. The Wii console has two main memories, MEM1 and
MEM2, so its arena is split in two. However, the memory management functions provided by the
OS library do not support multiple arenas. As a result, we do not recommend using these functions
for Wii application development.

The Revolution SDK provides the MEM library, which supports memory management for multiple arenas.
We recommend using the MEM library for Wii application development. Refer to the Memory Management
(MEM library) section in the Revolution Function Reference Manual (HTML) for information on using the
MEM library. Furthermore, some libraries require a memory allocator to be specified during initialization.
RVL-06-0042-001-E 12 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
3.3.1 Allocation Alignment

Many of the Wii subsystems require memory to be aligned to 32-byte boundaries (the graphics FIFO,
indexed data, etc.). The allocator always allocates to 32-byte alignment and always rounds allocation sizes
up to 32-byte boundaries. It also rounds out the boundaries of any heaps created so that they are 32-byte
aligned. To be safe, however, the following demos align heap boundaries appropriately.

Note: To allocate many small objects efficiently, pack them into arrays to avoid allocator overhead and
internal fragmentation.

3.3.2 One Heap

The following program uses one heap to encompass the entire arena:

Code 3–3 Heap Allocation

#include <revolution.h>

OSHeapHandle TheHeap;

#define INT_ARRAY_ENTRIES 1024

void main ()
{
 void* arenaLo;
 void* arenaHi;
 u32* intArray;

 arenaLo = OSGetMEM1ArenaLo();
 arenaHi = OSGetMEM1ArenaHi();

 // OSInitAlloc should only ever be invoked once.
 arenaLo = OSInitAlloc(arenaLo, arenaHi, 1); // 1 heap
 OSSetMEM1ArenaLo(arenaLo);

 // The boundaries given to OSCreateHeap should be 32B aligned
 TheHeap = OSCreateHeap((void*)OSRoundUp32B(arenaLo),
 (void*)OSRoundDown32B(arenaHi));
 OSSetCurrentHeap(TheHeap);
 // From here on out, OSAlloc and OSFree behave like malloc and free
 // respectively

 OSSetMEM1ArenaLo(arenaLo = arenaHi);

 intArray = (u32*)OSAlloc(sizeof(u32) * INT_ARRAY_ENTRIES);
 :
 // some interesting code using intArray would go here
 :
 OSFree(intArray);
 :

In the preceding example, you can use OSAlloc/OSFree as if it were a standard malloc/free.

Note: Its behavior changes slightly in the presence of multiple heaps.
© 2006-2009 Nintendo 13 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The APIs introduced in this code sequence are as follows:

Code 3–4 OSAlloc APIs

typedef int OSHeapHandle;

void* OSInitAlloc (void* arenaStart, void* arenaEnd, int maxHeaps);

OSHeapHandle OSCreateHeap (void* start, void* end);
void OSSetCurrentHeap (OSHeapHandle heap);
void* OSAlloc (u32 size);
void OSFree (void* ptr);

#define OSRoundUp32B(x) …
#define OSRoundDown32B(x) …

OSHeapHandle effectively functions as a pointer to a heap. As shown in "3.3.3 Multiple Heaps" on page
15, there can be any number of heaps.

OSInitAlloc requires some memory for bookkeeping (linear with maxHeaps). As a result, the lower
boundary of the arena should be modified. When calling OSInitAlloc, ensure that the return value is
assigned to your local copy of arenaLo. OSInitAlloc should be called only once per application run.

OSCreateHeap returns a handle to a new heap. Since there is only one heap in this example, we simply
set the created heap to be the current heap with OSSetCurrentHeap and forget about the heap handle.
OSCreateHeap will align the start/end arguments to the appropriate 32-byte boundaries; the start
boundary is rounded up, while the end boundary is rounded down.

Note: The example program explicitly aligns arena boundaries to 32 bytes before calling
OSCreateHeap. This approach ensures any boundary changes are visible to the application.

OSRoundUp32B and OSRoundDown32B are utility macros that round an address up or down to the closest
32-byte boundary.
RVL-06-0042-001-E 14 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
3.3.3 Multiple Heaps

More complicated games may want to manage memory in separate heaps for several purposes (for
example, to delineate memory usage clearly between discrete modules or to increase memory locality for
different sections of code). The Revolution OS memory allocator supports this functionality, as
demonstrated in the following code sequence:

Code 3–5 Memory Allocation

#include <revolution.h>

// Heap sizes MUST be multiples of 32
#define HEAP1_SIZE 65536
#define HEAP2_SIZE 4096

#define OBJ1SIZE 1024
#define OBJ2SIZE 2048

OSHeapHandle Heap1, Heap2;

void main ()
{
 u8* arenaLo;
 u8* arenaHi;
 void* fromHeap1;
 void* fromHeap2;

 arenaLo = (u8*)OSGetMEM1ArenaLo();
 arenaHi = (u8*)OSGetMEM1ArenaHi();
 arenaLo = (u8*)OSInitAlloc(arenaLo, arenaHi, 2); // 2 heaps
 OSSetMEM1ArenaLo(arenaLo);

 // Ensure boundary is 32B aligned
 arenaLo = (void*)OSRoundUp32B(arenaLo);

 Heap1 = OSCreateHeap(arenaLo, arenaLo + HEAP1_SIZE);
 arenaLo += HEAP1_SIZE;
 Heap2 = OSCreateHeap(arenaLo, arenaLo + HEAP2_SIZE);
 arenaLo += HEAP2_SIZE;

 OSSetMEM1ArenaLo(arenaLo);

 OSSetCurrentHeap(Heap1);
 fromHeap1 = OSAlloc(OBJ1SIZE);

 // Some code allocating from heap1 goes here
 // OSFree will free to heap1 as well

 OSSetCurrentHeap(Heap2);
 fromHeap2 = OSAlloc(OBJ2SIZE);

 // Some code allocating from heap2 goes here
 // OSFree will free to heap2

 OSFreeToHeap(Heap1, fromHeap1);
 OSFreeToHeap(Heap2, fromHeap2);

 // example of allocation overriding the current heap
 fromHeap1 = OSAllocFromHeap(Heap1, OBJ2SIZE);

 OSHalt("Demo complete");
}

In the sequence outlined in "Code 3–5 Memory Allocation" on page 15, the following routines help to man-
age memory with multiple heaps:
© 2006-2009 Nintendo 15 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
Code 3–6 Memory Management for Multiple Heaps

void OSFreeToHeap (OSHeapHandle heap, void* ptr);
void* OSAllocFromHeap (OSHeapHandle heap, u32 size);

OSFreeToHeap returns a block of memory to a specific heap. An allocated block of memory must be
returned to the original heap from which the block was allocated.

Note: OSFree can still be used, but it simply returns a block of memory to the current heap, set by
OSSetCurrentHeap.

OSAllocFromHeap allows the program to allocate a block from a specific heap, overriding the default set
by OSSetCurrentHeap.

3.3.4 Miscellaneous Details

For a few additional APIs that allow heap destruction, memory allocation at specific locations, or
discontinuous heap creation, refer to the Revolution Function Reference Manual (HTML).

Overhead

The memory overhead of the allocator is as follows:

• Heap descriptor array: 24 bytes per heap for the Debug version of the library, and 12 bytes per heap
for other versions of the library (subtracted from the arena after OSInitAlloc)

• Object headers: 32 bytes per object

• Object padding: object sizes are 32-byte aligned

Efficiency

The allocator uses a basic, double-linked free list that coalesces objects together whenever an object is
freed. The computational efficiency of the allocator, in both allocation and de-allocation, is in a worst-case
scenario O(n) in number of free fragments in the heap. In the expected case (i.e., where fragmentation
does not occur too often, and objects are allocated together and de-allocated together), allocation and de-
allocation should run in close to constant time.

3.4 Memory Management in C++ Code

The new and delete operators must be handled with caution when C++ code is used on the Wii console.

The new and delete operators provided by the Metrowerks Standard C++ Library (MSL C++), included
with Metrowerks CodeWarrior, will be used by default. On the first invocation of the new operator after the
application has started, a heap will be created for the new and delete operators to use. The entire MEM1
arena region will be assigned as the heap for new and delete. These operators are also implemented to
call the OSAlloc and OSFree functions internally (see $CW_FOLDER/PowerPC_EABI_Support/
Runtime/Src/GCN_mem_alloc.c).

As a result, you will run into the following complications if you use the default new and delete operators.

• The new and delete operators will only be able to use a heap allocated from the MEM1 arena region.

• It will not be possible to allocate a heap if the new operator is invoked without a MEM1 arena region.

• It will not be possible to allocate arena regions from MEM1 after the new operator has been invoked
when a MEM1 arena region exists.

To avoid these problems when writing C++ code for the Wii console, you must override the new and
delete operators in your application. You can use the memory management functions provided by the
OS and MEM libraries within these operators.
RVL-06-0042-001-E 16 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
The following demo code shows how to override the new and delete operators using the memory
management functions provided by the OS library.

Code 3–7 Overriding New and Delete Operators

#define HEAP_ID 0

static BOOL IsHeapInitialized = FALSE;

/*---*
 Name: CPPInit

 Description: Initializes the Nintendo GameCube OS memory allocator and ensures that
 new and delete will work properly.

 Arguments: None.

 Returns: None.
 ---/
static void CPPInit()
{
 void* arenaLo;
 void* arenaHi;

 if (IsHeapInitialized)
 {
 return;
 }

 arenaLo = OSGetMEM1ArenaLo();
 arenaHi = OSGetMEM1ArenaHi();

 // Create a heap
 // OSInitAlloc should only ever be invoked once.
 arenaLo = OSInitAlloc(arenaLo, arenaHi, 1); // 1 heap
 OSSetMEM1ArenaLo(arenaLo);

 // Ensure boundaries are 32B aligned
 arenaLo = (void*)OSRoundUp32B(arenaLo);
 arenaHi = (void*)OSRoundDown32B(arenaHi);

 // The boundaries given to OSCreateHeap should be 32B aligned
 OSSetCurrentHeap(OSCreateHeap(arenaLo, arenaHi));
 // From here on out, OSAlloc and OSFree behave like malloc and free
 // respectively
 OSSetMEM1ArenaLo(arenaLo=arenaHi);
 IsHeapInitialized = TRUE;

}

inline void* operator new (u32 blocksize)
{
 if (!IsHeapInitialized)
 {
 CPPInit();
 }
 return OSAllocFromHeap(HEAP_ID, blocksize);
}

© 2006-2009 Nintendo 17 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
inline void* operator new[] (u32 blocksize)
{
 if (!IsHeapInitialized)
 {
 CPPInit();
 }
 return OSAllocFromHeap(HEAP_ID, blocksize);
}

inline void operator delete (void* block)
{
 OSFreeToHeap(HEAP_ID, block);
}

inline void operator delete[] (void* block)
{
 OSFreeToHeap(HEAP_ID, block);
}

Note: The new definitions of the new and delete operators must occur before the Metrowerks Standard
Libraries are included (they must be earlier on the link line than the MSL libraries). Otherwise, the
Metrowerks new and delete operators will be used throughout your program.

3.5 Restrictions on Running Command Codes in the MEM2 Region

By default, it is prohibited to run command codes in the MEM2 region. You must use the following functions
to allow command codes to be placed and run in the MEM2 region with the RSO library.

Code 3–8 OSEnableCodeExecOnMEM* API

void OSENableCodeExecOnMEM2Lo8MB(void);
void OSENableCodeExecOnMEM2Lo16MB(void);

However, even if these functions are used, only the first 8 or 16 MB of the MEM2 region will be available.

Note: These restrictions were added in version 3.2 of the SDK.
RVL-06-0042-001-E 18 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
4 Error Handling and Notification

4.1 Error Display

One of the most common ways to handle errors or debug with the C standard library is to use printf and
assert. The Revolution OS provides some functions that are similar to these C standard library functions.

Code 4–1 Debugging Functions

void OSReport (const char* msg, …);
void OSVReport (const char* msg, va_list list);
void ASSERT (int expression);
void ASSERTMSG (int expression, char* msg);
void OSHalt (char* msg);

The OSReport function is the Revolution OS equivalent of the standard C printf function. Its output is
sent to the serial port on the development hardware. The OSVReport function accepts an additional
variable-argument list, but is otherwise the same as the OSReport function. The OSReport function in the
OS library may be replaced with a separate implementation during Wii application development. The
OSReport function is weakly defined by the OS library, so the definition for the separate implementation
will take precedence over it. The following is the source code for the OSReport function.

Code 4–2 OSReport Function

/*---*
 Name: OSReport()

 Description: Outputs a formatted message into the output port

 Arguments: msg pointer to a null-terminated string that contains
 the format specifications
 ... optional arguments

 Returns: None.
 ---/
__declspec(weak) void OSReport(const char* msg, ...)
{
 va_list marker;

 va_start(marker, msg);
 vprintf(msg, marker);
 va_end(marker);
}

__declspec(weak) void OSVReport(const char* msg, va_list list)
{
 vprintf(msg, list);
}

ASSERT is the equivalent of the standard C assert macro. When the _DEBUG macro has been defined,
ASSERT will display a message indicating that an assertion failed if expression evaluates to FALSE. A
message that includes the text in expression will be sent to the output port along with the filename and line
number at which ASSERT was invoked, and program execution will halt. ASSERT will do nothing if the
_DEBUG macro has not been defined. By default, the assertion failure message will be sent to the serial
port on the development hardware. When an assertion has failed, the following OSPanic function will be
called. The OSPanic function in the OS library may be replaced with a separate implementation during WIi
application development. The OSPanic function is weakly defined by the OS library, so the definition for
the separate implementation will take precedence over it.
© 2006-2009 Nintendo 19 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
Code 4–3 OSPanic Function

/*---*
 Name: OSPanic()

 Description: Outputs a formatted message into the output port with the
 filename and the line number. And then halts.

