Revolution SDK

Nintendo GameCube™ Controller Library
(PAD)

Version 1.04

The contents in this document are highly
confidential and should be handled accordingly.

© 2006-2008 Nintendo RVL-06-0043-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

RVL-06-0043-001-E 2 © 2006-2008 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution Nintendo GameCubeTM Controller Library

Contents

Y] (o] g I o 153 o] oY AT PPUPRRPT 5
A 1 (o To [N o1 o] o PP P PP PP PPPPPIN 6
2 (PAD) AP ..t a e e e h et e e e e e b e e e 7
2.1 PAD_MAX_CONTROLLERS........ooiiiiiiiei ittt 7

2.2 PADSEALUScvviriiiiiiieee ettt a e e e e e e 7

2.3 CONtroller BUTON BilS.......uuiiiiiiiiiiee ettt e et e e e e s e 8

2.4 PAd EITOr COUESeiiieiiiieieee ettt ettt et e s et e e e e et e e e s e bn e e e s annnns 9

2.5 PADINIT ettt a e et e e e e e e e 9

2.6 PADREAM.......eeeiiiiiiiiie et e e b e e et e e e e s rn e e e e aae 10

2.7 PADCIBIMP ..ottt etttk t e bt e et e e e b e e e e b n e e e e b e e e e e aarn e e e e nae 10
2.7.1 Control Stick and C Stick Clamping Algorithm ... 11

2.7.2 R Button and L Button Clamping Algorithm ... 12

2.8 PADRESELttt e e e e b e e e s b e e e e e e e e e nae 12

2.9 PADRECAIDIALE ...ttt e e e e 12
2.9.1 Hardware Origin RESEL.....ccoii ittt e e e e 12

2.10 SISetSAMPINGRALEcooiiiiiieie ettt e e e e e e e s et e e e e e e e e e e e e anrane 13
2.11 PADSEtANAIOGMOUEttt ettt et e e e e e e e s e st b e bbe e e e e e ae e e e e e annane 13
2.12 PADBUHONDOWNcoiiiiiiiitteie ittt e e e et e e e e e e 15
2.13 PADBULIONUD ..ottt e e e e e e e e et ettt ettt e e et e b e b e b e a e e e e e eaas 15

3 RUMDBIE MOtOr CONTIOI APttt e st s e e e e ann s 16
3.1 MOEOE STALEeviveiiiiiieee et e et e e 16

3.2 PADControlMotor and Utility Macro FUNCLIONScoooiiiiiiiiiiiiieeeeeee e eiieiee e 16

3.3 PADCONIIOIAIIMOTONSiteieee ittt ee ettt e e st e e e st e e e s st e e e e e e sbnreeeesanes 17

3.4 Controller Rumble Feature Availability Detectionccueeeiiiiiiiiiiiiie e 17

N o o 1 g [o TR T= 10] o [P EP TR 18
o R Y1 41 o] (=3 1= 1 o TP T OO PPRPRP 18

4.2 Handling Controller-Related EITOrS.........uua ittt e e 19

4.3 FUMNEr EXAMPIES ..ottt ettt e e e e e e e e e st et a e e e e aeaeaaa s 22

Code Examples

Code 2—1 PAD AP HEAAEE Fl.....ccoieeeeeee ettt e e e e e e e e 7
Code 2-2 PAD_MAX_CONTROLLERS ...ttt ettt be e nneas 7
COUE 2—3 PADSIAIUS ...ttt e e e e ettt et e e e e e e e et bttt et e e e e e e e e aa e aabbebbeeeeeeae e e e e e e nbanbbeeeeeeaaeaeeeaanne 7
LOfoTo (R B o L B] o1 T PO ST PRSPPI 9
(070 [l R o B T =T To TP PR 10
(070 [l ol o B @1 =11 1 o F TP PRTTR 10
COAE 27 PADRESEL. ...ttt et e oottt e e e e e e e e e e bbbt e et et e e e e e e e e b b e baeeeaaaaaaaaeas 12
Code 2—8 PADRECAIDIALEeeiiiiieiii ittt e e e e e e e e st e e e e e e e e e e as 12
Code 2—9 SISetSaMPINGRALEc.coiiiii e e e a e e e e e 13
Code 2—10 PADSEtANAIOGMOUEcooiiiiiieeeeit ettt e et e e e e e e e 15
Code 2—11 PADBULIONDOWeeiiiiiaeieeiiiiiiteiie et e e e ettt ee e e e e e e s s e ssbbebbe e e e e aaeeseeeaanbbnbbeeeeeeaaeaens 15
COAE 2—12 PADBULIONU ...ttt ettt ettt bttt e e e e e e e e e e e bbbttt e e e e e e e e e e e s e s annbbnbaeeeaaaaaaaaeas 15
Code 3—1 PAD AP NEAAET il ...coiiiiiiiieeee ettt e e e e e e 16
Code 3—2 PADCONIIOIMOLONeiiiiiiies ittt ettt e e e e e ettt e e e e e e e e e e e s annbbnbbeeeaaeaaaaaeas 16
Code 3—3 PADCONLrolMOotor ULIlity MECTOSceiiiiieaiiiiiiiie ettt e e e e e e 17
COode 3—4 PADCONIIOIMOLONeiiiiiiiee ittt ettt e e e e e ettt e e e e e e e e e e e s ennbbnbbeeeaeaaaaeaeas 17
COAE 4—1 SIMPIE DEIMO ...ttt oottt e e e e e e e e e e e a bbb et e et etaeaeaeaasnnbbnbeeeeaaaaaaaaens 18
(070 (SR A o T oo | o I =t o] £ T TP PPRTTR 20
Figure 2—1 PADCIAMP AIGOTItRIM ...ttt e e e e e e e e e e e e e ae e annenaes 11
Tables
Table 2—1 PADSatuS VariabIlesc.ooiiiiiiic e 8
© 2006-2008 Nintendo 3 RVL-06-0043-001-E

