
The contents in this document are highly

confidential and should be handled accordingly.

© 2006-2008 Nintendo RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution

AX Sound Pipeline
Version 1.01

Revolution AX Sound Pipeline Revolution SDK

RVL-06-0035-001-D 2 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Confidential

These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

Revolution SDK Revolution AX Sound Pipeline
Contents
Revision History .. 5
1 Introduction... 6

1.1 Document Organization .. 7
2 Importing Sound Effects into the AX Sound Pipeline ... 8

2.1 Functionality.. 9
2.1.1 Supported Input Formats .. 9
2.1.2 Conversion Functions ... 9

2.2 Using sndconv.exe ... 9
2.2.1 The Command Line .. 9
2.2.2 Scripting .. 11

3 Tools Programming with the AX Sound Pipeline.. 17
3.1 Functionality.. 17
3.2 Architecture... 17
3.3 Modules .. 18

3.3.1 The SOUNDFILE DLL... 18
3.3.2 The DSPTOOL DLL .. 23
3.3.3 The sndconv Program... 30

4 Game Engine Programming with the AX Sound Pipeline... 37
4.1 Overview... 37
4.2 Data Abstraction ... 37
4.3 SP API .. 39

4.3.1 The SPInitSoundTable Function ... 39
4.3.2 The SPGetSoundEntry Function... 40
4.3.3 The SPPrepareSound Function .. 40
4.3.4 The SPPrepareEnd Function .. 41

4.4 Using SP... 42
4.4.1 Source Code ... 42
4.4.2 Loading the SP Sound Table .. 43
4.4.3 Loading the SPD file into Main Memory.. 44
4.4.4 Initializing the SP Sound Table ... 45
4.4.5 Preparing a Sound Effect for Playback ... 45
4.4.6 Preparing a Looped Effect for Termination ... 47

Code Examples
Code 2–1 sndconv Command Line Syntax... 9
Code 2–2 Script File Example .. 11
Code 2–3 Basic Script Structure and Syntax.. 12
Code 2–4 The INCLUDE Command... 13
Code 2–5 The PATH Command ... 13
Code 2–6 The Sound Effect Clause ... 13
Code 2–7 The Header File COMMENT Command .. 13
Code 2–8 Script Comment.. 13
Code 2–9 The FILE Attribute .. 14
Code 2–10 The SAMPLERATE Attribute.. 14
Code 2–11 The LOOP Points Attribute... 15
Code 2–12 The MIX attribute.. 15
Code 2–13 The OUTPUT Attribute ... 16
Code 3–1 The SOUNDINFO Structure ... 19
Code 3–2 getSoundInfo().. 19
Code 3–3 getSoundSamples().. 20
Code 3–4 writeAiffFile() .. 20
Code 3–5 writeWaveFile() .. 21
© 2006-2008 Nintendo 3 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
Code 3–6 Loading a Dynamic Link Library ... 22
Code 3–7 The ADPCMINFO Structure ... 24
Code 3–8 getBytesForAdpcmBuffer()... 24
Code 3–9 getBytesForAdpcmSamples() .. 25
Code 3–10 getBytesForPcmBuffer()... 25
Code 3–11 getBytesForPcmSamples() .. 25
Code 3–12 getSampleForAdpcmNibble() ... 25
Code 3–13 getBytesForAdpcmInfo() .. 26
Code 3–14 getNibblesForNSamples() .. 26
Code 3–15 getLoopContext().. 26
Code 3–16 encode() ... 26
Code 3–17 decode() ... 27
Code 3–18 Loading a Dynamic Link Library ... 28
Code 3–19 The SNDCONVDATA Structure ... 32
Code 3–20 ADPCMINFO Data Structure.. 33
Code 4–1 SPSoundEntry Data Structure.. 37
Code 4–2 SpAdpcmEntry Data Structure ... 38
Code 4–3 AX ADPCM Data Structures... 38
Code 4–4 SPSoundTable Data Structure ... 39
Code 4–5 SPInitSoundTable() .. 39
Code 4–6 SPGetSoundEntry().. 40
Code 4–7 SPPrepareSound() ... 40
Code 4–8 SPPrepareEnd() ... 41
Code 4–9 Clearing a Voice’s Loop Flag and Resetting its End Address Manually........................... 41
Code 4–10 Loading the SPT File into Main Memory .. 43
Code 4–11 Statically Allocating Memory .. 44
Code 4–12 Loading SPD Files into Main Memory .. 44
Code 4–13 SP Sound Table Initialization ... 45
Code 4–14 Playing a Sound Effect ... 45
Code 4–15 Stopping a Looped Sound Effect.. 47