 Arguments: file should be __FILE__
 line should be __LINE__
 msg pointer to a null-terminated string that contains
 the format specifications
 ... optional arguments

 Returns: None.
 ---/
__declspec(weak) void OSPanic(const char* file, int line, const char* msg, ...)
{
 va_list marker;
 u32 i;
 u32* p;

 OSDisableInterrupts();
 va_start(marker, msg);
 vprintf(msg, marker);
 va_end(marker);
 OSReport(" in \"%s\" on line %d.\n", file, line);

 // Stack crawl
 OSReport("\nAddress: Back Chain LR Save\n");
 for (i = 0, p = (u32*) OSGetStackPointer(); // get current sp
 p && (u32) p != 0xffffffff && i++ < 16;
 p = (u32*) *p) // get caller sp
 {
 OSReport("0x%08x: 0x%08x 0x%08x\n", p, p[0], p[1]);
 }
 PPCHalt();
}

ASSERTMSG is nearly identical to ASSERT, but it will display the message specified by msg if expression
evaluates to FALSE when the _DEBUG macro has been defined. The message will be displayed in the
debugger log window along with the text in expression and both the filename and line number at which
ASSERTMSG was invoked, and program execution will halt. ASSERTMSG will do nothing if the _DEBUG
macro has not been defined.

OSHalt simply halts the program, outputting the message given by msg, along with the filename and line
number at which OSHalt was invoked.

Note: These debugging functions will not output their messages on retail hardware. You can use terminal
emulation software (such as TeraTerm) to confirm debugging message output from the serial port
on the development console to the serial port on a PC.

Note: When a device has been connected to Memory Card slot A, output may be cancelled and the
specified message will not be displayed to debugging output.

4.2 Memory Protection

The OSProtectRange function is used to configure access protection to some regions in internal main
memory (the MEM1 region).
RVL-06-0042-001-E 20 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Code 4–4 OSProtectRange Function

// Capability bits
#define OS_PROTECT_CONTROL_NONE 0x00
#define OS_PROTECT_CONTROL_READ 0x01 // OK to read [addr, addr + nBytes)
#define OS_PROTECT_CONTROL_WRITE 0x02 // OK to write [addr, addr + nBytes)
#define OS_PROTECT_CONTROL_RDWR (OS_PROTECT_CONTROL_READ | OS_PROTECT_CONTROL_WRITE)

// Error type for OSErrorHandler().
#define OS_ERROR_PROTECTION 15

// dsisr bits for memory protection error handler, which tells
// from which region the error was reported
#define OS_PROTECT0_BIT 0x00000001 // by OS_PROTECT_CHAN0 range
#define OS_PROTECT1_BIT 0x00000002 // by OS_PROTECT_CHAN1 range
#define OS_PROTECT2_BIT 0x00000004 // by OS_PROTECT_CHAN2 range
#define OS_PROTECT3_BIT 0x00000008 // by OS_PROTECT_CHAN3 range
#define OS_PROTECT_ADDRERR_BIT 0x00000010 // by [24M or 48M, 64M)

void OSProtectRange(u32 chan, void* addr, u32 nBytes, u32 control);

The addr argument will be truncated to the closest 1024-byte boundary, while the end address (addr +
nBytes) will be rounded up to the nearest 1024-byte boundary. Any memory access (from the Broadway
processor, the graphics processor, VI, DI, and so on) that violates the specified memory controls
(OS_PROTECT_CONTROL_*) will cause an external interrupt from the Hollywood to the Broadway
processor. When an exception occurs, the OSProtectRange function will call the error handler specified
by the OSSetErrorHandler function.

Note: The OSProtectRange function can only be set for internal main memory (the MEM1 region) and
memory-mapped I/O. This function cannot be set for external main memory (the MEM2 region).

Note: The OSProtectRange function flushes and invalidates the corresponding Broadway cache
blocks. As a result, the Broadway processor will first perform cache line reads for load and store
instructions directed at the specified region after the OSProtectRange function was called.
These cache line reads will cause an OS_ERROR_PROTECTION error if the code is run with
OS_PROTECT_CONTROL_WRITE or OS_PROTECT_CONTROL_NONE specified.

Code 4–5 OSSetErrorHandler Function

extern u32 __OSFpscrEnableBits; // for OS_ERROR_FPE. OR-ed FPSCR_*E bits
typedef void (*OSErrorHandler)(OSError error, OSContext* context, ...);
OSErrorHandler OSSetErrorHandler(OSError error, OSErrorHandler handler);

The OSSetErrorHandler function registers a handler for the specified error type (see Table 4–1 on
page 22). The error handler will catch exceptions generated by the Broadway processor.
© 2006-2009 Nintendo 21 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
All errors from OS_ERROR_SYSTEM_RESET to OS_ERROR_SYSTEM_INTERRUPT are caused by
exceptions generated by the Broadway processor. For these errors, OSErrorHandler takes as its third
and fourth arguments dsisr and dar, which are of type u32.

The error argument will indicate the error number that was generated. The context argument will contain
the Broadway register values, except for the FPU register context, at the time the error occurred. The FPU
registers are managed by the operating system to reduce context switch overhead, and are therefore not
manipulated by the error handler. The dsisr and dar arguments will contain the Broadway register values
when the error occurred.

Note (a): Do not set error handlers for OS_ERROR_EXTERNAL_INTERRUPT,
OS_ERROR_FLOATING_POINT, OS_ERROR_DECREMENTER, and OS_ERROR_SYSTEM_CALL.
These are used by the operating system.

Note (b): Do not set error handlers for OS_ERROR_PROGRAM, OS_ERROR_TRACE, and
OS_ERROR_BREAKPOINT when using the debugger. These are used by the debugging kernel.

An OS_ERROR_PROTECTION error will occur if the Broadway processor manipulates the memory range
between the last main memory address and 64 MB, or if the Hollywood chip detects a memory access that
violates the settings specified by the OSProtectRange function. The error argument will indicate the error
number that was generated (OS_ERROR_PROTECTION). The context argument will contain the Broadway
register values, except for the FPU register context, at the time that the protection error notification was
sent. An OS_ERROR_PROTECTION notification is sent asynchronously from the Hollywood to the Broadway
processor, so context will not contain the register context that existed when the memory protection

Table 4–1 Error Types

Number Defined Name Description Note

0 OS_ERROR_SYSTEM_RESET System reset exception

1 OS_ERROR_MACHINE_CHECK Machine check exception

2 OS_ERROR_DSI DSI exception

3 OS_ERROR_ISI ISI exception

4 OS_ERROR_EXTERNAL_INTERRUPT External interrupt exception (a)

5 OS_ERROR_ALIGNMENT Alignment exception

6 OS_ERROR_PROGRAM Program exception (b)

7 OS_ERROR_FLOATING_POINT Unusable floating-point exception (a)

8 OS_ERROR_DECREMENTER Decrementer exception (a)

9 OS_ERROR_SYSTEM_CALL System call exception (a)

10 OS_ERROR_TRACE Trace exception (b)

11 OS_ERROR_PERFORMANCE_MONITOR Performance monitor exception

12 OS_ERROR_BREAKPOINT Instruction address break point exception (b)

13 OS_ERROR_SYSTEM_INTERRUPT System management interrupt exception

14 OS_ERROR_THERMAL_INTERRUPT Temperature interrupt exception

15 OS_ERROR_PROTECTION Memory protection error

16 OS_ERROR_FPE Floating-point exception
RVL-06-0042-001-E 22 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
exception occurred. The FPU registers are managed by the operating system to reduce context switch
overhead and are therefore not manipulated by the error handler. The dar argument will contain the
physical memory address at which the memory protection violation occurred. The dsisr argument will
contain either OS_PROTECT_ADDRERR_BIT or one of the OS_PROTECT* values.

The OS_ERROR_FPE error will only occur when an error handler has been set by OSSetErrorHandler.
Setting an error handler for OS_ERROR_FPE will allow floating-point exceptions, such as a division by zero,
to be caught at runtime. The error argument will indicate the error number that was generated
(OS_ERROR_FPE). The context argument will contain the Broadway register values, including the FPU
register context, at the time that the floating-point exception notification was sent. The error handler can
manipulate the FPU registers; when it is finished, the FPU registers will be applied to the thread that raised
the exception. The dsisr and dar arguments will contain the Broadway register values when the error
occurred. The context->fpscr bits will indicate the following types of floating-point exceptions.

To enable precise floating-point exceptions in the Broadway processor, the OSSetErrorHandler
function will set the MSR[FE0] and MSR[FE1] bits in every thread, including threads that are created later,
when the error handler is configured. Each thread’s fpscr bits will be initialized, as well, by taking the
bitwise OR of the __OSFpscrEnableBits global variable. By default, __OSFpscrEnableBits will set
the VE, OE, UE, ZE, and XE bits (all bits will be enabled). You can set __OSFpscrEnableBits to a bitwise
OR of the following valid bits to control the types of floating-point exceptions that will cause an
OS_ERROR_FPE error.

Note: Once the OS_ERROR_FPE error handler has been set, do not change the value of
__OSFpscrEnableBits until the OS_ERROR_FPE handler has been removed.

You can find a demo program that shows how to use the OS_ERROR_FPE handler at the following location.

$REVOLUTION_SDK_ROOT/build/demos/osdemo/src/fpe.c

Table 4–2 fpscr Bits

fpscr Bits Description

FPSCR_VX Invalid operation exception

FPSCR_OX Overflow exception

FPSCR_UX Underflow exception

FPSCR_ZX Divide-by-zero exception

FPSCR_XX Inaccuracy exception

Table 4–3 __OSFpscrEnableBits Bits

__OSFpscrEnableBits Bit Description

FPSCR_VE Enables invalid operation exceptions

FPSCR_OE Enables overflow exceptions

FPSCR_UE Enables underflow exceptions

FPSCR_ZE Enables divide-by-zero exceptions

FPSCR_XE Enables innacuracy exceptions
© 2006-2009 Nintendo 23 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
When the OS is initialized, a default error handler is registered for all error types that send an error
message to serial output. As shown in the following example, the default error handler will send the cause
of the exception, the exception number, registers, and a stack trace to serial output. Games can register an
error handler to overwrite the default handler, as necessary, except for items mentioned in notes (a) and
(b) from Table 4–1 on page 22.

Unhandled Exception 15(Protection error)
------------------------- Context 0x80182c98 -------------------------
r0 = 0x8001671c (-2147391716) r16 = 0x00000000 (0)
r1 = 0x801f7a50 (-2145420720) r17 = 0x00000000 (0)
r2 = 0x801f0920 (-2145449696) r18 = 0x00000000 (0)
r3 = 0x80281670 (-2144856464) r19 = 0x00000000 (0)
r4 = 0x801f7c48 (-2145420216) r20 = 0x00000000 (0)
r5 = 0x80255208 (-2145037816) r21 = 0x80255208 (-2145037816)
r6 = 0x802551a0 (-2145037920) r22 = 0x802551a0 (-2145037920)
r7 = 0x00000001 (1) r23 = 0x801f7c48 (-2145420216)
r8 = 0x80140000 (-2146172928) r24 = 0x00000000 (0)
r9 = 0x00000018 (24) r25 = 0x00000000 (0)
r10 = 0x801f7bb0 (-2145420368) r26 = 0x801f7c48 (-2145420216)
r11 = 0x801f7b70 (-2145420432) r27 = 0x80281c1c (-2144855012)
r12 = 0x80018078 (-2147385224) r28 = 0x00000001 (1)
r13 = 0x801ef720 (-2145454304) r29 = 0x80281670 (-2144856464)
r14 = 0x00000000 (0) r30 = 0x80281670 (-2144856464)
r15 = 0x00000000 (0) r31 = 0x801f7a50 (-2145420720)
LR = 0x800180ac CR = 0x84000088
SRR0 = 0x800180c8 SRR1 = 0x0000b032

GQRs----------
gqr0 = 0x00000000 gqr4 = 0x00060006
gqr1 = 0x00000000 gqr5 = 0x00070007
gqr2 = 0x00040004 gqr6 = 0x05070507
gqr3 = 0x00050005 gqr7 = 0x08070807

FPRs----------
fr0 = 255 fr1 = 0
fr2 = 0 fr3 = 0
fr4 = 255 fr5 = 0
fr6 = 0 fr7 = 0
fr8 = 0 fr9 = 0
fr10 = 0 fr11 = 0
fr12 = 0 fr13 = 0
fr14 = 0 fr15 = 0
fr16 = 0 fr17 = 0
fr18 = 0 fr19 = 0
fr20 = 0 fr21 = 0
fr22 = 0 fr23 = 0
fr24 = 0 fr25 = 0
fr26 = 0 fr27 = 0
fr28 = 0 fr29 = 0
fr30 = 0 fr31 = 0

PSFs----------
ps0 = 0xffffffff ps1 = 0x0
ps2 = 0x0 ps3 = 0x0
ps4 = 0xffffffff ps5 = 0x0
ps6 = 0x0 ps7 = 0x0
ps8 = 0x0 ps9 = 0x0
ps10 = 0x0 ps11 = 0x0
ps12 = 0x0 ps13 = 0x0
ps14 = 0x0 ps15 = 0x0
ps16 = 0x0 ps17 = 0x0
ps18 = 0x0 ps19 = 0x0
ps20 = 0x0 ps21 = 0x0
RVL-06-0042-001-E 24 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
ps22 = 0x0 ps23 = 0x0
ps24 = 0x0 ps25 = 0x0
ps26 = 0x0 ps27 = 0x0
ps28 = 0x0 ps29 = 0x0
ps30 = 0x0 ps31 = 0x0

Address: Back Chain LR Save
0x801f7a50: 0x801f7bb0 0x80018bac
0x801f7bb0: 0x801f7c20 0x8001671c
0x801f7c20: 0x801f7ca0 0x80016278
0x801f7ca0: 0x801f7e90 0x800088d8
0x801f7e90: 0x801f7ec0 0x80013c60
0x801f7ec0: 0x801f95a0 0x800068a8
0x801f95a0: 0x801f95b0 0x8000fd88
0x801f95b0: 0xffffffff 0x800041bc

DSISR = 0x00000010 DAR = 0x03225000
TB = 0x0035b3f2f7531eed

AI DMA Address = 0x00000000
ARAM DMA Address = 0x01000020
DI DMA Address = 0x00000000

Last interrupt (25): SRR0 = 0x800180c8 TB = 0x0035b3f2f7531c91

The information in the error output above can be described as follows.

• Unhandled Exception 15(Protection error): The exception that was sent as a notification
from the protection unit.

• Context 0x80182c98: The address at which the context (OSContext structure) is stored.

• r0–SRR1: Status of the Broadway general-purpose registers.

• gqr0–gqr7: Status of the Broadway GQR registers.

• fr0–fr31: Status of the Broadway floating-point registers.