CONFIDENTIAL Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

LI o) L= @fo T g i £] (=T = U1 (o o 1S 8
QLI o) Lo B (o oo [T PR 9
Table 2—4 ANalog MOAES 0, 5, 6, 7 ..evviieeeie ittt e s e e e e e s e e e st r e e e e e e e s sassnnnrrnreeereees 14
I o] L= SR Y o = 1o T TN 1Yo To = 00 PP 14
Table 2—6 ANAIOG MOUE 2... ... e e e e e e e et e e e e e s s e st eeeretaeeeesanannrnnnreereees 14
I o] L=y A Y o T= 1o T TN 1Yo To 1= T PP 14
Table 2—8 ANAIOG MOUE 4 ... e e e e e et e e e e e e s s e st eeeeeeeeeeessnanntennenereees 15
Table 3—1 RUMDIE MOTOF SEALUSevveiieeiii i r e e e s e e s st re e e e e e e e e e an s annrnnrneeeees 16
RVL-06-0043-001-E 4 © 2006-2008 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Revolution SDK

Revolution Nintendo GameCubeTM Controller Library

Revision History

Date

Version Revised Item Description
1.04 2008/08/26 2.9 Added description of specifications that do not reset the
origin correctly under special conditions.

1.03 2006/09/07 2.7 Added description of the newly added clamp API.

1.02 2006/08/30 2.6 Added notes regarding handling function return values.
2.7 Added usable value input range and adjustments.
2.9 Added “Hardware Origin Reset.”
3.4 Added “Controller Rumble Feature Availability Detection.”

1.01 2006/04/18 2.4 Added description of error codes.

1.00 2006/03/01 - First release by Nintendo of America, Inc.

© 2006-2008 Nintendo

CONFIDENTIAL

5 RVL-06-0043-001-E
Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

1 Introduction

Revolution provides the ability to use Nintendo GameCube Controllers.

This document describes the Nintendo GameCube Controller features and API for the Revolution system.
The Nintendo GameCube standard Controller supports the following features:

» Two analog sticks (the Control Stick and the C Stick)

« Two combined analog/digital triggers (the L Button and the R Button). Users will feel a click when the L
Button or R Button is fully depressed. Pressing these buttons further activates a digital switch.

e One directional pad (the +Control Pad)
e Six digital buttons (the A Button, B Button, X Button, Y Button, Z Button, and START/PAUSE)
e A built-in Rumble Motor (not available for WaveBird)

The Revolution console has four controller ports. From the hardware perspective, it is not necessary for
players to connect Controllers to the controller ports from left to the right. Moreover, players can connect or
disconnect Controllers while the Revolution console is turned on.

In Revolution mode, up to eight Controllers can be used simultaneously when both Revolution standard
controllers and Nintendo GameCube Controllers are used together.

Important: It is not recommended that the Ul tool version 3 (the standard Wii controller type that is
inserted into the controller port) and the Nintendo GameCube Controller be used together. Although the
WPAD library for the Ul tool version 3 can obtain data from both the Nintendo GameCube Controller as
well as Ul tool version 3, this functionality is limited (see the WPAD library function reference for more
information). Avoid using the PAD library in conjunction with the WPAD library for the Ul tool version 3.

The Revolution hardware samples the status of every attached Controller automatically at the rate speci-
fied by the program. The Video Interface controls the timing of Controller sampling (see the Video Interface
Library (V1) section in the Graphics Programmer’s Guide for details). Controller status, stored in the serial
interface registers, can be read by the CPU at any time. The Controller library (PAD) provides a set of func-
tions through which game applications can communicate with the Revolution standard controllers.