Figures
Figure 1–1 Sound Pipeline Logical Flow... 6
Figure 2–1 Data Flow for Importing Sound Effects ... 8
Figure 3–1 Basic Architecture and Data Flow for sndconv ... 17
Figure 3–2 Basic Data Flow of SOUNDFILE DLL... 23
Figure 3–3 Basic Data Flow of the DSPTOOL DLL .. 30
Figure 3–4 Format and Internal References of SPT Files .. 33
Figure 3–5 Mapping between Header File, SPT File and SPD File.. 34
Figure 4–1 Relationship between Various Audio Libraries ... 37

Tables
Table 2–1 Intrinsic Attributes of Supported Sound File Formats .. 14
Table 2–2 MIX Operations .. 15
Table 2–3 OUTPUT Arguments.. 16
Table 3–1 Sample Schemes and Addressing Modes ... 35
Table 3–2 Associated Addresses ... 35
Table 3–3 Sample Types and Memory Alignment .. 36
RVL-06-0035-001-D 4 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
Revision History

Version
Date

Revised
Item Description

1.01 2006/11/21 4.1

4.3.1

4.4.3

Revised figure.

Deleted description of the zero buffer.

Deleted text related to the zero buffer.

1.00 2006/03/22 - First release by Nintendo of America Inc.
© 2006-2008 Nintendo 5 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
1 Introduction

The sound pipeline refers to the data path between the sound designer and the programmer. It encom-
passes the process by which sound data is captured for use in a game application. In general, the process
is as shown in Figure 1–1.

Figure 1–1 Sound Pipeline Logical Flow

In the process outlined above, a sound designer creates sound effects and saves them as standard WAV
or AIFF files. The pipeline imports these files, packs them together and converts them into a format that the
loader library can easily read and manipulate during runtime. Once read into memory, the sound effects
can be played at will by the game engine.

The Nintendo Revolution SDK provides a prototype pipeline that implements such a process for use with
the SDK’s native audio library, AX. Full source code is provided for most aspects of the pipeline. Develop-
ers are free to examine and modify the source code as they see fit. Note that this pipeline is nearly identi-
cal to that of the GameCube.

Note: The AX Sound Pipeline (SP) is only applicable to sound effects. It is unrelated to other audio fea-
tures of the Nintendo Revolution SDK, such as software streaming. The SP also does not explicitly
support the conversion and import of general MIDI instruments. Refer to the DLS1WT tool in the
Nintendo Revolution SDK for details on using DLS-compliant sound data in your game.
RVL-06-0035-001-D 6 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
1.1 Document Organization

SP’s design divides most naturally along the functional lines of an audio development team:

• Sound Designers create sound effects for the game. Sound designers are likely also responsible for
organizing the sound data and converting the data for use with SP.

• Tool Programmers include developers who wish to customize SP for use with a particular game
project, or reuse or tweak SP source code to create an entirely new tool path.

• Game Engine Programmers are responsible for using the sound effects in a game. They can use SP
directly, or modify its runtime libraries to suit the needs of a particular project.

This document is organized around these development roles, with a chapter devoted to each.

Chapter 2 is appropriate for sound designers or anyone responsible for organizing and importing sound
data into the AX Sound Pipeline. This chapter discusses:

• Using the sndconv.exe converter tool

• The sndconv.exe scripting language

• Supported import formats

• Managing the sndconv.exe output files

Chapter 3 describes the technical aspects of the SP converter tool and libraries. Specifically, it covers:

• sndconv.exe converter tool architecture

• SOUNDFILE DLL and API

• DSPTOOL DLL and API

• Implementation details of the sndconv.exe script parser

• sndconv.exe output data formats

Chapter 4 describes the technical aspects of the SP runtime library, including memory management and
playing sounds.
© 2006-2008 Nintendo 7 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
2 Importing Sound Effects into the AX Sound Pipeline

The SP converter tool, sndconv.exe, is an x86 command line program that imports a collection of sound
files into the SP data format.

A script file specifies each sound file to be converted. The script also defines the associated properties of
each sound effect, such as sample rate, size, encoding scheme, and loop data.

Figure 2–1 Data Flow for Importing Sound Effects

The converter tool generates three files:

• SP Sound Sample Data (*.spd): contains the actual sound samples to be stored in main memory at
runtime. The contents of each input WAV or AIFF file are packed together in this file with the appropri-
ate memory alignment.

• SP Sound Table (*.spt): a table that references and describes the sound samples stored in the
*.spd file.

• SP Runtime Header (*.h): a C header file that contains the symbols with which game engine pro-
grammers will access the information in the Sound Table.

For more details on the format and use of these files, see “Data Abstraction and File Formats” on page 32.