• ps0–ps31: Values of the Broadway paired-single registers.

• Address: Back Chain LR Save: Stack trace.

• DSISR: Cause of the exception (0x00000010 is equal to OS_PROTECT_ADDRERR_BIT, and indicates
that memory access exceeded 64 MB)

• DAR: Address at which data was accessed.

• TB: Value of the Time Base register (the value obtained from the OSGetTime function).

• AI DMA Address: AI DMA address.

• ARAM DMA Address: ARAM DMA address.

• DI DMA Address: DI DMA address.

• Last interrupt: The value of the MSR and Time Base register the last time an interrupt occurred.
© 2006-2009 Nintendo 25 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
5 Cache Control

5.1 Cache Description

The Broadway CPU has separate instruction and data L1 caches, each 32 KB, and one unified L2 cache of
256 KB. Applications do not need to pay attention to L2 cache coherency, which is preserved in hardware
using bus snooping. However, applications do need to preserve L1 cache coherency. The following are
situations in which applications must pay attention to cache coherency.

• DMA-related memory operations

Exercise caution with the cache coherency of memory used for DMA operations within functions, such
as those in the DVD, AI, and VI libraries.

• GX FIFO

The GX FIFO is sent through the Broadway write-gather pipe. As a result, be careful when the CPU
accesses memory allocated to the FIFO.

• External framebuffer (XFB) operations from the CPU

The VI library accesses main memory directly, so the XFB must be treated with caution.

• Texture creation and manipulation from the CPU

The I/D L1 caches are 8-way set-associative. There are 128 sets, each consisting of 8 ways. Each way, or
cache line, is 32 bytes. This effectively means that up to 8 cache lines can hash to the same cache set
before a cache line in the set is cast out.

After OSInit, the caches are initialized to be enabled and write-back. This means that data stores are
held in the cache until the cache line is written out to physical memory, typically when the line is cast out.
Thus, the information in the caches is not consistent with physical memory. Ordinarily, this is only an issue
if an external device or processor needs the most up-to-date data. The APIs in this section help deal with
cache coherency.
RVL-06-0042-001-E 26 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Figure 5–1 Normal Cache Lookup

5.2 Cache Incoherence

The following code sequence demonstrates how memory can be viewed differently by cached and
uncached access:

Code 5–1 Cached and Uncached Access to Memory

#include <revolution.h>

void main (void)
{
u32* cachedAddress = (u32*)OSGetMEM1ArenaLo();
u32* uncachedAddress = OSCachedToUncached(cachedAddress);

 *cachedAddress = 42;
 *uncachedAddress = 24;
}

Even though both cachedAddress and uncachedAddress reference the same physical location in
memory, they give different values. If you print each of the pointer values, the cachedAddress variable
will give the copy that is in the cache, while the uncachedAddress variable will give the copy that is in
physical memory.

Target address

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7SET 0

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7SET 1

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7SET N

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7SET 127

Hash to set

Compare
against all 8

blocks

Each "way" is a 32
byte cache line.

Target address is hashed to a set, then compared with all 8 ways
© 2006-2009 Nintendo 27 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The following APIs provide basic address translation between the cached and uncached address
segments:

Code 5–2 Address Translation

void* OSCachedToUncached(const void* addr);
void* OSUncachedToCached(const void* addr);

5.3 Basic Cache Management

To ensure that all devices and processors are viewing the same data in physical memory, it may be
necessary to force the cache to write back data to physical memory on demand, or perhaps to update its
local copy of data. Three kinds of operations are available on ranges of memory that may be residing in the
cache:

• Store – Performing a “store” operation on a range of memory forces the cache to write back any
modified data in lines that correspond to that range.

Note: The data in the cache will remain there.

• Invalidate – Performing an “invalidate” operation on a range of memory forces the cache to
immediately discard any cache lines corresponding to that memory range. In effect, the data range no
longer resides in the cache. This is a destructive operation—any modified data in the cache will be
lost. Subsequent accesses to this memory range will reload the data from physical memory into the
cache.

• Flush – Performing a “flush” operation is similar to a store + invalidate operation. The cache writes
back any lines that correspond to that range (if modified) and invalidates the corresponding cache
lines. Subsequent accesses to this memory range will fault in the cache lines.
RVL-06-0042-001-E 28 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
The following example demonstrates the different effects of storing or invalidating cache lines:

Code 5–3 Storing and Invalidating Cache Lines

#include <revolution.h>

void main (void)
{
 u32* cachedAddress;
 u32* uncachedAddress;

 cachedAddress = (u32*)OSGetMEM1ArenaLo();
 uncachedAddress = OSCachedToUncached(cachedAddress);

 OSReport(“OS OVERVIEW – CACHE MANAGEMENT DEMO\n”);
 OSReport("STORE EXAMPLE\n");
 *cachedAddress = 0xFFFF;
 *uncachedAddress = 0xAAAA;

 OSReport("Cache copy = 0x%x\n", *cachedAddress);
 OSReport("Physical memory copy = 0x%x\n", *uncachedAddress);

 DCStoreRange(cachedAddress, sizeof(u32));

 OSReport("After STORE, Cache copy = 0x%x\n",
 *cachedAddress);

 OSReport("After STORE, Physical memory copy = 0x%x\n",
 *uncachedAddress);

 OSReport("\nINVALIDATE EXAMPLE\n");
 *cachedAddress = 0xFFFF;
 *uncachedAddress = 0xAAAA;

 OSReport("Cache copy = 0x%x\n", *cachedAddress);
 OSReport("Physical memory copy = 0x%x\n", *uncachedAddress);

 DCInvalidateRange(cachedAddress, sizeof(u32));

 OSReport("After INVALIDATE, Cache copy = 0x%x\n",
 *cachedAddress);

 OSReport("After INVALIDATE, Physical memory copy = 0x%x\n",
 *uncachedAddress);

 OSHalt("Demo complete");
}

The “DC” prefix stands for “data cache.” (An “IC” prefix in other APIs refers to “instruction cache”-related
functions.) The output of the preceding program is:

Code 5–4 Store and Invalidate Output Sample

STORE EXAMPLE
Cache copy = 0xFFFF
Physical memory copy = 0xAAAA
After STORE, Cache copy = 0xFFFF
After STORE, Physical memory copy = 0xFFFF

INVALIDATE EXAMPLE
Cache copy = 0xFFFF
Physical memory copy = 0xAAAA
After INVALIDATE, Cache copy = 0xAAAA
After INVALIDATE, Physical memory copy = 0xAAAA
© 2006-2009 Nintendo 29 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The relevant APIs for both instruction and data cache flushing are:

Code 5–5 Data and Instruction Cache APIs

void DCFlushRange (void* startAddr, u32 nBytes);
void DCFlushRangeNoSync (void* startAddr, u32 nBytes);
void DCInvalidateRange (void* startAddr, u32 nBytes);
void DCStoreRange (void* startAddr, u32 nBytes);
void DCStoreRangeNoSync (void* startAddr, u32 nBytes);
void DCZeroRange (void* startAddr, u32 nBytes);
void ICInvalidateRange (void* startAddr, u32 nBytes);

void PPCSync (void);

In each of these routines, startAddr will be rounded down to the closest 32-byte boundary, while the end
address (startAddr + nBytes) will be rounded up to the closest 32-byte boundary. This is to align the region
to cache line boundaries.

DCStoreRange attempts to write back memory in nBytes starting from startAddr. Only modified data in the
cache within that range will be written back.

Note: This function will perform a PPCSync operation. That is, it will stall the CPU until all data has been
flushed to main memory. To avoid this overhead (for example, if you wish to store multiple, non-
contiguous ranges), use DCStoreRangeNoSync.

DCStoreRangeNoSync behaves identically to DCStoreRange, except that it does not perform a
PPCSync operation. Therefore, it is not guaranteed that any modified data has been sent to main memory
until you perform a PPCSync (or call DCStoreRange).

DCZeroRange will clear the cache blocks associated with the nBytes of memory starting from startAddr.
All bytes in the range will be zeroed. If the caches are disabled or if the addresses are marked uncached,
an alignment exception will be generated.

DCInvalidateRange attempts to invalidate nBytes of memory, starting from startAddr. All lines within
that range will be discarded.

DCFlushRange flushes nBytes of memory, starting from startAddr. This is effectively the same as calling
DCStoreRange, followed by DCInvalidateRange, but it is more efficient. DCFlushRange performs a
PPCSync operation, so it will not return until any modified data has been written to memory. To avoid this
overhead (e.g. if you want to flush multiple, non-contiguous ranges), use DCFlushRangeNoSync.

DCFlushRangeNoSync behaves identically to DCFlushRange, except that it does not perform a
PPCSync operation. Therefore, it is not guaranteed that any modified data has been sent to main memory
until you perform a PPCSync (or call DCFlushRange).

PPCSync is not a cache control API, per se. It flushes all pending I/O traffic from the CPU to main memory,
and is thus necessary whenever the application requires that memory be updated appropriately. For
instance, after flushing data from the cache for use by the Graphics Processor (GP), PPCSync may be
needed to ensure that the data is really in main memory before the GP accesses it. PPCSync can take a
significant amount of time, so indiscriminate use of this function may adversely affect performance.

5.3.1 Efficiency

Cache operations map almost directly to the low-level instructions that manipulate the cache at the cache
line level. Thus, all operations complete in O(n) time in the number of cache lines in the range.
RVL-06-0042-001-E 30 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
5.4 Locked Cache Operation

One of the key features of the Broadway CPU is its ability to use the L1 data cache in one of two modes:

• Normal mode functions as a 32 KB 8-way set-associative cache.

• Locked Cache mode partitions into a 16 KB four-way set-associative cache, and a 16 KB scratchpad
buffer with DMA engine.

Figure 5–2 L1 Data Cache Configured in Locked Cache Mode

The locked cache allows applications to manage the cache explicitly and efficiently as if it were a
scratchpad buffer.

5.4.1 Locked Cache API Overview

The locked cache API presents the locked cache memory region as a piece of scratchpad memory. By
default, the locked cache is disabled and no scratchpad region is set. A call to LCEnable enables the
locked cache, and a pointer to the scratchpad region can be retrieved with the LCGetBase function. The
OS maps the locked cache to a region outside of physical memory so that no real main memory is wasted.

The locked cache is particularly useful in places that require improved performance, but—because it takes
time to enable and/or disable the locked cache—on the Wii console, we recommend leaving the locked
cache enabled throughout the execution of game, although it is primarily useful where code must be as
efficient as possible. The programming model for using the locked cache requires that the program
process data using multiple buffers. As one buffer’s contents are being computed, the other buffer(s) are
DMA-ed in and out. This model is demonstrated in the locked cache demo programs.

Way 0 Way 1 Way 2 Way 3SET 0

Way 0 Way 1 Way 2 Way 3SET 1

Way 0 Way 1 Way 2 Way 3SET N

Way 0 Way 1 Way 2 Way 3SET 127

4-way set-associative cache
(16K)

Scratchpad
(16K)
© 2006-2009 Nintendo 31 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
LCEnable and LCDisable respectively enable or disable the locked cache at runtime. However, the
costs for doing so are non-trivial and should be weighed carefully against the benefits of having a full 32KB
L1 data cache for part of the game’s execution. "5.4.6 Enabling and Disabling the Locked Cache" on page
36 provides an estimate of the cycle cost of this API.

5.4.2 DMA Engine

The Broadway CPU uses a DMA engine to move data into and out of the locked cache partition efficiently.
The DMA engine has a queue of up to 15 outstanding transactions. Each transaction can transfer up to
128 cache blocks (4 KB).

The locked cache API has high-level “load data” and “store data” functions (LCLoadData and
LCStoreData) that will break up a requested transfer size into the appropriate transactions. It also
provides lower-level functions (LCLoadBlocks and LCStoreBlocks) that work on the granularity of a
single DMA transaction. These latter functions have the advantage of lower overhead, but they impose
restrictions on arguments and maximum transfer size, and perform no error checking.

The DMA transactions occur asynchronously, and there is no way to receive an interrupt or event from the
chip, indicating that any transactions have completed. As a result, the program must poll the length of the
transaction queue. We provide a simple and fast routine, LCQueueWait, to stall the CPU until the
transaction queue reaches a certain length. As you will see in the locked cache demos, it is easy to
analyze how many outstanding DMA transactions you must wait for—in the current paradigm, each buffer
has, at most, one store request and one load request pending. Note, however, that the number of DMA
transactions making up a store or load request depends on the size of the request.

5.4.3 Basic Locked Cache API and Demos

The following demo programs perform an operation, ProcessBuf, on blocks of a large array, and then
commit those changes back to main memory. Two locked cache regions are used; while one is being
processed, the other is storing older processed data to memory, and also loading to the next buffer.

Code 5–6 Basic Locked Cache Demo

// define 2 8k buffers in locked cache region
// NOTE: NUMBUFFERS * BUFFER_SIZE <= 16k
#define BUFFER_SIZE (8*1024)
#define NUM_BUFFERS (2)

#define DATA_ELEMENTS (10*1024*1024)
:

// real mem loc of Buffers[i] is at BufAddr[i]
u8* Buffers[NUM_BUFFERS];
u8* BufAddr[NUM_BUFFERS];
:

void main ()
{
 u8* data;
 u8* currDataPtr; // offset into data
 u32 i;
 void* arenaLo;
 void* arenaHi;
 u32 numTransactions;

 LCEnable();

 arenaLo = OSGetMEM1ArenaLo();
 arenaHi = OSGetMEM1ArenaHi();
 :
 OSReport("Splitting locked cache into %d buffers\n", NUM_BUFFERS);
RVL-06-0042-001-E 32 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
 for (i = 0; i < NUM_BUFFERS; i++)
 {
 Buffers[i] = (u8*) ((u32)LCGetBase() + BUFFER_SIZE*i);
 OSReport("Locked Cache : Allocated %d bytes at 0x%x\n",
 BUFFER_SIZE,
 Buffers[i]);
 }

 // Initialize source data
 data = (u8*)OSAlloc(DATA_ELEMENTS * sizeof(u8));
 :
 DCFlushRange(data, DATA_ELEMENTS);

 OSReport(" Test 1 : using high level interface for DMA load/store \n");

 for (i = 0; i < NUM_BUFFERS; i++)
 {
 BufAddr[i] = data + BUFFER_SIZE*i;
 numTransactions = LCLoadData(Buffers[i], BufAddr[i], BUFFER_SIZE);
 }

 currDataPtr = data + BUFFER_SIZE * NUM_BUFFERS;

 LCQueueWait((NUM_BUFFERS-1) * 4);

 while (currDataPtr <= data+DATA_ELEMENTS)
 {
 for (i = 0; i < NUM_BUFFERS; i++)
 {
 LCQueueWait((NUM_BUFFERS-1)*numTransactions); // prevstore + prevload, each takes 2
 ProcessBuf(Buffers[i]);
 LCStoreData(BufAddr[i], Buffers[i], BUFFER_SIZE);
 BufAddr[i] = currDataPtr; // move to next unprocessed buffer
 LCLoadData(Buffers[i], BufAddr[i], BUFFER_SIZE);
 // advance the next block to be read
 currDataPtr += BUFFER_SIZE;
 }
 }
 LCQueueWait(numTransactions); // don't care about last dma's
 :

 OSHalt("Test complete");
}

The code uses currDataPtr to keep track of the next real data that should be processed. The Buffers array
points to the locked cache buffers, and the BufAddr array points to the actual physical buffers in main
memory that are being mirrored. Thus, the buffer in Buffers[1] should be stored out to BufAddr[1].