RVL-06-0043-001-E 6 © 2006-2008 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK

Revolution Nintendo GameCubeTM Controller Library

2 (PAD) AP

This chapter describes the constants, data structures, and functions of the basic Controller (PAD) API.
(The rumble motor control functions are described in the next chapter.) The following header file defines

the PAD API:

Code 2-1 PAD API Header File

#include <revolution/pad.h>

21 PAD_MAX_CONTROLLERS

PAD MAX CONTROLLERS identifies the maximum number of Controllers that can be plugged into Revolu-

tion in Revolution mode.

Code 2-2 PAD_MAX_CONTROLLERS

#define PAD MAX CONTROLLERS

4

2.2 PADStatus

Code 2—-3 PADStatus

typedef struct PADStatus
{
ulé button;
s8 stickX;
s8 sticky;
s8 substickX;
s8 substickyY;
u8 triggerLeft;
u8 triggerRight;
u8 analogA;
u8 analogB;
s8 err;
} PADStatus;

Or-ed PAD BUTTON * or PAD TRIGGER * bits

-128 <= stickX <=
-128 <= sticky <=
-128 <= substickX <=
-128 <= substickY <=
0 <= triggerLeft <=
0 <= triggerRight <=
0 <= analogA <=
0 <= analogB <=

one of PAD ERR_* number

127
127
127
127
255
255
255
255

© 2006-2008 Nintendo
CONFIDENTIAL

RVL-06-0043-001-E
Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD)

The PADStatus data structure represents the status of a Controller and takes the following variables:

Table 2—1 PADStatus Variables

Variable Meaning

button If any button is pressed, the corresponding bit is set to 1.

stickX Movement data given in terms of the x-axis of the main analog stick (the Con-
trol Stick).

stickY Movement data given in terms of the y-axis of the main analog stick (the Con-
trol Stick).

substickx Movement data given in terms of the x-axis of the second analog stick (the C
Stick).

substickyY Movement data given in terms of the y-axis of the second analog stick (the C
Stick).

triggerLeft Movement data of the L Button.

triggerRight Movement data of the R Button.

analoga Analog input of the A Button. (See note.)

analogB Analog input of the B Button. (See note.)

err Controller error code. This holds PAD_ERR_NONE if the pad status is valid; oth-
erwise, it holds another error code.

Note: The Nintendo GameCube Controller does not support analog input values (AnalogA/B) from the A
Button or B Button. Furthermore, the Revolution Controller Library does not support analog input
from the A Button or B Button.

2.3 Controller Button Bits

The Controller buttons are identified by the following bits:

Table 2—2 Controller Buttons

Buttons Bits

Revolution SDK

PAD BUTTON LEFT 0x0001
PAD BUTTON RIGHT 0x0002
PAD BUTTON_DOWN 0x0004
PAD BUTTON UP 0x0008
PAD TRIGGER Z 0x0010
PAD TRIGGER R 0x0020

RVL-06-0043-001-E
Released: March 27, 2009

© 2006-2008 Nintendo
CONFIDENTIAL

Revolution SDK Revolution Nintendo GameCubeTM Controller Library

Table 2—2 Controller Buttons

Buttons Bits

PAD TRIGGER L 0x0040
PAD BUTTON A 0x0100
PAD BUTTON B 0x0200
PAD BUTTON X 0x0400
PAD BUTTON Y 0x0800
PAD BUTTON_ START 0x1000

2.4 Pad Error Codes
The err member of the PADStatus data structure can hold one of the following error codes:

Table 2—3 Error Codes

Definition Name Code Description

PAD ERR_NONE 0 PADStatus contains a valid Controller status.

PAD_ERR_NO_CONTROLLER -1 No Controller is inserted in the Controller Socket.?

PAD ERR NOT READY -2 The Controller Socket or the Controller is under initial-
ization (for example, just after PADInit or
PADReset).

PAD ERR_TRANSFER =8 A data transfer error occurred during the last data
transfer. PADStatus therefore contains an invalid
Controller status.

a. While the Controller is resetting the origin data, the err member has the value
PAD ERR_NO CONTROLLER. The ability to reset the origin data by simultaneously holding
down the X Button, Y Button, and START for three seconds is built into Nintendo GameCube
Controller hardware. During the reset (after the process has started and while the three but-
tons are being pressed), there is no communication with the Controller. Once any of the
three buttons is released, communication with the Controller is possible again.

2.5 PADInit

The PADInit function initializes the Controllers and enables the pad sampling performed by the Revolu-
tion hardware. You should call this function before invoking any other PAD functions except
PADSetAnalogMode.

Note: The Revolution Video Interface (VI) must be initialized via vIInit before calling PADInit since
the VI controls the timing of the Controller data sampling. Initialization provides a default sampling
rate in which a game program can get the latest Controller status if PADRead is called right after
each vertical retrace interrupt.

Code 2—-4 PADInit

void PADInit (void) ;

© 2006-2008 Nintendo 9 RVL-06-0043-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

This function has no arguments and no return value.