The base-name of the output files is derived from the base-name of the script file. For example, if the script
file is called “TEST_SFX.txt,” then sndconv.exe will generate the following output files:

• TEST_SFX.spd

• TEST_SFX.spt

• TEST_SFX.h

Data Flow

WAV or AIFF files

Sound
Converter

sndconv.exe

BEGIN
 FILE
 SAMPLE
 OUTPUT
 LOOP
END

sndconv script file

100101001
001001001
000100100
101001100
110010010
101001001

*.spt

H

*.h

100101001
001001001
000100100
101001100
110010010
101001001

*.spd

SP Sound Table SP Sound
Sample Data

SP runtime
symbols
RVL-06-0035-001-D 8 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
2.1 Functionality

2.1.1 Supported Input Formats

The sndconv.exe converter tool supports the following input formats:

• Microsoft WAV files

• Macintosh AIFF files (with support for embedded loop points)

• 16-bit and 8-bit PCM sample sizes

• MONO and STEREO input files

2.1.2 Conversion Functions

The sndconv.exe tool can perform the following operations on input sound data:

• Compression of 8-bit or 16-bit PCM samples into DSP-ADPCM format

• Conversion of 8-bit or 16-bit PCM samples into 16-bit or 8-bit PCM

• Mixing left and right channels of STEREO data into a single MONO channel

• Extraction of a single channel from a STEREO data file

2.2 Using sndconv.exe

2.2.1 The Command Line

From the command line, you can invoke the sndconv.exe program like so:

Code 2–1 sndconv Command Line Syntax

bash> sndconv <scriptfile> [-option]

Where:
 <scriptfile>script file (required)

Options are:
 -a Default output to ADPCM.
 -w Default output to 16bit PCM.
 -b Default output to 8bit PCM.
 -h This help text.

The <scriptfile> argument in Code 2–1 is required and specifies a text file that contains commands for
sndconv.exe. These commands specify which sound files to convert and pack. These commands also
describe the various attributes of each file, and how they should be converted. For further details, see
“Data Abstraction and File Formats” on page 32.

The –a, –w, and –b options specify the default output format. The sndconv.exe tool uses these defaults
if the script file does not specify a desired output format for a given sound file.

If no option is specified, then sndconv.exe will use ADPCM as a default output format.
© 2006-2008 Nintendo 9 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
The sndconv.exe tool is located in the Nintendo Revolution SDK, under the following path:

<SDK install path>/x86/bin

Note: sndconv.exe requires two DLLs, which are also located under the same path:

• soundfile.dll

• dsptool.dll
RVL-06-0035-001-D 10 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
2.2.2 Scripting

The sndconv.exe script file specifies which files to convert and how to convert them. An example is
shown in Code 2–2:

Code 2–2 Script File Example

;
; Text after a semicolon is ignored as commentary.
;

COMMENT
COMMENT This is a COMMENT field. Any text following a COMMENT
COMMENT command will be generated as a comment in the corresponding
COMMENT ‘C’ header file output. This is useful for annotating the
COMMENT header file from the script
COMMENT

;
; Set source path for sound files
;
PATH C:\sounds

INCLUDE other_script.txt

COMMENT ***
COMMENT Explosion sounds!
COMMENT ***

BEGIN BIG_EXPLOSION ; Identifier for sound effect
 FILE big_exp_pcm16mono.wav ; Source filename – it’s a WAV file!
 SAMPLERATE 22050 ; Source sample rate, in Hz
 OUTPUT ADPCM ; Will be converted to ADPCM
END

BEGIN LITTLE_EXPLOSION ; Identifier for sound effect
 FILE lil_exp_pcm16stereo.aif ; Source filename – it’s an AIFF file!
 SAMPLERATE 22050 ; Source sample rate, in Hz
 OUTPUT ADPCM ; Will be converted to ADPCM
END

COMMENT ***
COMMENT Helicopter sounds!
COMMENT ***

BEGIN CHOPPER ; Identifier for sound effect
 FILE apache_pcm16mono.wav ; Source filename – it’s a WAV file!
 SAMPLERATE 32000 ; Source sample rate, in Hz
 OUTPUT 16BIT ; Output will be in 16bit PCM
 LOOP 117 254 ; loop point start and end!
END

COMMENT ***
COMMENT Whoosh sound
COMMENT ***

BEGIN BIG_WHOOSH ; Identifier for sound effect
 FILE bigwhoosh_pcm16stereo.aif ; Source filename – it’s an AIFF file
 SAMPLERATE 32000 ; Source sample rate, in Hz
 OUTPUT 16BIT ; Output will be 16bit also
 LOOP 312 423 ; loop start and end points
 MIX COMBINE ; Source sample is stereo, downmix to MONO
END
© 2006-2008 Nintendo 11 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
BEGIN LEFT_WHOOSH ; Identifier for sound effect
 FILE bigwhoosh_pcm16stereo.aif ; Source filename – it’s an AIFF file
 SAMPLERATE 32000 ; Source sample rate, in Hz
 OUTPUT 16BIT ; Output will be 16bit also
 LOOP 312 423 ; Loop start and end points
 MIX LEFT ; Extract left channel only
END