Because we are using 8KB buffers, one single DMA transaction is insufficient to perform a full load or
store. Therefore, we remember the number of DMA transactions created by each request in
numTransactions, and we know exactly how many entries can be in the DMA queue at any time. In this
multi-buffer case, we know that we are ready to process the next buffer whenever there is at most one load
and one store pending for all the other buffers.

The locked cache API calls used in this demo are listed here:
© 2006-2009 Nintendo 33 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
Code 5–7 Basic Locked Cache Functions

void LCEnable (void);
void* LCGetBase (void);
u32 LCLoadData (void* destAddr, void* srcAddr, u32 nBytes);
u32 LCStoreData (void* destAddr, void* srcAddr, u32 nBytes);
void LCQueueWait (u32 len);

LCEnable turns on the locked cache facility. By default, the L1 data cache is configured as a 32KB eight-
way set-associative cache. See "5.4.6 Enabling and Disabling the Locked Cache" on page 36 for a more
detailed description of this function.

LCGetBase returns the base address of the locked cache region. Addresses from LCGetBase() to
LCGetBase()+16KB will hit in the locked cache region.

LCLoadData queues the DMA transactions needed to load data into the locked cache at destAddr from
main memory at srcAddr. The number of issued transactions is returned. All arguments should be 32-byte
aligned. If the memory region specified by destAddr is not in the locked cache, a machine check will occur
when the DMA engine processes the transaction request.

LCStoreData queues the DMA transactions needed to send data from the locked cache at srcAddr to
main memory at destAddr. The number of issued transactions is returned. All arguments should be 32-byte
aligned. If the memory region specified by srcAddr is not in the locked cache, a machine check will occur
when the DMA engine processes the transaction request.

LCQueueWait polls the DMA queue length until it is less than or equal to len.

5.4.4 Low-Level Locked Cache API and Demos

The next demo uses four 4KB buffers and demonstrates the use of the low-level locked cache API.

Code 5–8 Low-Level Locked Cache Demo

// define 4 4k buffers in locked cache region
// NOTE: NUMBUFFERS * BUFFER_SIZE <= 16k
#define BUFFER_SIZE (4*1024)
#define NUM_BUFFERS (4)

#define DATA_ELEMENTS (10*1024*1024)
:

// real mem loc of Buffers[i] is at BufAddr[i]
u8* Buffers[NUM_BUFFERS];
u8* BufAddr[NUM_BUFFERS];
:

void main ()
{
 u8* data;
 u8* currDataPtr; // offset into data
 u32 i;
 void* arenaLo;
 void* arenaHi;

 LCEnable();

 arenaLo = OSGetMEM1ArenaLo();
 arenaHi = OSGetMEM1ArenaHi();
 :

 OSReport("Splitting locked cache into %d buffers\n", NUM_BUFFERS);
RVL-06-0042-001-E 34 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
 for (i = 0; i < NUM_BUFFERS; i++)
 {
 Buffers[i] = (u8*) ((u32)LCGetBase() + BUFFER_SIZE*i);
 OSReport("Locked Cache : Allocated %d bytes at 0x%x\n",
 BUFFER_SIZE,
 Buffers[i]);
 }

 // Initialize source data
 data = (u8*)OSAlloc(DATA_ELEMENTS * sizeof(u8));
 :
 DCFlushRange(data, DATA_ELEMENTS);

 OSReport(" Test 2 : using low level interface for DMA load/store \n");

 for (i = 0; i < NUM_BUFFERS; i++)
 {
 BufAddr[i] = data + BUFFER_SIZE*i;
 LCLoadBlocks(Buffers[i], BufAddr[i], 0);
 }

 currDataPtr = data + BUFFER_SIZE * NUM_BUFFERS;

 LCQueueWait((NUM_BUFFERS-1));

 while (currDataPtr <= data+DATA_ELEMENTS)
 {
 for (i = 0; i < NUM_BUFFERS; i++)
 {
 LCQueueWait((NUM_BUFFERS-1)*2);
 ProcessBuf(Buffers[i]);
 LCStoreBlocks(BufAddr[i], Buffers[i], 0);
 LCLoadBlocks(Buffers[i], currDataPtr, 0);
 BufAddr[i] = currDataPtr; // move to next unprocessed buffer
 // advance the next block to be read
 currDataPtr += BUFFER_SIZE;
 }
 }
 LCQueueWait(NUM_BUFFERS); // don't care about last dma's
 :
 OSHalt("Test complete");
}

This example looks remarkably like the first locked cache demo, except that it uses four 4KB buffers
because these fit in exactly one DMA transaction.

Note: The value used for LCQueueWait is (NUM_BUFFERS-1)*2. This means we know that there can
be two transactions (a store and a load) for each buffer, and that we will want to proceed as soon
as the two oldest transactions (i.e., the store and load for the buffer we want to use) have been
committed.

The functions used in this code are detailed here:

Code 5–9 Low-Level Locked Cache Load/Store Functions

void LCLoadBlocks (void* destTag, void* srcAddr, u32 numBlocks);
void LCStoreBlocks (void* destAddr, void* srcTag, u32 numBlocks);
© 2006-2009 Nintendo 35 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
LCLoadBlocks queues a single DMA transaction to load data into the locked cache at destTag from main
memory at srcAddr. This function imposes a maximum transaction limit of 128 cache blocks (4KB), and
performs no error checking. Addresses are assumed to be 32-byte aligned, and numBlocks is assumed to
be between 0-127.

Note: A value of 0 for numBlocks implies a transaction size of 128 blocks. There is no error checking to
ensure that the arguments conform to these requirements.

LCStoreBlocks queues a single DMA transaction for moving data in the locked cache to main memory.
This function has the same argument restrictions as LCLoadBlocks.

5.4.5 Additional Locked Cache Functions

There are a few more locked cache functions not used in these demos:

Code 5–10 Additional Locked Cache Functions

void LCDisable (void);
u32 LCQueueLength (void);
void LCFlushQueue (void);

LCEnable and LCDisable respectively enable or disable the locked cache mode. By default, the locked
cache is disabled at boot time. See "5.4.6 Enabling and Disabling the Locked Cache" on page 36 for more
details.

LCQueueLength returns the current length of the DMA queue. It performs a sync instruction that flushes
all current memory transactions and the execution queue to ensure that the queue length value is
accurate. It is more efficient to poll the queue length with LCQueueWait.

LCFlushQueue simply flushes the DMA queue and issues a sync instruction to wait until all active DMA
transactions are committed.

5.4.6 Enabling and Disabling the Locked Cache

The locked cache is disabled by default. Enabling the locked cache is a relatively lengthy process. First,
the cache must be flushed entirely, as any modified data trapped in the locked cache will be lost. Since
there are no instructions that do this automatically, LCEnable touches and stores a 32KB region of the
address space. Touching forces existing lines back to memory, while storing ensures that any modified
lines that were already in the cache are flushed back.

After that, the locked cache can be enabled, and cache tags must be allocated for the scratchpad partition.
LCEnable will disable interrupts for this entire sequence to ensure that the cache is not contaminated. Our
current cycle counts indicate that all of this work can take between 15,000 to 19,510 cycles (i.e., 20.5 to
26.8 microseconds), depending on how much modified data in the cache must be flushed to main memory.

Note: While enabling the locked cache, LCEnable will also use DBAT3 (data block address translation
register) to map in the addresses that it assigns to the locked cache.

Disabling the locked cache involves invalidating all of the scratchpad memory addresses to prevent them
from being cast out, as they are not backed by physical memory. This can take approximately 2000 cycles
(2.8 microseconds).

Our measurements of the end-to-end overhead of enabling and disabling the locked cache show this to
cost between 17,000 and 22,000 cycles (23.3 – 30.2 microseconds).

Note: There are second-order effects not reflected in these measurements. For instance, after
LCEnable has been called, the entire L1 data cache will have been flushed and subsequent
memory accesses will miss. In addition, interrupts are disabled during LCEnable, which can delay
interrupt handling.
RVL-06-0042-001-E 36 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
In any case, make sure that the benefits of having a full 32KB L1 data cache for part of a game’s execution
outweigh the costs of disabling and enabling the locked cache.

5.4.7 Dangers in Using the Locked Cache

Because the Revolution OS maps the locked cache addresses outside of the physical memory space (i.e.,
addresses are not backed by physical memory), there are certain dangers that go with using the locked
cache.

First, if your application oversteps the boundaries of the locked cache region, you will receive an interrupt
from the processor interface (PI) indicating that you have attempted to access invalid physical memory.
Because your only notification is an asynchronous interrupt, there is no way to know exactly which part of
your code caused the errant access, although the error message will alert you to the bad address you
attempted to access.

Second, if you write extremely tight loops, the branch prediction hardware on the CPU may cause parts of
a loop to be executed beyond the boundaries that you have set. For instance, consider the following simple
loop:

Code 5–11 Dangerous Loop in the Locked Cache

void ProcessBuf(u8* buffer)
{
 u32 i;

 for (i = 0; i < BUFFER_SIZE; i++)
 {
 buffer[i] = (u8)(buffer[i] + (u8)0xA);
 }
}

There is a chance that the CPU will execute the loop one more time than you expect. The results will not
actually be committed because the CPU will realize that it predicted the branch incorrectly. However, this
loop may cause the CPU to fetch the data at buffer[BUFFER_SIZE], even though the loop says to stop
when i reaches BUFFER_SIZE. In cases where the buffer array extends to the end of the locked cache,
you will receive an interrupt from the PI because buffer[BUFFER_SIZE] is 1 byte outside the locked
cache region.

Note: Because the processor can execute instructions on a predicted branch only speculatively, it will not
actually execute any stores or update any registers.

There are two potential solutions to this problem:

• Always pad the ends of your buffers in the locked cache (i.e., never use the last byte of the locked
cache). This way, spurious loads at the ends of your loops will be handled safely.

• Pad the beginning of your loop with instructions that do not load from the locked cache. Although your
code will probably look like that already, it is important to be aware of this problem.
© 2006-2009 Nintendo 37 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
6 Time
The Revolution OS has several time-related features.

• Battery-backed clock: Records the current date and time. The battery-backed clock will not be
managed by the application.

• Real-time clock: Based on the Broadway’s 64-bit time base register, it increments about every 16.5
nanoseconds (12 CPU cycles)

• Alarm: 64-bit one-short/periodic alarm with 16-nanosecond accuracy

6.1 Real-Time Clock

The Broadway CPU has a 64-bit time base register. This time base register increments every 12 CPU
cycles, or about 16.5 nanoseconds. At boot time, the OS initializes this time base register to the number of
ticks since 0:00 AM January 1, 2000.

The Revolution OS only provides APIs to read the time base register. The time base register must not be
modified by an application program, since several system libraries, including OS and audio, reference the
time base register for implementing time-critical code.

The Revolution OS provides two time types. The basic units of time are OSTime and OSTick. An OSTime
value is a signed 64-bit value, while an OSTick value is an unsigned 32-bit value.

The APIs to get the time base register value are as follows:

Code 6–1 Time APIs

OSTick OSGetTick (void);
OSTime OSGetTime (void);

#define OSDiffTick(tick1, tick0) …

// the following macros can actually act on OSTime (64-bit) values as well
#define OSTicksToSeconds(ticks) …
#define OSTicksToMilliseconds(ticks) …
#define OSTicksToMicroseconds(ticks) …
#define OSSecondsToTicks(sec) …
#define OSMillisecondsToTicks(msec) …
#define OSMicrosecondsToTicks(usec)

OSTime OSCalendarTimeToTicks(OSCalendarTime* ct);
void OSTicksToCalendarTime(OSTime ticks, OSCalendarTime* ct); …

OSGetTick returns the lower 32 bits of the Broadway time base register.

OSGetTime allows the application to read the full 64-bit value of the time base.

OSDiffTick computes the differences between two ticks: tick1 – tick0. If two ticks measured by
OSGetTick are within a range of 35 seconds, OSDiffTick returns the correct number of ticks as a
signed 32-bit value (even if tick1, measured later, is smaller than tick0 as an unsigned 32-bit value).

In addition, several translation functions and macros are available to ease the transition from CPU ticks to
conventional time metrics and vice versa.

Note: These macro functions work on OSTime values as well.
RVL-06-0042-001-E 38 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
6.2 Alarm

The Revolution OS provides high-resolution alarms that can be used to schedule events in the future.
These alarms have the same accuracy as the real-time clock. They use 64-bit counters and can thus
trigger events at virtually anytime in the future.