Note: If PADRead is called immediately after PADInit, each pad status may contain a
PAD ERR NOT READY Or a PAD ERR TRANSFER error code.

2.6 PADRead

The PADRead function takes an array from PADStatus to read as a parameter. The number of elements in
the array is determined by PAD MAX CONTROLLERS. Each err member will hold PAD ERR_NONE if the pad
status is valid; otherwise, they hold other error values and all the other PADStatus members are cleared
to zero.

Code 2-5 PADRead

void PADRead (PADStatus* status) ;

This function reads the status of all Controllers at once. It has no return value.

Note: The pad status error value PAD_ERR TRANSFER indicates data sampling failure at the corre-
sponding controller port. This error does not indicate that the controller is disconnected. When a
plugged-in controller becomes disconnected, the value PAD ERR NO_CONTROLLER is returned.
Avoid creating an application that determines controller disconnection based on criteria other than
the PAD ERR NO_ CONTROLLER return value.

2.7 PADClamp

The pADClamp () function takes an array from PADStatus as a parameter. The number of elements in
the array is determined by PAD MAX CONTROLLERS. The function clamps the inputs of the Control Stick,
C Stick, R Button, and L Button using the algorithms described below. It clamps all of PADStatus at once,
and it has no return value.

The Revolution SDK has the functions PADClamp2, PADClampCircle2, and PADClampTrigger, which
are capable of receiving a wider range of analog input values compared to the Nintendo GameCube func-
tions PADClamp and PADClampCircle. See the PAD Library Function Reference Manual for details.

Code 2-6 PADClamp

void PADClamp (PADStatus* status) ;

RVL-06-0043-001-E 10 © 2006-2008 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK

Revolution Nintendo GameCubeTM Controller Library

2.7.1

Control Stick and C Stick Clamping Algorithm

PADClamp () performs dead-zone and outer-octagon clamping for analog sticks as illustrated in the follow-
ing figure. For the Control Stick, the function first clamps dead zones along both axes (£15). Then it clamps
along the outer octagon, whose lengths from the center to the vertices is 72 (x =0 or y = 0) and 56.6 (x =
+y). For the C Stick, the function first clamps dead zones along both axes (+15). Then it clamps along the
outer octagon, whose lengths from the center to the vertices are 59 (x = 0 or y = 0) and 43.8 (x = %y).

The functions PADClamp2 and PADClampCircle2 are capable of receiving a wider range of analog stick
input values than the PADClamp and PADClampCircle functions. See PAD Library Function Reference

Manual for details.

Figure 2—1 PADClamp Algorithm

Gray indicates valid
region on the standard
Nintendo GameCube
Controller

y
. A
as.87) Control Stick
(55,565) (0,72)
e (40,40)
(87,15)
72,0
A w— (72.0), x
Gray indicates valid
region on the standard
Nintendo GameCube
Controller
y
) A
y C-Stick
(15,74) ~
/(46,46) (0,59)
(31,31)
_(74,15)
59,0
D — (5904, x

© 2006-2008 Nintendo
CONFIDENTIAL

11

RVL-06-0043-001-E
Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

2.7.2 R Button and L Button Clamping Algorithm

PADClamp () performs dead and outer zone clamping for the R Button and L Button. It clamps the dead
zone at (0 - 30) and the outer zone at (180 - 255). The resulting trigger values are between 0 and 150.

2.8 PADReset

The PADReset function resets the Controllers connected to the specified Controller Socket(s). It takes the
argument mask, which is the OR-ed bit mask of Controllers (PAD_CHANNn_ BIT) to reset. The function
returns TRUE if the reset sequence starts successfully; otherwise, it returns FALSE.

PADReset may return a value of FALSE if the Controller Socket interface was busy performing other trans-
actions. In that case, PADReset should be called again until PADRead detects something other than the
PAD ERR NO CONTROLLER error.

If PADRead is called immediately after the successful PADReset, the returned PADStatus of the specified
ports may contain a PAD_ERR NOT READY or a PAD ERR TRANSFER error code.

Code 2-7 PADReset

#define PAD_ CHANO_BIT 0x80000000 // Controller 1
#define PAD_ CHAN1 BIT 0x40000000 // Controller 2
#define PAD CHAN2 BIT 0x20000000 // Controller 3
#define PAD_ CHAN3 BIT 0x10000000 // Controller 4

BOOL PADReset (u32 mask) ;

2.9 PADRecalibrate

The PADRecalibrate function recalibrates the specified Controllers. Otherwise, the PADRecalibrate
function behaves like PADReset. Controllers are automatically calibrated when power to Revolution is
turned on.

Note: PADRecalibrate should be called when the Revolution RESET button is pressed. With
WaveBird, calling PADRecalibrate does not cause calibration to occur. However, the game
programmer does not need to be concerned about this. Call PADRecalibrate whenever the
RESET button is pressed. Also, as described in the specifications, the origin will not be reset
correctly if a controller is inserted while the control stick is pushed to the right.