BEGIN RIGHT_WHOOSH ; Identifier for sound effect
 FILE bigwhoosh_pcm16stereo.aif ; Source filename – it’s an AIFF file
 SAMPLERATE 32000 ; Source sample rate, in Hz
 OUTPUT 16BIT ; Output will be 16bit also
 LOOP 312 423 ; Loop start and end points
 MIX RIGHT ; Extract left channel only
END

COMMENT ***
COMMENT Beep sound
COMMENT ***

BEGIN WARNING_BEEP ; Identifier for sound effect
 FILE beep_pcm8stereo.aif ; Source filename – it’s an AIFF file
 SAMPLERATE 11025 ; Source sample rate, in Hz
 OUTPUT 16BIT ; Will be converter to 16bit
 MIX COMBINE ; Source sample is stereo, downmix to MONO
END

2.2.2.1 Command syntax

Script files have the following basic structure:

Code 2–3 Basic Script Structure and Syntax

; Script comments!
;
;

PATH <path specification>

INCLUDE <other script file>

COMMENT <optional comment field>

BEGIN <sound effect name>
 attribute1 <parameter>
 attribute2 <parameter>
 …
END

COMMENT <optional comment field>

BEGIN <another sound effect name>
 attribute1 <parameter>
 attribute2 <parameter>
 …
END
…

RVL-06-0035-001-D 12 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
(1) The INCLUDE Command

Code 2–4 The INCLUDE Command

INCLUDE <script file>

The INCLUDE command specifies the path of another script file to be included for processing. The path
can be relative to the directory established by the last PATH command, if any, or it can be absolute.

This command is optional and can be issued at any point in the script (outside of BEGIN-END clauses).

(2) The PATH Command

Code 2–5 The PATH Command

PATH <path specification>

The PATH command specifies an absolute or relative path to the directory from which subsequent sound
files will be processed. You can issue multiple PATH commands in a script to change directories as
needed. PATH commands must exist outside of BEGIN…END clauses. The path must not contain spaces.

This command is optional. If omitted, sndconv.exe will use the directory from which the tool was invoked
as the current path.

(3) The Sound Effect Clause

Code 2–6 The Sound Effect Clause

BEGIN <sound effect name>
…
END

The BEGIN and END commands delimit a clause within which you define the attributes of a sound effect.

The field <sound effect name> must be a C-compatible symbol that uniquely identifies the sound
effect. When generating the header file, sndconv.exe will collect all sound effect names and automati-
cally enumerate them.

Note: Each sound effect name MUST be unique, otherwise the C header file will fail to compile. Also,
BEGIN-END clauses cannot be nested.

(4) The COMMENT Command in C Header Files and Script Files

Code 2–7 The Header File COMMENT Command

COMMENT <commentary text for C-header file>

The COMMENT command specifies text that must appear as a comment in the C header file. Everything on
the line after a COMMENT command will be preserved as text in the C header file (preceded by “//”).

Code 2–8 Script Comment

; <comment text>

Everything after a semicolon (“;”) is ignored as script commentary.
© 2006-2008 Nintendo 13 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
2.2.2.2 Attributes

This section describes the keywords reserved for defining the attributes of a particular sound effect.

(1) The FILE attribute

Code 2–9 The FILE Attribute

FILE <filename>

Where <filename> specifies a file (in the current PATH) to be processed. The filename must not contain
any spaces.

The sndconv.exe tool will automatically determine the file type by examining the file itself. If the file is
neither WAV- nor AIFF-encoded data, the tool will generate an error message and ignore the sound file.

If sndconv.exe cannot find the file, it will issue a warning and continue processing the script.

By default, sndconv.exe will extract the following information from each sound file (depending on type):

Table 2–1 Intrinsic Attributes of Supported Sound File Formats

Note: WAV files do not support the encoding of loop-point information.

The FILE attribute is required.

(2) The SAMPLERATE Attribute

Code 2–10 The SAMPLERATE Attribute

SAMPLERATE <source sample rate>

Where <source sample rate> is an integer specifying the base sample rate of the sound effect, in
Hertz.

This attribute is optional. If omitted, sndconv.exe will use the sample rate encoded in the sound file.

File Type

Attributes

Sample Rate
Bits per
sample

Number
Channels

Loop Points

WAV

AIFF

✔ ✔ ✔ ✗

✔ ✔ ✔ ✔
RVL-06-0035-001-D 14 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
(3) The LOOP Points Attribute

Code 2–11 The LOOP Points Attribute

LOOP <loop start> <loop end>

The LOOP attribute specifies the loop start and loop end points of a sample. The <loop start> parame-
ter specifies the first sample played within the loop. The <loop end> parameter specifies the very last
sample played within the loop.

Note: For these parameters, samples are counted starting from zero. For example, if a loop starts on the
14th sample in the file, then the <loop start> parameter must be set to 13.

The LOOP attribute is optional. If omitted, loop point information encoded within the sound file (if any) will
be used by default. Otherwise, the specified loop points will override the encoded data.