These alarms use the Broadway decrementer register. The application will set the time for an alarm and
call the alarm function. When the specified time has elapsed, a decrementer exception will be raised, and
the handler for that exception will invoke the alarm handler. The following program demonstrates how to
set up and handle an alarm:

Code 6–2 Timer Program

#include <revolution.h>

#define PERIOD 5 // sec

OSAlarm Alarm;

static void AlarmHandler(OSAlarm* alarm, OSContext* context)
{
 #pragma unused(alarm, context)
 OSTime t;

 t = OSGetTime();
 OSReport("Alarm at %lld.%03lld [sec]\n",
 OSTicksToSeconds(t),
 OSTicksToMilliseconds(t) % 1000);
}

void main(void)
{
 OSTime now;

 now = OSGetTime();
 OSReport("The time now is %lld.%03lld [sec]\n",
 OSTicksToSeconds(now),
 OSTicksToMilliseconds(now) % 1000);
 OSReport("Initializing period to %d [sec]\n", PERIOD);

 OSSetPeriodicAlarm(
 &Alarm, // pointer to alarm
 now, // start counting immediately
 OSSecondsToTicks(PERIOD), // set 5 sec period
 AlarmHandler); // alarm handler to be called at every
 // PERIOD sec

 for (;;)
 {

 }
}

© 2006-2009 Nintendo 39 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The alarm-related APIs are:

Code 6–3 Timer APIs

typedef struct OSAlarm OSAlarm;
typedef void (*OSAlarmHandler)(OSAlarm* alarm, OSContext* context);

struct OSAlarm
{
 OSAlarmHandler handler;
 u32 tag;
 OSTime fire;
 OSAlarm* prev;
 OSAlarm* next;

 // Periodic alarm
 OSTime period;
 OSTime start;
 void* queue;
};

void OSSetAlarm (OSAlarm* alarm, OSTime tick, OSAlarmHandler handler);
void OSSetPeriodicAlarm (OSAlarm* alarm, OSTime start, OSTime period,
 OSAlarmHandler handler);
void OSCancelAlarm (OSAlarm* alarm);

The alarm can be in two modes:

• OSSetPeriodicAlarm: The alarm will fire every period starting from start.

• OSSetAlarm: The alarm will fire just once, tick number of ticks in the future.

The values of tick, start, and period are in ticks. Both functions install the alarm handler for each alarm. The
handler has two arguments: a pointer to the alarm that is fired, and a pointer to context, which holds the
CPU register context when the decrement exception is taken.

You can cancel both one-shot and periodic alarms with OSCancelAlarm.

The alarm handlers run at high priority with interrupts disabled. It is expected that the application will
perform little work in these handlers. Like other device callbacks in the system, alarm handlers can touch
FPU registers.
RVL-06-0042-001-E 40 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System

© 2006-2009 Nintendo 41 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

7 Critical Sections
Because the Revolution OS does not require the use of threads, the default synchronization primitive is the
capacity to enable and disable interrupts that include:

• Interrupts from devices

• Interrupts from the graphics chip

• The timer alarm

Although the application does not see these interrupts directly, it can be notified of their occurrence via
callbacks from the device driver layers. These callbacks can be thought of as high-level interrupt handlers.
As such, they run with interrupts disabled on the current thread’s stack.

The following API allows the application to control whether interrupts are received:

Code 7–1 Interrupt Reception API

BOOL OSEnableInterrupts (void);
BOOL OSDisableInterrupts(void);
BOOL OSRestoreInterrupts(BOOL enable);

OSEnableInterrupts and OSDisableInterrupts are fairly self-explanatory. They each return the
previous state of the interrupts before they are enabled or disabled: non-zero if interrupts were enabled,
zero if interrupts were disabled. OSRestoreInterrupts sets the state of interrupts to the value of
enable.

Thus, a typical critical section should look like this:

Code 7–2 Critical Section

BOOL enabled;

enabled = OSDisableInterrupts(); // Saves original interrupt level
//
// Critical section code comes here
//
:
OSRestoreInterruptLevel(enabled); // Restores original interrupt level

If an application disables interrupts for too long, the Revolution OS may malfunction. The longest an
application can safely disable interrupts is 100µs.

7.1 Programming Model

When any application starts up, external interrupts are enabled by default.

Since callbacks are essentially part of the interrupt handling system, by default they run with interrupts
disabled. This is important to note because callbacks should not perform any long-running computation
that may block the occurrence of other key interrupts (such as the audio interrupt).

Efficiency

Although the time spent enabling and disabling interrupts is negligible, the Broadway CPU must flush the
execution pipeline, which causes instruction latency to increase and instruction throughput to decrease.
Therefore, constant enabling and disabling of interrupts may severely reduce performance.

Revolution SDK Operating System Revolution SDK
8 Using CPU Idle Time
Occasionally, you may wish to call a function that takes a significant amount of time—such as to perform
data decompression or dynamic linking—without slowing down the game frame rate. The Revolution OS
supports a simple mechanism to run time-consuming functions in the background while, for example, the
game main loop is idle. If more than one background task is necessary, however, the threads API (see
"9 Threads" on page 44) may be more appropriate.

Code 8–1 Idle Function (Background Task) Example

u8 Stack[8192];
u64 Sum;

static void Func(void* param)
{
 #pragma unused(param)
 u64 n;

 //
 // Do background job
 //
 for (n = 1; n <= 1000000; n++)
 {
 Sum += n;
 }
}

int main(void)
{

 VIInit();

 OSSetIdleFunction(
 Func, // start function
 0, // initial parameter
 Stack + sizeof Stack, // initial stack address
 sizeof Stack); // stack size

 // Loop until the idle function completes. OSGetIdleFunction()
 // returns NULL after the idle function completes.
 do
 {
 OSReport("Sum of 1 to 1000000 >= %llu after %u V-syncs\n",
 (volatile u64) Sum,
 VIGetRetraceCount());
 VIWaitForRetrace(); // Sleep till next V-sync
 } while (OSGetIdleFunction());

 OSReport("Sum of 1 to 1000000 == %llu after %u V-syncs\n",
 (volatile u64) Sum,
 VIGetRetraceCount());

 return 0;
}

RVL-06-0042-001-E 42 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
"Code 8–1 Idle Function (Background Task) Example" on page 42 shows a simple background task that
adds up all the numbers from 0 to 1,000,000. The APIs used are:

Code 8–2 Idle Function (Background Task) API

typedef void (*OSIdleFunction)(void* param);

OSThread* OSSetIdleFunction(
 OSIdleFunction idleFunction,
 void* param,
 void* stack,
 u32 stackSize
);

OSThread* OSGetIdleFunction(
 void
);

When OSSetIdleFunction registers a background task, this idle function creates a background thread
that will run when the game’s main loop is in an idle state. In other words, the operating system will call
idleFunction while the game’s main loop is waiting for the VIWaitForRetrace function to return.

You can use OSGetIdleFunction’s return value to find out if the idle function has finished. A value of
NULL will be returned if the background thread created by OSSetIdleFunction has finished; otherwise,
a non-NULL value will be returned. This function is useful for creating background tasks without worrying
about thread management. Use OSCreateThread, instead, if you need two or more background tasks.

OSGetIdleFunction takes a single parameter, param, and will run with its own stack, specified by the
stack argument. This stack must be large enough to run OSGetIdleFunction. The OS will write a
“magic word” (OS_THREAD_STACK_MAGIC) into the last word of the stack. Because the stack grows
downward, the magic word will be placed at the lowest address. This function will check if the magic word
is intact when OSCheckActiveThreads is called.

Note: We have not determined what behavior may result if the game main loop and an idle function
invoke a non-reentrant function concurrently. Many of the library functions provided with the
development kit are not reentrant.
© 2006-2009 Nintendo 43 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
9 Threads
The Revolution OS provides transparent thread support; that is, if your application does not require
threads, you do not need to know anything about threads.

The Revolution OS threads system provides all of the functionality of POSIX-style primitives. The system
has the following features:

• Create, destroy, join, and yield threads

• Control when rescheduling can occur

• Send, jam, and/or receive messages

• Lock and unlock mutexes. (The mutex primitives use a basic priority inheritance scheme to prevent
priority inversion and improve the ability to schedule the thread.)

• Handle condition variables

This chapter offers an overview of the basic use of threads. Refer to the Revolution Function Reference
Manual (HTML) for more details.

9.1 Initialization

After OSInit() has been called, all of the thread functions may be invoked. OSInit() creates a default
thread control block for the application. That is, the application automatically becomes a thread after
OSInit() has been called. No idle thread is used—any idle time is spent at the scheduling points.

9.2 Scheduling

Each thread is assigned a base scheduling priority between 0 and 31. The highest priority is 0, the lowest
is 31. The default thread created by OSInit() has a priority of 16. An idle task created by
OSSetIdleFunction() (see "8 Using CPU Idle Time" on page 42) will be given a priority of 31.

Rescheduling occurs whenever a thread is suspended or made runnable; this includes interrupts. The
scheduler attempts to run the next available thread with the highest priority.

Note: The scheduler is non-preemptive. After an interrupt, if the highest thread priority has not changed,
the current thread will continue to run, even if there are other runnable threads at the same priority.
However, when a thread is interrupted by a thread of higher priority, it is put at the end of the
priority queue. Thus, round-robin scheduling will occur if a set of threads of equal priority are
periodically interrupted by a higher priority thread.

9.2.1 Interaction with Interrupts

Interrupt and exception handlers both have higher priority than threads and will therefore block the
execution of all threads.

Interrupts from devices will cause rescheduling once interrupt processing has completed. Interrupt
processing includes any time spent performing callback operations. Rescheduling will never occur during
interrupt processing, even if thread functions are invoked in a callback.

For example, suppose that an application wants to run a decompression thread once an optical disc file
has been loaded.

1. The application initiates an asynchronous optical disc read.

2. When the optical disc has been completely read, the application-specified callback runs.

3. The application callback wakes the decompression thread and returns. Ordinarily, rescheduling would
occur at this point, but since we are still processing an interrupt, rescheduling is deferred.

4. After the callback has returned, the scheduler is automatically invoked.
RVL-06-0042-001-E 44 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
The callback can call as many thread functions as it wishes, but rescheduling will only occur after the
callback has returned. This is because callbacks run with interrupts disabled and are considered part of
interrupt processing. Thus, they should terminate as soon as possible.

The interrupt handler may use the stack of the current thread at the time the interrupt is generated. If an
event such as a program crash occurs due to the execution of the interrupt handler, it may be possible to
solve the problem by increasing the size of the thread stack.

9.3 Thread Creation

The following code example demonstrates how a thread is created.

Code 9–1 Thread Creation Example

OSThread Thread;
u8 ThreadStack[8192];
u64 Sum;

static void* Func(void* param)
{
 #pragma unused(param)
 u64 n;

 // Do background job
 for (n = 1; n <= 1000000; n++)
 {
 Sum += n;
 }

 // Exits
 return 0;
}

int main(void)
{

 VIInit();

 // Creates a new thread. The thread is suspended by default.
 OSCreateThread(
 &Thread, // pointer to the thread to initialize
 Func, // pointer to the start routine
 0, // parameter passed to the start routine
 ThreadStack + sizeof ThreadStack, // initial stack address
 sizeof ThreadStack, // stack size
 31, // scheduling priority - lowest
 OS_THREAD_ATTR_DETACH); // detached by default

 // Starts the thread
 OSResumeThread(&Thread);

 // Loop until the thread exits
 do
 {
 OSReport("Sum of 1 to 1000000 >= %llu after %u V-syncs\n",
 (volatile u64) Sum,
 VIGetRetraceCount());
 VIWaitForRetrace(); // Sleep till next V-sync
 } while (!OSIsThreadTerminated(&Thread));
}

© 2006-2009 Nintendo 45 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The key functions used in "Code 9–1 Thread Creation Example" on page 45 are:

Code 9–2 Basic Thread Creation APIs

BOOL OSCreateThread (OSThread* thread,
 void* (*func)(void*),
 void* param,
 void* stackBase,
 u32 stackSize,
 OSPriority priority,
 u16 attribute);
s32 OSResumeThread (OSThread* thread);
BOOL OSIsThreadTerminated (OSThread* thread);

OSCreateThread initializes a given thread structure. The thread is suspended initially, and it will not be
scheduled until OSResumeThread has been invoked upon it. The thread will start as if func(param) had
been called. The parameter stackBase is a pointer to the stack for this operation, and priority specifies the
thread’s scheduling priority. Remember that stacks grow downward; that is, the high address is at the
bottom of the stack. The OS will write a magic word (OS_THREAD_STACK_MAGIC) into the last (lowest)
word of the stack. You can check whether a stack overflow has occurred by making sure that this magic
word stays intact throughout your program.

The attribute argument has two potential values: OS_THREAD_ATTR_DETACH, or 0. If a thread has the
OS_THREAD_ATTR_DETACH attribute set, the thread control block will be released (removed from OS
control) when the thread terminates. However, if the attribute is left at 0, the thread control block will be
“joinable,” meaning that it will remain under the control of the OS when the thread terminates (though it will
not actually run), until a “joining” thread runs. This is best explained by the example in "Code 9–3 Using
OSJoinThread" on page 47.

OSIsThreadTerminated simply returns TRUE if thread has terminated. In cases where a thread has
been terminated and may be re-used to create a new thread, it is safer to communicate the termination of
a thread with a message or global variable.
RVL-06-0042-001-E 46 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Code 9–3 Using OSJoinThread

OSThread Thread;
u8 ThreadStack[8192];
u64 Sum;

static void* Func(void* param)
{
 #pragma unused(param)
 u64 n;

 // Do background job
 for (n = 1; n <= 1000000; n++)
 {
 Sum += n;
 }

 // Exits
 return 0;
}

void main(void)
{

 VIInit();

 // Creates a new thread. The thread is suspended by default.
 OSCreateThread(
 &Thread, // pointer to the thread to initialize
 Func, // pointer to the start routine
 0, // parameter passed to the start routine
 ThreadStack + sizeof ThreadStack, // initial stack address
 sizeof ThreadStack, // stack size
 31, // scheduling priority
 0); // joinable by default

 // Starts the thread
 OSResumeThread(&Thread);

 // Loop until the thread exits
 do
 {
 OSReport("Sum of 1 to 1000000 >= %llu after %u V-syncs\n",
 (volatile u64) Sum,
 VIGetRetraceCount());
 VIWaitForRetrace(); // Sleep till next V-sync
 } while (!OSIsThreadTerminated(&Thread));

 // Wait till thread dies and release the thread from OS control
 OSJoinThread(&Thread, NULL);

 OSReport("Sum of 1 to 1000000 == %llu after %u V-syncs\n",
 (volatile u64) Sum,
 VIGetRetraceCount());

 OSHalt("Demo complete");
}

© 2006-2009 Nintendo 47 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
"Code 9–3 Using OSJoinThread" on page 47 is almost identical to "Code 9–1 Thread Creation Example"
on page 45, except that the created thread has an attribute of 0. This makes it “joinable”—when the thread
terminates, the thread control block remains in use until a “joining” thread (in this case, the main loop) has
run. The main loop indicates it is joining the thread by calling OSJoinThread. After the main loop returns
from OSJoinThread, the thread control block of the terminated thread may be safely re-used.