Code 2-8 PADRecalibrate

#define PAD CHANO_BIT 0x80000000
#define PAD CHAN1_BIT 0x40000000
#define PAD CHAN2 BIT 0x20000000
#define PAD CHAN3_BIT 0x10000000

BOOL PADRecalibrate (u32 mask) ;

If PADRead is called immediately after the successful PADRecalibrate, the returned PADStatus of the
specified ports may contain a PAD_ERR_NOT READY or a PAD_ERR TRANSFER error code. In this case,
continue to call PADReset (not PADRecalibrate) until PAD_ERR NONE is returned as the error code for
PADRead.

29.1 Hardware Origin Reset

The timing at which a hardware origin reset is performed will be different between the
Nintendo GameCube Controller and WaveBird.

RVL-06-0043-001-E 12 © 2006-2008 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution Nintendo GameCubeTM Controller Library

Nintendo GameCube Controller

e Initial power-on

In general, the Nintendo GameCube Controller performs an origin reset at initial power-on (for exam-
ple: when a Nintendo GameCube is turned on with the Controller plugged in; when a Controller is
plugged in to a port of a Nintendo GameCube that is already on).

e Origin reset command

The Nintendo GameCube Controller has the function to perform an origin reset by pressing the X But-
ton, Y Button, and START/PAUSE simultaneously for three seconds.

WaveBird
 WaveBird power-on

The origin is set when the power is turned on for the WaveBird. Power cycling the WaveBird will reset the
origin. However, these setting will not be reflected to the Nintendo GameCube until the receiver accepts
the signal from the WaveBird.

The reset of values following these operations will be performed automatically by the library, so the appli-
cation (programmer) does not need to be aware of the origin reset.

Note: As indicated in the specifications, the origin is not correctly reset when the control stick is left
pushed to the right when the origin reset command (X + Y + START) has been given.

2.10 SlSetSamplingRate

The s1SetSamplingRate function sets the Controller data sampling rate msec in milliseconds (from 1
millisecond to 11 milliseconds). All of the Controllers are sampled at the rate specified by this function. If
msec = 0, the function sets the default sampling rate, which allows the game program to get the latest Con-
troller status if PADRead is called after each vertical retrace interrupt. There is no return value.

Code 2-9 SISetSamplingRate

void SISetSamplingRate (u32 msec) ;

Note: If PADRead is called at a faster rate than the one specified by SISetSamplingRate, only the first
PADRead returns the valid input. The following PADReads return PAD _ERR_TRANSFER until the
next period.

The transfer cycle for controller status is about 2.2 msecs for the WaveBird. Accordingly, even if a sample
rate higher than this transfer cycle is set for these controllers, the same input values will be obtained. Even
for the same input values, when PADRead is called with a longer cycle than the set sample frequency,
PADREad will fall

2.11 PADSetAnalogMode

Note: This functions sets analog mode for the Nintendo GameCube Controller being used. This function
was kept to expand the type of controllers that can be connected to the controller ports. As of
March 1, 2006, this function is not required.

The PADSetAnalogMode function specifies the analog mode of the Controllers to use. The analog mode
controls the resolution of the Controller’s analog inputs stored in PADStatus as shown below. The default
mode is PAD_MODE 3.

Note: The Nintendo GameCube Controller does not support analog input values (AnalogA/B) from the A
Button or B Button. Furthermore, the Revolution Controller Library does not support analog input
from the A Button or B Button.

© 2006-2008 Nintendo 13 RVL-06-0043-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD)

Revolution SDK

Table 2-4 Analog Modes 0, 5, 6, 7

Modes 0, 5, 6, 7

StickX/Y

TriggerLeft/Right

Mode 1

StickxX/Y

TriggerLeft/Right

Mode 2

StickxX/Y

TriggerLeft/Right

Mode 3

StickX/Y

TriggerLeft/Right

All 8 bits are valid.

Only left-most 4 bits are valid. Other bits are set to

Table 2-5 Analog Mode 1

All 8 bits are valid.
All 8 bits are valid.

Table 2-6 Analog Mode 2

All 8 bits are valid.

Only left-most 4 bits are valid. Other bits are set to
zero.

Table 2-7 Analog Mode 3

All 8 bits are valid.

All 8 bits are valid.

RVL-06-0043-001-E
Released: March 27, 2009

14

© 2006-2008 Nintendo
CONFIDENTIAL

Revolution SDK Revolution Nintendo GameCubeTM Controller Library

Table 2-8 Analog Mode 4

StickX/Y All 8 bits are valid.
SubstickX/Y All 8 bits are valid.
TriggerLeft/Right All 8 bits are always zero.
AnalogA/B (See note) All 8 bits are valid.