Note: This applies to AIFF files only, as WAV files do not support the encoding of loop point information.

(4) The MIX Attribute

Code 2–12 The MIX attribute

MIX <mix operation>

The MIX attribute specifies how to handle STEREO sound files. The following operations are supported:

Table 2–2 MIX Operations

This attribute is optional. If omitted, the tool will COMBINE stereo files by default.

MIX Operation Description

COMBINE The LEFT and RIGHT channel samples will be mixed together to generate a
MONO channel.

LEFT Only the LEFT channel data will be extracted from the sound file.

RIGHT Only the RIGHT channel data will be extracted from the sound file.
© 2006-2008 Nintendo 15 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
(5) The OUTPUT Attribute

Code 2–13 The OUTPUT Attribute

OUTPUT <conversion operation>

The OUTPUT attribute specifies the output format of the sound data. The following conversions are sup-
ported:

Table 2–3 OUTPUT Arguments

This attribute is optional. If omitted, sndconv.exe will use the default output format specified by the -a,
-w, or -b command line options. If no command line option is specified, the default output format will be
ADPCM.

Note: Sound effects in an SPD file can have different output formats.

2.2.2.3 General Notes on Scripting

• White space is ignored. For example, “BEGIN BLAMMO_32KHZ” is the same as
“BEGIN BLAMMO_32KHZ”.

• Sound effect names are case-sensitive. Thus, “BEGIN BLAMMO_32KHZ” is unique from
“BEGIN Blammo_32KHz”.

• Text is parsed line-by-line and must end with a newline. Each line must be less than 255 characters in
length.

• Script comments begin with a semicolon and continue to the end of the line.

Conversion Operation Description

8BIT Sound data will be stored as 8-bit PCM.

16BIT Sound data will be stored as 16-bit PCM.

ADPCM Sound data will be stored as DSP-ADPCM.
RVL-06-0035-001-D 16 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
3 Tools Programming with the AX Sound Pipeline

3.1 Functionality

The tool portion of the AX Sound Pipeline imports standard artist-generated WAV/AIFF files into the SP
data format (SPD). Each file contains a single sound effect to be used by the game. Multiple sound effects
are packed into a single SP data file to simplify loading and manipulation of the sound data during runtime.

The tool also generates reference information associated with each SPD file. By using the SP runtime
library (see Chapter 4), games can easily reference the sound effects packed within the SPD file.

The import process is dictated by a script that the tool parses for filenames, sample attributes, and conver-
sion directives. The import process supports the following conversion directives:

• Compression of 8-bit or 16-bit PCM samples into DSP-ADPCM format

• Conversion of 8-bit or 16-bit PCM samples into 16-bit or 8-bit PCM

• Mixing left and right channels of STEREO data into a single MONO channel

• Extraction of a single channel from a STEREO data file

3.2 Architecture

The Sound Pipeline tool consists of a single executable (sndconv.exe) and two WIN32 dynamic-link
libraries (SOUNDFILE.DLL and DSPTOOL.DLL).

Figure 3–1 Basic Architecture and Data Flow for sndconv

The SOUNDFILE DLL encapsulates functions for reading and writing WAV and AIFF files. Developers can
extend this library to support other formats.

The DSPTOOL DLL handles compression of PCM samples into the Nintendo Revolution DSP-ADPCM for-
mat.

Note: The compression algorithm is proprietary and therefore source code is not provided for this mod-
ule.

SOUNDFILE
DLL

DSPTOOL DLL

sndconv
- Parsing
- Endian Conversion
- Output Generation

WAV or AIFF files

BEGIN
 FILE
 SAMPLE
 OUTPUT
 LOOP
END

sndconv script file
© 2006-2008 Nintendo 17 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
The sndconv program encapsulates the remainder of the tool functions:

• Script parsing

• Sample size conversion (8-bit to 16-bit and vice-versa)

• Mixing and/or extraction of STEREO channels

• Endian conversions

• Generation of output files

3.3 Modules

The various functions of the SP tool are distributed among the following modules:

• The SOUNDFILE DLL

• The DSPTOOL DLL

• The sndconv.exe program

The following sections describe the various functions of the SP tool as they relate to these modules.

3.3.1 The SOUNDFILE DLL

SOUNDFILE is a WIN32 dynamic link library (DLL). This library abstracts the task of reading and writing
sound files into a high-level API.

This library currently supports:

• Standard WAV and AIFF file formats

• 8 and 16 bit sample sizes

• Loop markers (AIFF only)

Developers are free to extend this library to support other file formats.

3.3.1.1 Source Code

The source code for the SOUNDFILE dynamic-link library is in the Nintendo Revolution SDK installation
directory under the following path:

/build/tools/soundfile

This library is a Microsoft Visual Studio .NET project that can be accessed by opening the workspace file:

/build/tools/soundfile/vc++/soundfile.vcproj

Note: In order to invoke the SOUNDFILE DLL from an application, you must include the soundfile.h
header file in said application.