This is useful for several reasons:

• As a synchronization primitive, it allows a thread (ThreadA) to sleep until another thread (ThreadB) has
terminated.

• It allows ThreadA to retrieve the return value of ThreadB.

• It allows you to examine the state of ThreadB in the debugger when ThreadB has terminated.

Code 9–4 OSJoinThread API

BOOL OSJoinThread(OSThread* thread, void** val);

OSJoinThread suspends the calling thread until thread has terminated. The return value of thread is
placed in val. You may specify NULL for val if the return value of thread is not needed. Just before
OSJoinThread returns, it will remove thread from OS control, effectively reclaiming its storage (i.e., you
may safely use thread for other purposes).

OSJoinThread will return TRUE if thread was joinable and has terminated, and if the return value was
properly retrieved. Several threads cannot wait for the same thread to terminate. Only one thread is
guaranteed to return successfully, and the others will return FALSE. In this case, the return value of thread
is invalid (since thread’s control block was already released, there is no way to know what happened to the
memory).

If OSJoinThread is called when the thread has already terminated, it will return immediately with a return
value of TRUE.

9.4 Synchronization

The Revolution OS provides messaging functionality and a few other synchronous primitives. This section
briefly covers all of them. Unless your application uses synchronization very often in each frame, the
performance differences between primitives is probably irrelevant, and the deciding factors will be
familiarity and preference.

9.4.1 Library Access

Most of the Revolution OS libraries are not thread-safe. It is the responsibility of the developers to arbitrate
access to shared resources (for example, GX function calls and OSReport output) with the thread
synchronization primitives.

We have, however, made the optical disc drive (DVD) and Controller (PAD) libraries thread-safe.

9.4.2 Synchronizing by Disabling the Scheduler

The most basic synchronization primitive is the ability to disable scheduling and stop threads from
switching context. This is different from disabling interrupts; while the scheduler is disabled, interrupts may
still occur, but no other thread will be able to take control of the CPU.

These APIs are not atomic, so you must disable and re-enable interrupts when calling them.
RVL-06-0042-001-E 48 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Code 9–5 Disabling and Enabling the Scheduler Must Be Done with Interrupts Disabled

BOOL enabled;

enabled = OSDisableInterrupts();
OSDisableScheduler();
OSRestoreInterrupts(enabled);
//
// Critical region code comes here
:
enabled = OSDisableInterrupts();
OSEnableScheduler();
OSYieldThread(); // requests immediate context switch
OSRestoreInterrupts(enabled);

Code 9–6 Scheduler Control APIs

s32 OSDisableScheduler (void);
s32 OSEnableScheduler (void);

OSDisableScheduler is called when a thread wishes to defer thread scheduling. This means that higher
priority threads will not run even if they are eligible for execution.

Note: The OS keeps a count of the number of times OSDisableScheduler has been called. While that
count is positive, thread scheduling is disabled. The old value of this count is returned.

OSEnableScheduler reduces the OSDisableScheduler count. If the count is less than or equal to
zero, thread rescheduling is enabled. The use of the count allows the application to nest calls to
OSDisableScheduler without concern that one errant call to OSEnableScheduler will re-enable the
scheduler. The original value of the count is returned.

9.4.3 Synchronizing by Sleeping and Waking

The Revolution OS provides another fast and primitive thread synchronization mechanism by which
threads can be put to sleep and awakened from queues. These primitives are used by most of the other
synchronization methods.

Code 9–7 Thread Sleep and Wakeup APIs

void OSInitThreadQueue (OSThreadQueue* queue);
void OSSleepThread (OSThreadQueue* queue);
void OSWakeupThread (OSThreadQueue* queue);

OSInitThreadQueue initializes a thread queue structure.

OSSleepThread inserts the calling thread in the specified thread queue and makes that thread ineligible for
execution in the waiting state until OSWakeupThread has been called on this queue. The OS will run the
next available thread.

OSWakeupThread wakes all of the threads in the specified thread queue and makes them runnable. They
will be run in priority order.

9.4.4 Synchronizing with Messages

The Revolution OS implementation of messages is quite fast and only slightly more expensive than simply
creating thread queues and sleeping/awakening threads manually.
© 2006-2009 Nintendo 49 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The following example creates a “printf server” thread that receives print requests from the main thread.
Essentially, we are creating a thread to mediate access to a system resource (in this case, the OSReport
channel).

Code 9–8 Message API Example

OSMessageQueue MessageQueue;
OSMessage MessageArray[16];

OSThread Thread;
u8 ThreadStack[8192];

// Print server thread function
static void* Printer(void* param)
{
 #pragma unused (param)
 OSMessage msg;

 for (;;)
 {
 OSReceiveMessage(&MessageQueue, &msg, OS_MESSAGE_BLOCK);
 OSReport("%s\n", msg);
 }

 return 0;
}

void main(void)
{
 int i;

 VIInit();

 // Initializes the message queue
 OSInitMessageQueue(
 &MessageQueue, // pointer to message queue
 MessageArray, // pointer to message boxes
 16); // # of message boxes

 // Creates a new thread. The thread is suspended by default.
 OSCreateThread(
 &Thread, // ptr to the thread to init
 Printer, // ptr to the start routine
 0, // param passed to start routine
 ThreadStack + sizeof ThreadStack, // initial stack address
 sizeof ThreadStack, // stack size
 8, // scheduling priority
 OS_THREAD_ATTR_DETACH); // detached since it will
 // never return

 // Starts the thread
 OSResumeThread(&Thread);

 // Main loop
 for (i = 0; i < 16; i++)
 {
 OSSendMessage(&MessageQueue, "Hello!", OS_MESSAGE_NOBLOCK);
 VIWaitForRetrace(); // Sleep till next V-sync
 }

 OSHalt("Demo complete");
}

RVL-06-0042-001-E 50 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
The message API is as follows.

Code 9–9 Message APIs

void OSInitMessageQueue(OSMessageQueue* mq, OSMessage* msgArray, s32 msgCount);
BOOL OSReceiveMessage (OSMessageQueue* mq, OSMessage* msg, s32 flags);
BOOL OSSendMessage (OSMessageQueue* mq, OSMessage msg, s32 flags);
BOOL OSJamMessage (OSMessageQueue* mq, OSMessage msg, s32 flags);

OSInitMessageQueue initializes the message queue structure mq. msgArray is memory that the caller
must have already allocated, and msgCount indicates the number of entries in that array.

OSReceiveMessage retrieves a message from mq. It also wakes up any threads waiting to send a
message to this queue. Sending threads will run in priority order. If flags is set to OS_MESSAGE_BLOCK, the
calling thread will be suspended if the queue is empty. It will be resumed as soon as a message is sent to
the queue.

Note: If there are other receiving threads of higher priority, those threads will run first and each retrieve a
message. If the message queue is emptied by the time this thread runs, this thread will again be
suspended until another message is sent to the queue.

If flags is set to OS_MESSAGE_NOBLOCK, the calling thread will return immediately. TRUE is returned if the
queue was not empty, FALSE if the queue was empty.

OSSendMessage inserts the message at the tail of the specified message queue. It also wakes up the
threads waiting on this message queue. The receiving threads will run in priority order. If flags is set to
OS_MESSAGE_BLOCK, the calling thread will be suspended if the queue is full. It will be resumed as soon
as a receiving thread has run and retrieved a message from the queue.

Note: If there are any other sending threads of higher priority, they will run first and potentially fill the
message queue again. If this occurs, the thread will be suspended again until a receiving thread
makes some room in the message queue.

If flags is set to OS_MESSAGE_NOBLOCK, the calling thread will return immediately. TRUE is returned if the
queue was not full, FALSE if the queue was full.

OSJamMessage behaves exactly like OSSendMessage, except that the message is inserted at the head of
the message queue, instead of the tail. This may be used to send high-priority messages.

9.4.5 Synchronizing with Mutexes

Mutexes (“mutual exclusions”) represent exclusive ownership of some system resource. These primitives
are slightly more expensive to use than the basic sleeping and waking functions. The following example
shows how a mutex can be used to protect the OSReport channel without using a separate thread.
© 2006-2009 Nintendo 51 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
Code 9–10 Mutex and Yielding Example

OSMutex PrintMutex;
OSThread Thread;
u8 ThreadStack[8192];

// Synchronous print
static void SyncPrint(char* msg)
{
 OSLockMutex(&PrintMutex);
 OSReport(msg);
 OSUnlockMutex(&PrintMutex);
}

static void* ThreadFunc(void * arg)
{
 #pragma unused(arg)
 u32 i;

 for (i = 0; i < 16; i++)
 {
 SyncPrint("<Thread1 says Hi!>\n");
 OSYieldThread();
 }

 return 0;
}

void main(void)
{
 int i;

 // Initializes the mutex
 OSInitMutex(&PrintMutex);

 // Initialize the thread
 OSCreateThread(
 &Thread, // pointer to the thread to initialize
 ThreadFunc, // pointer to the start routine
 0, // parameter passed to the start routine
 ThreadStack + sizeof ThreadStack, // initial stack address
 sizeof ThreadStack, // stack size
 16, // scheduling priority
 0); // joinable by default

 // Kick the thread off
 OSResumeThread(&Thread);

 // Main loop
 for (i = 0; i < 16; i++)
 {
 SyncPrint("<Main thread says Hi!>\n");
 OSYieldThread();
 }

 OSHalt("Demo Complete");
}

Because the main thread and Thread1 are both at priority 16, the two threads will alternate control of the
CPU at every scheduling point. In this case, the scheduling points only occur when OSYieldThread() is
called, but receiving interrupts would have the same effect.
RVL-06-0042-001-E 52 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
The new APIs used in this example are:

Code 9–11 Code 38 Mutex and Yielding APIs

void OSYieldThread (void);
void OSInitMutex (OSMutex* mutex);
void OSLockMutex (OSMutex* mutex);
void OSUnlockMutex (OSMutex* mutex);

OSYieldThread attempts to allow other threads of the same scheduling priority to run. Recall that if there
are any other threads of higher priority available, they would already be running. If there are no other
runnable threads at the calling thread’s priority, this function returns immediately.

OSInitMutex initializes a given mutex structure.

Note: It is a programming error to initialize a mutex that is in use.

OSLockMutex attempts to acquire mutex for the calling thread. If mutex is held by a different thread, the
calling thread suspends until mutex is released.

If mutex is already held by the current thread, each extra call to OSLockMutex() will return immediately.

Note: Each invocation of OSUnlockMutex() must match a call to OSLockMutex(); otherwise, the
mutex will not be released. This allows a thread to nest multiple calls to OSLockMutex() and
OSUnlockMutex() safely on the same mutex.

OSUnlockMutex releases the mutex.

Note: The calling thread must be the owner of the mutex. If the calling thread has locked this mutex n
times, only the nth call to OSUnlockMutex() will actually release the mutex.

If the calling thread's priority was temporarily increased because a higher priority thread required this
mutex, that priority will be recalculated. However, it may not be returned to its base priority, depending on
what other mutexes it holds.

If the mutex is released, all threads blocked on this mutex will be made runnable and run in priority order.

9.4.5.1 Deadlock

The use of mutexes raises the possibility of deadlocks. Quite simply, any circular dependency of mutexes
may result in a deadlock. For instance, suppose there are two threads, A and B, each holding mutex X and
Y respectively. If A attempts to lock Y, but B also tries to lock X, both A and B will be blocked indefinitely.

One simple solution is to ensure that mutexes in the system are always locked in the same order. For
instance, if X were always locked before Y, deadlock would not occur.

9.4.5.2 Priority Inversion

The use of mutexes also raises the possibility of priority inversion. For example, assume we have three
threads, A0, B31, and C16, with priority 0, 31, and 16, respectively. If B31 holds a mutex that A0 depends
on, A0’s execution depends on B31 completing its computation and releasing the mutex in a timely
fashion. However, if C16 is runnable, it will prevent B31 from running. This situation is called priority
inversion because, in effect, A0’s priority has been reduced. The Revolution OS avoids this situation by
temporarily boosting the priority of B31 to that of A0 when it realizes that A0 is depending on B31. This
prevents C16 from cutting in, and it increases scheduling predictability by ensuring that A0 will be run as
soon as possible. As soon as B31 has released the mutex, its priority will be recalculated based on what
other mutexes it still holds.
© 2006-2009 Nintendo 53 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
9.4.6 Synchronizing with Conditional Variables

If you find that you are creating queues to wait for certain resources to become available, or for certain
conditions to exist, you may find condition variables to be a useful and compact primitive to use.

A condition variable encapsulates some information about a shared resource. If a thread is waiting for a
certain condition to be true, it waits on the appropriate condition variable. When the condition is satisfied
(usually by another thread), the condition variable is “signaled,” thus waking up the threads that were
waiting for the condition to be true.

In the following example, commonly known as the bounded buffer problem, a producer thread and a
consumer thread are using a shared buffer to transfer data. The producer thread creates data and places it
into the buffer, while the consumer thread retrieves data from the buffer. The buffer has limited space, so
when the buffer is full, the producer cannot insert more data. Similarly, if the buffer is empty, the consumer
cannot proceed.

Two condition variables are used to encapsulate these two cases: CondNotFull and CondNotEmpty.
They are used in the following manner:

• Whenever the producer thread inserts data into the buffer, it will signal CondNotEmpty, since it has
satisfied that condition.

• Whenever the consumer thread retrieves data, it will signal CondNotFull, as it has made room for
more data.

• Whenever the producer finds the buffer full, it will sleep on the CondNotFull condition.

• Whenever the consumer finds the buffer empty, it will sleep on the CondNotEmpty condition.