Code 2-10 PADSetAnalogMode

#define PAD MODE 0
#define PAD MODE 1
#define PAD MODE_2
#define PAD MODE 3
#define PAD MODE 4
#define PAD MODE_5
#define PAD MODE 6
#define PAD MODE 7

N o Ul W N E o

void PADSetAnalogMode (u32 mode) ;

Note: PADSetAnalogMode suspends the hardware Controller sampling. The next PADRead returns
PAD ERR_NO CONTROLLER errors for the currently attached Controllers. The specified analog
mode takes effect the next time PADReset or PADInit is called. PADSetAnalogMode may be
called before PADInit.

2.12 PADButtonDown

The PADBut tonDown macro identifies which button(s) have just been pressed.

Code 2-11 PADButtonDown

#define PADButtonDown (buttonLast, button) \
(((buttonLast) “ (button)) & (button))

The argument but tonLast is the previous button status and button is the current one. Both are
returned in PADStatus by PADRead (). PADBut tonDown returns the OR-ed Controller button bits of the
pressed button(s).

2.13 PADButtonUp
The PADBut tonUp macro identifies which button(s) have just been released.

Code 2-12 PADButtonUp

#define PADButtonUp (buttonLast, button) \
(((buttonLast) * (button)) & (buttonLast))

The argument but tonLast indicates the previous button status and button is the current one. Both are
returned in PADStatus by PADRead (). PADButtonUp returns the OR-ed pad button bits of the released
button(s).

© 2006-2008 Nintendo 15 RVL-06-0043-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

3 Rumble Motor Control API

This chapter describes the Wii controller’s rumble motor control functions, which are described in the
header file below.

Code 3—-1 PAD API header file

#include <revolution/pad.h>

3.1 Motor State

The standard Wii controller has a single rumble motor which can be in one of the three states shown in the
following table:

Table 3—1 Rumble Motor Status

Defined Name Code Description
PAD MOTOR_STOP 0 The motor remains stopped, or stops naturally if it is rum-
bling.
PAD MOTOR RUMBLE 1 The motor keeps rumbling, or starts rumbling.
PAD MOTOR STOP_ HARD 2 The motor stops hard if it is rumbling.

You can stop the motor by force, or by terminating the motor power supply. Although the motor can be pro-
grammed in several ways, we expect the following motor state transitions to be common:

PAD MOTOR STOP = PAD MOTOR RUMBLE = PAD MOTOR_STOP

PAD MOTOR STOP = PAD MOTOR RUMBLE = PAD MOTOR_STOP HARD =+ PAD MOTOR_STOP

3.2 PADControlMotor and Utility Macro Functions

PADControlMotor controls the specified Controller motor state. It takes the arguments chan, a value of
PAD CHANn, and command, a value of PAD_ MOTOR_* (the default motor state is PAD_ MOTOR_STOP).
PADControlMotor has no return value.

Code 3-2 PADControlMotor

#define PAD_ CHANO
#define PAD CHAN1
#define PAD CHAN2
#define PAD_ CHAN3

// Controller
// Controller
Controller
// Controller

w N P O
~
~
W NP

#define PAD MOTOR_STOP
#define PAD MOTOR_RUMBLE
#define PAD MOTOR_STOP_HARD

N B O

void PADControlMotor (int chan, u32 command) ;

Note: Controllers must be initialized first via PADInit.

RVL-06-0043-001-E 16 © 2006-2008 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution Nintendo GameCubeTM Controller Library

We provide three utility macros with PADControlMotor for ease of use:
Code 3-3 PADControlMotor utility macros

#define PADStartMotor (chan) PADControlMotor ((chan), PAD MOTOR_ RUMBLE)
#define PADStopMotorHard(chan) PADControlMotor ((chan), PAD_MOTOR_STOP_HARD)
#define PADStopMotor (chan) PADControlMotor ((chan), PAD_MOTOR_STOP)

3.3 PADControlAlIMotors

The PADControlAllMotors function takes the parameter CommandArray, an
array[PAD_ MAX CONTROLLERS]of PAD MOTOR_*, and sets every Controller motor state at once. It has no
return value.

Code 3—-4 PADControlMotor

#define PAD MOTOR_STOP 0
#define PAD MOTOR_RUMBLE 1
#define PAD MOTOR_STOP_HARD 2

void PADControlAllMotors (u32* commandArray) ;

Note: The Revolution hardware always sets the four motor states by a single operation; therefore, calling
PADControlAllMotors is rather more efficient than calling PADControlMotor four times.

3.4 Controller Rumble Feature Availability Detection

There are instances where the controller Rumble Feature is disabled or a controller without a Rumble Fea-
ture is being used when the presentation requires the feature. In such case, an alternative presentation
may become necessary.

The application should be able to detect a disabled Rumble Feature. The PADRead function can determine
whether the controller has a Rumble Feature.