3.3.1.2 Data Abstraction

The SOUNDFILE library defines the SOUNDINFO structure as an internal, intermediate descriptor for sound
data as it traverses the Sound Pipeline.

Note: The SOUNDINFO structure does not encapsulate the sound data itself. The actual sample data are
stored in another buffer, provided by the calling application.
RVL-06-0035-001-D 18 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
The structure is defined in Code 3–1.

Code 3–1 The SOUNDINFO Structure

typedef struct
{

int channels; // Number of channels
 int bitsPerSample; // Number of bits per sample
 int sampleRate; // Sample rate in Hz
 int samples; // Number for samples
 int loopStart; // 1 based sample index for loop start
 int loopEnd; // 1 based sample count for loop samples
 int bufferLength; // buffer length in bytes

} SOUNDINFO;

channels specifies the number of interleaved sound channels present in the sound data. Monaural data
have only 1 channel, while stereo data have 2.

bitsPerSample specifies the size of each individual sample. Currently, only 8 or 16 bit sample sizes are
supported.

sampleRate is the base sampling frequency of the sound data, in Hz.

samples specifies the number of samples, per channel.

loopStart specifies the sample at which a loop, if any, begins.

Note: Samples are counted from 1. If no loop exists in a file, then this value is set to the first sample (1).

loopEnd specifies the sample at which a loop, if any, ends.

Note: Samples are counted from 1. If no sample exists in a sound file, then this value is set to the very
last sample in the file.

bufferLength specifies the length of the buffer required to hold the sample data, in bytes.

3.3.1.3 API

This section describes the functions exported by the SOUNDFILE DLL.

(1) The getSoundInfo Function

Code 3–2 getSoundInfo()

#include “soundfile.h”

int getSoundInfo(char *path, SOUNDINFO *soundinfo)

The getSoundInfo function opens the file specified by path and examines it. If the header is of a valid,
supported file type, this function will return the relevant information in the structure pointed to by the
soundinfo argument.

The soundinfo argument must not be NULL.
© 2006-2008 Nintendo 19 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
This function has the following return values:

• SOUND_FILE_SUCCESS

• SOUND_FILE_FORMAT_ERROR

• SOUND_FILE_FOPEN_ERROR

The value SOUND_FILE_FORMAT_ERROR will be returned if the file specified in path is not of a valid, sup-
ported sound file type.

(2) The getSoundSamples Function

Code 3–3 getSoundSamples()

#include “soundfile.h”

int getSoundSamples(char *path, SOUNDINFO *soundinfo, void *dest);

The getSoundSamples function opens the file specified by path and extracts the sound samples
therein, as dictated by the information pointed to by SOUNDINFO *soundinfo. The samples will be
stored in a buffer pointed to by void *dest.

Before invoking this function, the application must first call getSoundInfo() and retrieve the
SOUNDINFO data from the desired file.

The application must allocate memory for the buffer pointed to by void *dest; the size of the buffer can
be retrieved from the SOUNDINFO data of the file.

This function has the following return values:

• SOUND_FILE_SUCCESS

• SOUND_FILE_FORMAT_ERROR

• SOUND_FILE_FOPEN_ERROR

The value SOUND_FILE_FORMAT_ERROR will be returned if the file specified in path is not of a valid, sup-
ported sound file type.

(3) The writeAiffFile Function

Code 3–4 writeAiffFile()

#include “soundinfo.h”

int writeAiffFile(char *path, SOUNDINFO *soundinfo, void *samples);

The writeAiffFile function creates an AIFF file as specified by path. The samples argument points
to a buffer containing the sound data to be written; the soundinfo structure describes the sound data.

The buffer pointed to by samples must have length equal to or less than soundinfo.bufferLength
bytes.

The samples must be little-endian and have 16-bit alignment.

This function has the following return values:

• SOUND_FILE_SUCCESS

• SOUND_FILE_FOPEN_ERROR
RVL-06-0035-001-D 20 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
(4) The writeWaveFile Function

Code 3–5 writeWaveFile()

#include “soundinfo.h”

int writeWaveFile(char *path, SOUNDINFO *soundinfo, void *samples);

The writeWaveFile function creates a WAV file as specified by path. The samples argument points to
a buffer containing the sound data to be written; the soundinfo structure describes the sound data.

The buffer pointed to by samples must have length no less than soundinfo.bufferLength bytes.

The samples must be little-endian and have 16-bit alignment.

Note: Loop information in the soundinfo structure will be ignored, as the WAV format does not support
loop markers.