Code 9–12 Solving the Bounded Buffer Problem with Condition Variables

// Bounded buffer data structure
OSMutex Mutex;
OSCond CondNotFull;
OSCond CondNotEmpty;
u32 Buffer[BUFFER_SIZE];
u32 Count;

OSThread Thread;
u8 ThreadStack[8192];

static u32 Get(void)
{
 u32 item;

 OSLockMutex(&Mutex);
 while (Count == 0)
 {
 OSWaitCond(&CondNotEmpty, &Mutex);
 }
 item = Buffer[0];
 --Count;
 memmove(&Buffer[0], &Buffer[1], sizeof(u32) * Count);
 OSUnlockMutex(&Mutex);
 OSSignalCond(&CondNotFull);
 return item;
}

static void Put(u32 item)
{
 OSLockMutex(&Mutex);
 while (BUFFER_SIZE <= Count)
 {
RVL-06-0042-001-E 54 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
 OSWaitCond(&CondNotFull, &Mutex);
 }
 Buffer[Count] = item;
 ++Count;
 OSUnlockMutex(&Mutex);
 OSSignalCond(&CondNotEmpty);
}

static void* Func(void* param)
{
 #pragma unused (param)
 u32 item;

 for (item = 0; item < 16; item++)
 {
 Put(item);
 }

 return 0;
}

void main(void)
{
 u32 i;

 VIInit();

 // Initializes mutex and condition variables
 OSInitMutex(&Mutex);
 OSInitCond(&CondNotFull);
 OSInitCond(&CondNotEmpty);

 // Creates a new thread. The thread is suspended by default.
 OSCreateThread(
 &Thread, // pointer to the thread to initialize
 Func, // pointer to the start routine
 0, // parameter passed to the start routine
 ThreadStack + sizeof ThreadStack, // initial stack address
 sizeof ThreadStack, // stack size
 16, // scheduling priority
 OS_THREAD_ATTR_DETACH); // detached, and not joinable

 // Resumes the thread
 OSResumeThread(&Thread);

 // Main loop
 for (i = 0; i < 16; i++)
 {
 u32 item;

 item = Get();
 OSReport("%d\n", item);
 VIWaitForRetrace(); // Sleep till next V-sync
 }

 OSHalt("Demo complete");
}

© 2006-2009 Nintendo 55 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The APIs used in this example are:

Code 9–13 Conditional Variable APIs

void OSInitCond (OSCond* cond);
void OSWaitCond (OSCond* cond, OSMutex* mutex);
void OSSignalCond (OSCond* cond);

OSInitCond simply initializes a condition variable structure.

OSWaitCond indicates that this thread wishes to be woken when the specified condition cond has been
signaled. Since there is probably a mutex associated with the resource, the mutex is handed to
OSWaitCond, which will atomically release the mutex (so that some other thread can use the resource
and hopefully signal cond) and suspend the thread.

Note: When OSWaitCond returns, it will attempt to re-acquire the mutex.

OSSignalCond wakes up all threads waiting on a condition. They will run in priority order. Naturally, only
one of them will re-acquire the mutex and proceed.

9.5 Context Switching

To help you better understand the behavior of this system, this section briefly describes how the Revolution
OS saves and restores machine state.

Every execution context, whether a thread or interrupt handler, has an OSContext structure into which the
OS can save machine state. The largest parts of the structure are the general purpose registers (GPRs)
and floating point registers (FPRs). GPRs are saved whenever an interrupt or thread switch occurs.

FPRs, however, are exceptionally expensive to save and restore. In addition to their size (64 bits each
instead of 32 bits), the Broadway CPU requires two passes over the FPRs for each save and restore—one
pass to save them as if they were doubles, one pass to save them as paired-singles.

As a result, the Revolution OS tries as hard as possible to avoid the saving of floating point state. It saves
floating point state only when it is clear that a thread or context is trampling on the registers of another
thread or context using the FPRs. For example, if thread A uses FPRs and is interrupted by thread B (for
example, by yielding the CPU), the OS saves only the GPRs, and the FPRs remain under the “ownership”
of thread A. If thread B never touches the FPRs, the FPRs will never be saved. As soon as thread B
touches an FPR, the OS will quickly save thread A’s FPR context, and FPR ownership will transfer to
thread B.

The same mechanism is used during interrupt and exception processing.

9.6 Checking the Active Threads

The Revolution OS maintains a linked list of all the active threads that are runnable, running, waiting,
suspended, or moribund. This linked list is called the active thread queue. In the Revolution OS, the
memory space used for the thread management is not protected from the user program at all, so it may be
damaged by a program error (such as accessing bad pointers or bad arrays).

Code 9–14 OSCheckActiveThreads

long OSCheckActiveThreads(void);
RVL-06-0042-001-E 56 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
The OSCheckActiveThreads function disables interrupts and then sweeps the active thread queue,
performing as many sanity checks as possible. If OSCheckActiveThreads finds a broken link or any
other problems, it displays a failure message and halts the execution of the program. Calling
OSCheckActiveThreads often should help you debug multithreaded programs by eliminating thread
management as a potential source of problems, but may also slow down the application.

9.7 Threads and Callbacks

Essentially, callback functions are not threads. Instead, they are called directly from the operating system
or a device driver. A callback function cannot call a function that will put the current thread to sleep; that is,
into the waiting or suspended state. Since there may be situations in which there is no current thread,
calling a callback function in this situation would instead halt the operating system. Doing so is a
programming error.

The functions that can block the execution of the current thread are as follows:

• GXSet*() and GXLoad*() functions that generates output to the GXFifo

• GXWaitDrawDone() and GXDrawDone()

• OSJoinThread(), OSSleepThread(), and OSSuspendThread (OSGetCurrentThread())

Note: OSSuspendThread() can also be used for threads other than the current thread.

• OSLockMutex() and OSWaitCond()

• Message queue functions in OS_MESSAGE_BLOCK mode

• OSWaitSemaphore()

• Synchronous I/O functions that have the corresponding asynchronous functions (for example,
DVDRead() and CARDRead())

• VIWaitForRetrace()

• WPADGetInfo()

• AXQuit()
© 2006-2009 Nintendo 57 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
10 Fast Float/Integer Casting
The Broadway CPU’s paired-single instruction set gives you the ability to cast single-precision floating-
point numbers to 8 or 16 bit integer values very quickly with just the cost of a load and a store.

Since the compiler does not currently take advantage of this ability, we have provided a fast cast C API that
executes the proper instructions to perform the fastest possible cast. The fast cast API uses the
Broadway’s paired-single load and store instructions, which include quantization instructions for casting
from a floating-point number to an integer, and consumes exactly two instructions (one load and one
store).

10.1 Initializing the Fast Cast API

Call the OSInitFastCast function to configure fast casting from floating-point numbers to integers.

Code 10–1 OSInitFastCast

void OSInitFastCast(void);

This must be called before any other fast cast. Additionally, the OSInitFastCast function only affects the
thread from which it was called.

OSInitFastCast initializes the Broadway’s quantization registers (GQRs) to known values. GQRs
control the way paired-single load/stores work. For instance, GQR0 is always set to 0, which means that
the data representation in memory is a simple 32-bit floating-point value. GQR2 is set to assume that the
data in memory is an unsigned 8-bit integer value, and so on. The fast cast routines use the following GQR
setup:

You will probably find it necessary to implement an independent cast API for your application to apply
scaling to the values. Developers can implement an independent cast API based on the code for these
cast functions, which is provided by the Revolution OS. The API is defined in the OSFastCast.h header
file using inlined functions.

Note: The fast cast API requires that the application not modify GQR2–GQR5 (the Broadway’s
quantization registers). GQR0 is already reserved for single precision floating-point use, and
GQR1 is reserved for compiler use.

10.2 Fast Casting Routines

This section briefly describes the fast casting API.

Table 10–1 Quantization Register Values

Quantization Register Initialization Value

GQR2 Load u8 / Store u8. No scaling.

GQR3 Load u16 / Store u16. No scaling.

GQR4 Load s8 / Store s8. No scaling.

GQR5 Load s16 / Store s16. No scaling.
RVL-06-0042-001-E 58 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Code 10–2 Fast Cast APIs

inline void OSu8tof32 (u8* in, f32* out);
inline void OSu16tof32 (u16* in, f32* out);
inline void OSs8tof32 (s8* in, f32* out);
inline void OSs16tof32 (s16* in, f32* out);

inline void OSf32tou8 (f32* out, u8* out);
inline void OSf32tou16 (f32* out, u16* out);
inline void OSf32tos8 (f32* out, s8* out);
inline void OSf32tos16 (f32* out, s16* out);

These functions perform a fast cast in two cycles (one load and one store). The name of each function
describes the cast that it performs.

These fast cast functions must use a load and a store instruction, and therefore take an address to a typed
variable as an argument. By getting the address as an argument, the compiler is guaranteed to allocate
space on the stack, without forcing the programmer or inline function to allocate memory space. In this
way, the compiler will allocate stack space for the variables, and by using an array for storing data, all of
the local variables can be allocated at once. If these functions were to allocate memory for this purpose,
they would take more than two cycles to perform each cast.

Note: You must call OSInitFastCast before these functions. Also, in a standard Debug build, inline
expansion will not be used for these functions.
© 2006-2009 Nintendo 59 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
11 Fonts
Nintendo GameCube-compatible European and Kanji ROM fonts are installed on the Wii console.

The European ROM font is based on the ANSI (Windows Latin 1) character set. The European ROM font
is used by North American, European, and other non-Japanese console specifications.

The Kanji ROM font is based on the Shift-JIS character encoding. The following character images are
actually installed: the ASCII characters (0x20–0x7f), the half-width kana (0xa0–0xdf), and the double-
byte characters from 0x8140 to 0x9872, which includes the JIS Level 1 Kanji (0x889f–0x9872). The
Kanji ROM font can be used on Japanese Wii consoles. Refer to the ROM Font item in the Revolution
Function Reference Manual (HTML) for information on the installed font images.

Note: The Kanji ROM font does not include the JIS Level 2 Kanji.

11.1 Loading Fonts

You can use the OSGetFontEncode function to find the type of ROM font that can be used by the Wii
console.

The ROM fonts are stored on the Wii console in a ROM/RTC compressed format. To use a compressed
ROM font, it must first be expanded into main memory. The font must be maintained in either I2 (4-grade)
or I4 (16-grade) format in main memory.

• I2 Format

Call the OSLoadFont function to expand a font into main memory in I2 format. Although a font image
in I2 format cannot be used unchanged as texture image data passed to the GXTexObj structure, the
OSGetFontTexel function can be called to expand the font image for a specified character into any
location on a given I4 texture image.

• I4 Format

Call the OSInitFont function to expand a font into main memory in I4 format. The image data is
expanded and split into multiple texture images (sheets) of the same size. An ANSI font is made up of
a single texture image sheet, and a Kanji font is made up of nine texture image sheets. The texture
image sheets can be used unchanged as the GXTexObj structure’s texture image data. By calling the
OSGetFontTexture function, you can get a pointer to the sheet that contains the specified
character’s font, and the position of the font on the sheet.

Note: The buffer specified to the OSLoadFont and OSInitFont functions must be 32-byte aligned.

11.2 Character Width

Wii ROM fonts are variable-pitch (proportional) fonts. The OSGetFontTexel, OSGetFontTexture, and
OSGetFontWidth functions return the width of the specified character in texels.

Note: The ASCII characters in the Kanji ROM font are fixed-width. Use the full-width alphabet for
proportional display.

11.3 Font Header

An OSFontHeader structure will be expanded into the start of the buffer specified as the first argument to
the OSLoadFont and OSInitFont functions. Some of this structure’s members are used only within the
OS library, but the members shown below can also be accessed by applications.
RVL-06-0042-001-E 60 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
Table 11–1 Font Header Members Accessible by Applications

Quantization Register Description Value

ascent Character ascent (number of texels above the baseline) 24

descent Character descent (number of texels below the baseline) 0

leading Line spacing 28

width Maximum character width, in texels 24

sheetWidth Texture image sheet width 512

sheetHeight Texture image sheet height 512

cellWidth Cell width (shortened region for a character) in a sheet 24

cellHeight Cell height (shortened region for a character) in a sheet 24
© 2006-2009 Nintendo 61 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
RVL-06-0042-001-E 62 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
12 Relocatable Module System (REL)
The Revolution OS provides a relocatable module system. By using the relocatable module system,
games can use main memory efficiently while dynamically loading and releasing program modules. Unlike
dynamic link libraries in other operating systems, the Wii relocatable module system requires that games
allocate and release main memory, as well as load modules from disc.

Note: The Revolution SDK provides the RSO library as a relocatable module system in addition to the
REL system provided by the OS library. For details, refer to the RSO Library item in the Revolution
Function Reference Manual.

12.1 Relocatable Modules

The relocatable module system is composed of a single static module (ELF file) and multiple relocatable
modules (REL files). Once the boot ROM has loaded a program’s static module, that module can control
the placement of relocatable modules in memory. The static module is built as a normal ELF file. It can
contain common functions and variables accessed by relocatable modules.

Relocatable modules can call functions and access variables in a static module. Relocatable modules can
also call functions and access variables in other relocatable modules that have already been loaded into
main memory. Inter-module references are resolved by directly modifying code and data sections in the
modules when they are loaded. As a result, programs can run efficiently without excessive indirect
references once inter-module references have been resolved. For example, only a single branch
instruction (the Broadway bl instruction) will be used to call a function between modules, in the same
manner as a statically linked function.

A relocatable module (REL) program can be written in the exact same way as a normal C or C++ program.
However, a relocatable module is created from partially linked ELF (PLF) files. PLF files include unresolved
external symbols and debugging information. The makerel tool, provided by the Revolution SDK,
converts PLF files into Wii relocatable module files. To reduce module size and improve runtime efficiency,
Wii relocatable module files include only normal program code and data sections, as well as a relocation
instruction table. The relocation instruction table includes 8-byte relocation instructions for each part of
code and data to modify at runtime. Each relocation instruction is made up of an offset to the location that
will be modified, a relocation type, a target section number, and the value to add. Costly symbol table
lookups are not performed at runtime (the symbol table will be removed by the makerel tool).

Refer to the Relocatable Module System item in the Revolution Function Reference Manual (HTML) for
information on how to create relocable modules. There is also a demo program in the /revolution/
build/demos/reldemo folder that uses relocatable modules. The makefile for this demo automatically
creates a relocatable module and then runs the program.

Note: The Broadway branch instructions (bx)do not support jumps farther than 32 MB. As a result,
modules loaded in internal main memory (MEM1) cannot call REL modules placed in external
main memory (MEM2), and vice versa.