© 2006-2008 Nintendo 17 RVL-06-0043-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

4 Coding Sample

4.1 Simple Demo
The following program demonstrates a simple use of the PAD API.

Code 4-1 Simple Demo

#include <revolution.hs>
PADStatus Pads[PAD_MAX_CONTROLLERS];
void main(void)

{

ulé button = 0; // Previous button status

ulé down; // Buttons just pressed down

ulé up; // Buttons just released

VIInit () ; // VI must be initialized before PAD
PADInit () ;

do {

PADRead (Pads) ;

if (Pads|[0] .err != PAD_ERR_NONE)
continue;

down = PADButtonDown (button, Pads[0] .button) ;
up = PADButtonUp (button, Pads[0] .button);
button = Pads[0] .button;

PADClamp (Pads) ;

OSReport ("Buttons: %$c%c%c%c %$c Stick: (%4d, %4d) SubStick: (%4d, %4d) Trigger (%3d, %3d)
Down: %c%c Up: %c%c\n",
(Pads [0] .button & PAD BUTTON_A) ? 'A' : ' ',
(Pads [0] .button & PAD BUTTON B) ? 'B' : ' ',
(Pads [0] .button & PAD_BUTTON_X) ? :
(Pads [0] .button & PAD BUTTON Y) ? 'Y' : ' ',
(Pads [0] .button & PAD BUTTON_START) ? 'S' : ' ',
Pads [0] .stickX,
Pads [0] .stickY,
Pads [0] .substickX,
Pads [0] .substickY,
Pads [0] .triggerLeft,
Pads [0] .triggerRight,
(down & PAD_BUTTON_A) ?O'AY Y,
(down & PAD BUTTON B) ? 'B' : ' ',
(up & PAD BUTTON_A) ? 'A' : ' ',
(up & PAD BUTTON B) ? 'B' : ' ');
} while (! (button & PAD BUTTON MENU)) ;

The Video Interface must first be initialized via VIInit. Then a call to PADInit initializes the Controllers.

In the body of the do loop, the PADRead function reads the status of all the Controllers, then PADClamp
clamps the analog input data.

Note: Both PADRead and PADClamp take an array[PAD MAX CONTROLLERS] of PADStatus.

RVL-06-0043-001-E 18 © 2006-2008 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution Nintendo GameCubeTM Controller Library

The program then checks the error code of the Controller connected to the first Controller Socket. If the
error code of the first Controller is not PAD_ERR NONE, the program ignores the current input. Otherwise,
the program prints out the current PADStatus of the first Controller, as well as an indication of whether the
A Button or B Button has just been pressed and/or released. The program terminates when the START/
PAUSE Button of the first Controller is pressed.

4.2 Handling Controller-Related Errors

The next program illustrates how to handle Controller-related errors such as may occur when no Controller
is attached to the Revolution console at the start of game play, or when one or more Controllers are dis-
connected and then reconnected to the console during game play.

As always, this program initializes the VI, then the Controllers, in that order. The for loop of the program
checks each returned error code returned by PADRead.

The variable connectedBits holds the bits of the Controllers recognized by the program. The program rec-
ognizes an attached game by the error code PAD_ERR NONE or PAD ERR_TRANSFER.

The variable resetBits holds the bits of empty Controller ports by checking all the err members. The pro-
gram calls PADReset for those Controller ports indicated by resetBits.

Note: Once the program recognizes a set of plugged-in Controllers (i.e., connectedBits is not zero), the
variable resetBits is OR-ed with connectedBits. Thus the program does not try to reset the unused
Controller ports to minimize CPU overhead.

© 2006-2008 Nintendo 19 RVL-06-0043-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

Finally, the program shows the current status of the Controllers.
Code 4-2 Handling Errors

#include <revolution.hs>
PADStatus Pads[PAD_MAX_CONTROLLERS];

static void PrintPads (void)

{

int chan;
OSReport ("Port A B XY M ZLR +Pad Left Right Trigger\n") ;
for (chan = 0; chan < PAD MAX CONTROLLERS; ++chan)
OSReport ("$d[%-2d] %c[%3d] %c[%$3d] %c%c %c %c%c%c %c%c%c%c (%4d, %4d) (%4d, %4d) (%34,

%3d)\n",
chan,
Pads [chan] .err,
(Pads [chan] .button & PAD_BUTTON A) ? 'O' : ' ',
Pads [chan] .analoga,
(Pads [chan] .button & PAD_BUTTON_B) ? 'O' : ' ',
Pads [chan] .analogB,