This function has the following return values:

• SOUND_FILE_SUCCESS

• SOUND_FILE_FOPEN_ERROR
© 2006-2008 Nintendo 21 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
3.3.1.4 Using SOUNDFILE

The following code sample illustrates how to load the SOUNDFILE DLL from an application:

Code 3–6 Loading a Dynamic Link Library

#include “soundfile.h”

typedef int (*FUNCTION1)(char *path, SOUNDINFO *info);
typedef int (*FUNCTION2)(char *path, SOUNDINFO *info, void *dest);
typedef int (*FUNCTION3)(char *path, SOUNDINFO *info, void *samples);

void main(void)
{
 HINSTANCE hDLL;
 FUNCTION1 getSoundInfo;
 FUNCTION2 getSoundSamples;
 FUNCTION3 writeWaveFile, writeAiffFile;

 // load up DLL
 if (hDLL = LoadLibrary("soundfile.dll"))
 {
 if (!(getSoundInfo = (FUNCTION1)GetProcAddress(hDLL, "getSoundInfo")))
 {
 printf("GetProcAddress error\n");
 return;
 }

 if (!(getSoundSamples = (FUNCTION2)GetProcAddress(hDLL, "getSoundSamples")))
 {
 printf("GetProcAddress error\n");
 return;
 }

 if (!(writeWaveFile = (FUNCTION3)GetProcAddress(hDLL, "writeWaveFile")))
 {
 printf("GetProcAddress error\n");
 return;
 }

 if (!(writeAiffFile = (FUNCTION3)GetProcAddress(hDLL, "writeAiffFile")))
 {
 printf("GetProcAddress error\n");
 return;
 }
 }
 else
 {
 printf("Cannot load soundfile.dll\n");
 return;
 }

 // do stuff here

 // free the library once you are done
 if (hDLL)
 FreeLibrary(hDLL);
}

RVL-06-0035-001-D 22 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
In general, the SOUNDFILE DLL provides an API and abstraction layer for reading and writing sound data
to and from arbitrary data formats.

Figure 3–2 Basic Data Flow of SOUNDFILE DLL

Some notes about the SOUNDFILE data abstraction layer:

• Samples are always stored as little endian words with 16-bit alignment. This facilitates computation on
samples (for compression, mixing, or other conversions) by x86 platforms.

• Samples are counted starting from zero.

• Samples are counted per channel. For example: 160 samples of 16-bit monaural sound data is 320
bytes (160 samples x 2 bytes/sample). However, 160 samples of 16-bit stereo data is 640 bytes (160
samples x 2 bytes/sample x 2 channels).

• When specifying loop points, the loop start is the first sample played within the loop. Likewise, the loop
end sample is the last sample played within the loop.

3.3.2 The DSPTOOL DLL

DSPTOOL is a WIN32 dynamic linked library (DLL). It provides an API for encoding and decoding 16-bit
PCM samples to and from the DSP-ADPCM compression format.

The DSP-ADPCM sample format provides (approximately) 3.5:1 compression and is proprietary to the Nin-
tendo Revolution audio DSP. The audio DSP contains special hardware to decompress DSP-ADPCM sam-
ples for free.

Note: Source code is not provided for this library.

SOUNDFILE DLL

WAV or AIFF file

Application

sample 1

sample 2

sample 3

sample n

16 bits

Little
Endian

typedef struct
{
 int channels;
 int bitsPerSample;
 int sampleRate;
 int samples;
 int loopStart;
 int loopEnd;
 int bufferLength;

} SOUNDINFO;
© 2006-2008 Nintendo 23 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
3.3.2.1 Data Abstraction

The DSPTOOL library defines the ADPCMINFO structure to describe sound data encoded in the DSP-ADPCM
format. The structure is given in Code 3–7.

Code 3–7 The ADPCMINFO Structure

typedef struct
{

// initial state
 s16 coef[16];
 u16 gain;
 u16 pred_scale;
 s16 yn1;
 s16 yn2;

// loop context
 u16 loop_pred_scale;
 s16 loop_yn1;
 s16 loop_yn2;

} ADPCMINFO;

Notes:

• Some members of the structure are always set to zero by the DSPTOOL encoder. These members
are included to emphasize the fact that the corresponding registers of the DSP’s decoder hard-
ware must be cleared before processing an ADPCM voice.

• The loop context parameters will always be zero after calling encode(). To set these values, you
must call getLoopContext() if the sample is indeed looped.

• Sample addresses are not included in the ADPCMINFO structure, because the DSPTOOL library
cannot predict where in main memory an ADPCM sound effect will be placed. The calling applica-
tion is responsible for calculating address offsets for the loop points of a sound effect and passing
that information on to the runtime game engine.

3.3.2.2 API

This section describes the functions exported by the DSPTOOL library.

(1) The getBytesForAdpcmBuffer Function

Code 3–8 getBytesForAdpcmBuffer()

#include “dsptool.h”

U32 getBytesForAdpcmBuffer(u32 samples)

The getBytesForAdpcmBuffer function calculates the number of bytes needed to store a sample once
it has been ADPCM-encoded, rounded up to the next frame. The samples argument specifies the number
of 16-bit PCM samples that are to be encoded.