Note: Global C++ constructors and destructors must be called explicitly from the relocatable module’s
_prolog and _epilog sections, respectively. This is shown in the following code.
© 2006-2009 Nintendo 63 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
Code 12–1 _prolog and _epilog Functions

#ifdef __cplusplus
extern "C" {
#endif

typedef void (*voidfunctionptr) (void); /* ptr to function returning void */
__declspec(section ".init") extern voidfunctionptr _ctors[];
__declspec(section ".init") extern voidfunctionptr _dtors[];

void _prolog(void);
void _epilog(void);
void _unresolved(void);

#ifdef __cplusplus
}
#endif

void _prolog(void)
{
 voidfunctionptr *constructor;

 /*
 * call static initializers
 */
 for (constructor = _ctors; *constructor; constructor++) {
 (*constructor)();
 }
}

void _epilog(void)
{
 voidfunctionptr *destructor;

 /*
 * call destructors
 */
 for (destructor = _dtors; *destructor; destructor++) {
 (*destructor)();
 }
}

Link every relocatable module with global_destructor_chain.c (under $(CWFOLDER)/
PowerPC_EABI_Support/Runtime/Src). This ensures that each of the module’s global destructors
are called by the _epilog function. Otherwise, the global variables in each module will be linked to the
static module’s global destructor chain, and no destructors will be called if the static module does not exist.
Note that Runtime.PPCEABI.H.a uses a small data section and contains unnecessary internal
functions, so relocatable modules cannot link to it.
RVL-06-0042-001-E 64 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
13 Profiling
The Revolution OS provides two key means of profiling: stopwatches and the Broadway CPU’s
performance monitors.

13.1 Stopwatches

Stopwatches allow the application to time multiple entries into a code segment. The paradigm is to start a
stopwatch just before the profiled code, and to stop it afterwards. In this way, one can count the total time
spent in the code, as well as the average time spent per entry. Any number of stopwatches can be created.

The stopwatches use the Broadway time base, and so will have 16.5 ns accuracy.

The following code demonstrates how to use the stopwatches. The program measures 5,000 matrix
concatenations in groups of 100.

Code 13–1 Stopwatch Code Example

#include <revolution.h>

#define OUTER_ITERATIONS 50
#define INNER_ITERATIONS 100

OSStopwatch MySW;

void main (void)
{
 u32 i, j;
 Mtx a, b, ab;

 OSInitStopwatch(&MySW, "100 concat stopwatch");
 OSReport("Stopwatch demo program\nTimes %d matrix concatenations\n",
 OUTER_ITERATIONS*INNER_ITERATIONS);

 MTXIdentity(a);
 MTXIdentity(b);
 MTXIdentity(ab);

 for (i = 0; i < OUTER_ITERATIONS; i++)
 {
 OSStartStopwatch(&MySW);
 for (j = 0; j < INNER_ITERATIONS; j++)
 {
 MTXConcat(a, b, ab);
 }
 OSStopStopwatch(&MySW);
 }
 OSReport("\nEach hit is 100 matrix concats:\n");
 OSDumpStopwatch(&MySW);
 OSHalt("Stopwatch Demo complete");
}

© 2006-2009 Nintendo 65 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The output generated by this program looks like:

Code 13–2 Stopwatch Program Output

Stopwatch demo program
Times 5000 matrix concatenations

Each hit is 100 matrix concats:
Stopwatch [100 concat stopwatch] :
 Total= 1513 us
 Hits = 50
 Min = 30 us
 Max = 32 us
 Mean = 30 us
Stopwatch Demo complete in "stopwatchdemo.c" on line 54.

The preceding example uses these APIs:

Code 13–3 Stopwatch APIs

void OSInitStopwatch (OSStopwatch* sw, char* name);
void OSStartStopwatch (OSStopwatch* sw);
void OSStopStopwatch (OSStopwatch* sw);

void OSDumpStopwatch (OSStopwatch* sw);

The application must allocate stopwatches, either statically or dynamically.

OSInitStopwatch initializes a single stopwatch structure. It resets the stopwatch count to 0 and sets the
stopwatch name to name. No stopwatch should be used without first calling OSInitStopwatch.

OSStartStopwatch is called upon entry to the code region to be measured. It records the current time.

OSStopStopwatch is called upon exit from the code region to be measured. The program compares the
current time with the start time (i.e., the time at which OSStartStopwatch was called), then records the
interval. A stopwatch can measure any number of intervals. The total time measured simply accumulates.

OSDumpStopwatch prints out the number of intervals (hits) measured by this stopwatch, the total time
measured, the minimum and maximum latency measured, and the mean time spent per interval. All times
are displayed in microseconds. For example:

Code 13–4 Stopwatch Intervals

Stopwatch [stopwatchname] :
 Total= 2983746 us
 Hits = 1000
 Min = 1160 us
 Max = 277124 us
 Mean = 2983 us

13.2 Performance Monitors

The Broadway CPU has four performance monitor counters (PMCs), each of which can measure a subset
of useful metrics on the chip (such as CPU cycles, load/store counts, and cache misses). We have
concluded that a general-purpose API for these PMCs will either be too complex for general use or impose
an unreasonable amount of overhead. Instead, this section presents a description of how we have used
the PMCs in our code. The code outlined here is used in the locked cache demos.
RVL-06-0042-001-E 66 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
The four PMCs are controlled by two control registers. These two control registers are known as the
monitor mode control registers (MMCRs), and are named MMCR0 and MMCR1. MMCR0 controls PMCs 1
and 2, while MMCR1 controls PMCs 3 and 4. We use very basic functions from C code to set these
registers:

Code 13–5 Basic Performance Monitor Counter Accessor Functions

void PPCMtmmcr0 (u32 newMmcr0);
void PPCMtmmcr1 (u32 newMmcr1);
u32 PPCMfmmcr0 (void);
u32 PPCMfmmcr1 (void);

void PPCMtpmc1 (u32 newPmc1);
void PPCMtpmc2 (u32 newPmc2);
void PPCMtpmc3 (u32 newPmc3);
void PPCMtpmc4 (u32 newPmc4);

u32 PPCMfpmc1 (void);
u32 PPCMfpmc2 (void);
u32 PPCMfpmc3 (void);
u32 PPCMfpmc4 (void);

This very basic API is used to “move values to” (Mt prefix) or “move values from” (Mf prefix) the various
registers. We typically bundle these calls into useful macros such as the following:

Code 13–6 Performance Monitor Counter Macros

// STARTPMC sets both MMCRs (monitor control registers) going.
// PMC1 measures instruction count
// PMC2 measures # of loads and stores
// PMC3 measures # of cycles lost to L1 misses
// PMC4 measures cycle count
// Note : cycle counter is turned on last
#define STARTPMC PPCMtmmcr0(MMCR0_PMC1_INSTRUCTION | \
 MMCR0_PMC2_LOAD_STORE); \
 PPCMtmmcr1(MMCR1_PMC3_L1_MISS_CYCLE | \
 MMCR1_PMC4_CYCLE); \

// STOPPMC pauses all performance counters by writing 0 to the MMCRs.
// NOTE: Cycle counter is turned off first.
#define STOPPMC PPCMtmmcr1(0); \
 PPCMtmmcr0(0);
#define PRINTPMC OSReport("<%d loadstores / %d miss cycles / %d cycles / %d \
Instructions>\n", \
 PPCMfpmc2(), PPCMfpmc3(), PPCMfpmc4(), PPCMfpmc1());
#define RESETPMC PPCMtpmc1(0); \
 PPCMtpmc2(0); \
 PPCMtpmc3(0); \
 PPCMtpmc4(0);

The constants used for the MMCR values can be found in include/revolution/base/PPCArch.h.

Note: The constant names are prefixed with the register for which they are appropriate. A detailed
description of each event can be found in Chapter 11 of BroadwayUserManual.pdf.
© 2006-2009 Nintendo 67 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
The macros can be used in the following way to get basic measurements:

Code 13–7 Using Performance Monitor Counter Macros

RESETPMC
STARTPMC
 <code to be measured goes here>
STOPPMC
PRINTPMC

There are even tighter ways of measuring assembly code. See the Optimization Primer for more
information.
RVL-06-0042-001-E 68 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
14 Reset and Shutdown Processing
The Revolution OS provides several functions related to performing system state transitions, such as
resetting and shutting down. An application must call these functions appropriately either to exit or when it
detects that RESET or the Power Button was pressed.

Code 14–8 Reset and Shutdown Functions

void OSRebootSystem(void);
void OSShutdownSystem(void);
void OSRestart(u32 resetCode);
void OSReturnToMenu(void);

The four functions above have been provided to implement reset and shutdown processing. Run
OSRebootSystem to reboot the system, OSShutdownSystem to shut down the system, OSRestart to
restart the current application, and OSReturnToMenu to return to the system menu. Refer to the
descriptions of each function in the Revolution Function Reference Manual (HTML) for more details. When
called, these reset and shutdown functions will shut down each sub-system internally.

14.1 Reset and Shutdown Notes

Be aware of the following when calling the reset and shutdown functions.

14.1.1 Requirements for Conditions That Cause Fatal Errors, Such as System
Lockups

• Callbacks: Do not call a reset or shutdown function when there is still a user callback or handler that
may call GX functions or functions (such as AXInit and AIInit) that initialize audio-related libraries.
The reset and shutdown functions shut down all sub-systems before disabling all interrupts and
cancelling user alarms. This implies that any unfinished asynchronous functions or enabled alarms
that exist may be invoked within a reset or shutdown function after it has shut down the sub-systems. If
a callback or handler attempts to use a sub-system that has been shut down, the sub-system may
cause a fatal error, such as a system lockup, to occur. If the system hangs after a reset or shutdown
function is called, check for callbacks and handlers that use any combination of the GX API and
functions for initializing audio-related libraries.

14.1.2 Recommendations for Non-Fatal Conditions that Should Be Handled,
Such as Possible Delayed Resets

• Audio: We recommend shutting down all audio sub-systems before calling a reset or shutdown
function. If an audio sub-system has not been shut down before a reset or shutdown function is called,
the function may take some time to shut down the audio sub-system. Additionally, the reset and
shutdown functions do not guarantee that audio will be stopped without any emitted noise.

• Wii console NAND memory: All processing in Wii console NAND memory must be completed before
a reset or shutdown function is called. If processing has not completed, a comparatively long period of
time may pass before a hot reset occurs.

• VI: We recommend that applications call the VISetBlack(TRUE), VIFlush, and
VIWaitForRetrace functions to flush the framebuffer before calling a reset or shutdown function.
The reset and shutdown functions do not call VISetBlack(TRUE) internally. As a result, the
framebuffer may change during reset and shutdown processing.

• Optical disc drive: We recommend that none of the DVD functions be called before a reset or
shutdown function. The reset and shutdown functions cancel all optical disc drive requests. As a result,
the drive may be reset twice if DVDCancel is called before a reset or shutdown function.
© 2006-2009 Nintendo 69 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK
14.1.3 Miscellaneous Notes

The reset and shutdown functions temporarily stop the thread scheduler. Once a reset or shutdown
function is called, user threads will no longer run.

The Revolution SDK does not use the Broadway’s MMU for segment address conversion and will not
access related registers, including SDR1 and SRn. When an application uses segment address
conversion, it must restore the registers to their original state before performing a restart using
OS_RESET_RESTART. Otherwise, unexpected application behavior may result.

No data in memory will be guaranteed after a system reboot.

Note: The reset and shutdown functions cannot be invoked from a callback function: callback behavior
will not be guaranteed.
RVL-06-0042-001-E 70 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution SDK Operating System
CodeWarrior is a trademark of Freescale, Inc.

All other trademarks and copyrights are the property of their respective owners.
© 2006-2009 Nintendo 71 RVL-06-0042-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution SDK Operating System Revolution SDK

RVL-06-0042-001-E 72 © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

© 2006-2009 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part with-
out the prior approval of Nintendo.

	1 Overview
	2 Initializing the OS
	2.1 OS Initialization
	2.2 Getting the Console Type

	3 Memory
	3.1 System Memory Map
	3.2 Getting Memory
	3.2.1 Arena Management

	3.3 Managing Memory
	3.3.1 Allocation Alignment
	3.3.2 One Heap
	3.3.3 Multiple Heaps
	3.3.4 Miscellaneous Details

	3.4 Memory Management in C++ Code
	3.5 Restrictions on Running Command Codes in the MEM2 Region

	4 Error Handling and Notification
	4.1 Error Display
	4.2 Memory Protection

	5 Cache Control
	5.1 Cache Description
	5.2 Cache Incoherence
	5.3 Basic Cache Management
	5.3.1 Efficiency

	5.4 Locked Cache Operation
	5.4.1 Locked Cache API Overview
	5.4.2 DMA Engine
	5.4.3 Basic Locked Cache API and Demos
	5.4.4 Low-Level Locked Cache API and Demos
	5.4.5 Additional Locked Cache Functions
	5.4.6 Enabling and Disabling the Locked Cache
	5.4.7 Dangers in Using the Locked Cache

	6 Time
	6.1 Real-Time Clock
	6.2 Alarm

	7 Critical Sections
	7.1 Programming Model

	8 Using CPU Idle Time
	9 Threads
	9.1 Initialization
	9.2 Scheduling
	9.2.1 Interaction with Interrupts

	9.3 Thread Creation
	9.4 Synchronization
	9.4.1 Library Access
	9.4.2 Synchronizing by Disabling the Scheduler
	9.4.3 Synchronizing by Sleeping and Waking
	9.4.4 Synchronizing with Messages
	9.4.5 Synchronizing with Mutexes
	9.4.5.1 Deadlock
	9.4.5.2 Priority Inversion

	9.4.6 Synchronizing with Conditional Variables

	9.5 Context Switching
	9.6 Checking the Active Threads
	9.7 Threads and Callbacks

	10 Fast Float/Integer Casting
	10.1 Initializing the Fast Cast API
	10.2 Fast Casting Routines

	11 Fonts
	11.1 Loading Fonts
	11.2 Character Width
	11.3 Font Header

	12 Relocatable Module System (REL)
	12.1 Relocatable Modules

	13 Profiling
	13.1 Stopwatches
	13.2 Performance Monitors

	14 Reset and Shutdown Processing
	14.1 Reset and Shutdown Notes
	14.1.1 Requirements for Conditions That Cause Fatal Errors, Such as System Lockups
	14.1.2 Recommendations for Non-Fatal Conditions that Should Be Handled, Such as Possible Delayed Resets
	14.1.3 Miscellaneous Notes