(Pads [chan] .button & PAD_BUTTON_X) ? 'O' : ' !
(Pads [chan] .button & PAD_BUTTON_Y) ? 'O' : ' !
(Pads [chan] .button & PAD _BUTTON_ START) ? 'O' :
(Pads [chan] .button & PAD_TRIGGER_ Z) ? 'O' : '_
(Pads [chan] .button & PAD_TRIGGER L) ? 'O' : '_
(Pads [chan] .button & PAD _TRIGGER R) ? 'O' : ' _
(Pads [chan] .button & PAD_BUTTON_LEFT) ? '<'
(Pads [chan] .button & PAD _BUTTON RIGHT) ? '>'
(Pads [chan] .button & PAD_BUTTON_UP) ?2 N
(Pads [chan] .button & PAD_BUTTON_DOWN) ? 'v'
Pads [chan] .stickX,
Pads [chan] .stickY,
Pads [chan] . substickX,
Pads [chan] .substickY,
Pads [chan] .triggerLeft,
Pads [chan] .triggerRight) ;
void main(void)
u32 padBit;
u32 resetBits;
u32 connectedBits;
int chan;
VIInit () ;
PADInit () ;
connectedBits = 0x0;
for (;;)
PADRead (Pads) ;
resetBits = 0x0;
for (chan = 0; chan < PAD MAX CONTROLLERS; ++chan)

{

padBit = PAD CHANO_BIT >> chan;

RVL-06-0043-001-E
Released: March 27, 2009

20

© 2006-2008 Nintendo
CONFIDENTIAL

Revolution SDK

Revolution Nintendo GameCubeTM Controller Library

switch (Pads[chan] .err)

{

case PAD_ERR NONE:
case PAD_ERR_TRANSFER:

connectedBits |= padBit;
break;
case PAD ERR NO CONTROLLER:
resetBits |= padBit;
break;
case PAD ERR NOT READY:
default:
break;

}
}

if (connectedBits)

{
1
if (resetBits)

{
}

resetBits &= connectedBits;

PADReset (resetBits) ;

if (connectedBits)

{

OSReport ("\033c") ; // Resets the terminal
OSReport ("\nAttached Controllers: 0x%1x.\n", connectedBits) ;
PrintPads () ;

PADClamp (Pads) ;
OSReport ("\nClamped\n") ;
PrintPads () ;

}

else

{
}

OSReport ("Please connect Controllers\n") ;

VIWaitForRetrace () ;

Notes:

All Revolution game programs must support Controller live plug-infout.

© 2006-2008 Nintendo 21
CONFIDENTIAL

RVL-06-0043-001-E
Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

4.3 Further Examples

You can find more Controller examples under /revolution/build/demos/paddemo/src. The
cont. ¢ file implements some Controller utility functions which you might want to use in your game.

ReadCont performs the following functions:

» Generates key repeat inputs that are independent of the current TV format, and thus not affected by
different refresh rates

» Emulates +Control Pad inputs from Control Stick input

* Keeps the previous Controller input if PAD ERR TRANSFER is returned so that the game main loop
can ignore the error code returned by the PADRead

* Mixes up four Controller inputs and generates the pseudo fifth Controller input to support single play
games more easily

The function InitCont can direct the main loop to check only the specified Controller ports, or to check
the initial set of Controller ports (i.e., the ports where Controllers were originally attached).

The contdemo. c file illustrates the use of InitCont and ReadCont. It also shows how to recalibrate
and change the attached Controller ports at the soft reset.

The motordemo. c file illustrates the use of PADControlAllMotors and how to generate various
strengths of rumble motor effects.

RVL-06-0043-001-E 22 © 2006-2008 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Revolution SDK Revolution Nintendo GameCubeTM Controller Library

TM and ® are trademarks of Nintendo.

Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.
IBM is a trademark of International Business Machines Corporation.

Roland GS Sound Set is a trademark of Roland Corporation U.S.

All other trademarks and copyrights are property of their respective owners.

© 2006-2008 Nintendo 23 RVL-06-0043-001-E
CONFIDENTIAL Released: March 27, 2009

Revolution Nintendo GameCubeTM Controller Library (PAD) Revolution SDK

© 2006-2008 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

RVL-06-0043-001-E 24 © 2006-2008 Nintendo
Released: March 27, 2009 CONFIDENTIAL

	1 Introduction
	2 (PAD) API
	2.1 PAD_MAX_CONTROLLERS
	2.2 PADStatus
	2.3 Controller Button Bits
	2.4 Pad Error Codes
	2.5 PADInit
	2.6 PADRead
	2.7 PADClamp
	2.7.1 Control Stick and C Stick Clamping Algorithm
	2.7.2 R Button and L Button Clamping Algorithm

	2.8 PADReset
	2.9 PADRecalibrate
	2.9.1 Hardware Origin Reset

	2.10 SISetSamplingRate
	2.11 PADSetAnalogMode
	2.12 PADButtonDown
	2.13 PADButtonUp

	3 Rumble Motor Control API
	3.1 Motor State
	3.2 PADControlMotor and Utility Macro Functions
	3.3 PADControlAllMotors
	3.4 Controller Rumble Feature Availability Detection

	4 Coding Sample
	4.1 Simple Demo
	4.2 Handling Controller-Related Errors
	4.3 Further Examples