Note: The number of bytes returned will be rounded up to the next multiple of 8, which is the size of an
ADPCM frame. The actual number of bytes needed may therefore be less than the value returned
by this function (see getBytesForAdpcmSamples()). This is done because ADPCM sounds
must be 8-byte aligned when stored in memory. This function is useful when several sounds must
be encoded and packed together.
RVL-06-0035-001-D 24 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
(2) The getBytesForAdpcmSamples Function

Code 3–9 getBytesForAdpcmSamples()

#include “dsptool.h”

u32 getBytesForAdpcmSamples(u32 samples)

This function calculates the actual number of bytes needed to store a sample once it has been ADPCM-
encoded. The samples argument specifies the number of 16-bit PCM samples that are to be encoded.

(3) The getBytesForPcmBuffer Function

Code 3–10 getBytesForPcmBuffer()

#include “dsptool.h”

u32 getBytesForPcmBuffer(u32 samples)

The getBytesForPcmBuffer function calculates the number of bytes needed to store a sample once it
has been decoded from the ADPCM format. This function is useful for determining the amount of memory
needed to store data before it has been decoded from ADPCM.

The argument samples specifies the number of ADPCM samples that will be decoded.

(4) The getBytesForPcmSamples Function

Code 3–11 getBytesForPcmSamples()

#include “dsptool.h”

u32 getBytesForPcmSamples(u32 samples)

For the given number of samples, the getBytesForPcmSamples function returns the number of bytes
needed to store said samples as 16-bit PCM data. This function is included for symmetry in the API.

(5) The getSampleForAdpcmNibble Function

Code 3–12 getSampleForAdpcmNibble()

#include “dsptool.h”

u32 getSampleForAdpcmNibble(u32 nibble)

For a given nibble address, the getSampleForAdpcmNibble function will return the corresponding
sample in the sound data.

This function assumes that the given nibble address actually points to a valid sample, and does NOT point
to a frame header.

Notes:

• ADPCM frames are 16 nibbles in length, with the first two nibbles containing header data. Further-
more, ADPCM frames must start on multiples of 16 nibbles (8 bytes) in memory.

• The sample index returned is counted from zero. In other words, the first sample in an ADPCM
sound effect has offset zero.
© 2006-2008 Nintendo 25 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
(6) The getBytesForAdpcmInfo Function

Code 3–13 getBytesForAdpcmInfo()

#include “dsptool.h”

u32 getBtytesForAdpcmInfo(void)

The getBytesForAdpcmInfo function returns sizeof(ADPCMINFO).

(7) The getNibblesForNSamples Function

Code 3–14 getNibblesForNSamples()

#include “dsptool.h”

u32 getNibblesForNSamples(u32 samples)

For a given number of samples, the getNibblesForNSamples function returns the total number of nib-
bles needed to store them as ADPCM-encoded data.

Note: This calculation accounts for frame header overhead.

This function is useful for calculating the nibble-address offset of a particular sample in an ADPCM sound
effect.

(8) The getLoopContext Function

Code 3–15 getLoopContext()

#include “dsptool.h”

void getLoopContext(u8 *src, ADPCMINFO *cxt, u32 samples);

For a given sound effect that has been ADPCM-encoded, the getLoopContext function will determine the
loop context at the specified loop starting point.

The ADPCM-encoded sound data is pointed to by src.

The loop context information will be placed in the ADPCMINFO structure pointed to by cxt.

The loop start point is specified by the sample offset given in samples. For example, if the loop begins at
the very first sample of the buffer, then samples must be zero. If the loop begins at the 100th sample of
the buffer, the offset is 99.

This function has no return value.

(9) The encode Function

Code 3–16 encode()

#include “dsptool.h”

void encode(s16 *src, u8 *dst, ADPCMINFO *cxt, u32 samples);
RVL-06-0035-001-D 26 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
The encode function converts a 16-bit PCM sound effect into the DSP-ADPCM format. The argument src
points to the ‘raw’ PCM data. The argument cxt points to a buffer into which the ADPCM data will be stored.
The associated ADPCM coefficients and decoder state will be stored in *cxt. The argument samples
specifies the number of samples to convert.

Note: The raw PCM data must be in 16-bit little-endian format.

(10)The decode Function

Code 3–17 decode()

#include “dsptool.h”

void decode(u8 *src, u16 *dst, ADPCMINFO *cxt, u32 samples);

The decode function decodes ADPCM data into raw, 16-bit PCM samples in little-endian format.

The argument src points to the ADPCM encoded data.

dst points to the buffer where the raw PCM samples will be stored. The calling application must allocate
this memory for this buffer beforehand.

cxt points to the ADPCM coefficients and state data that correspond to the data being decoded.

samples specifies the number of samples to be decoded.
© 2006-2008 Nintendo 27 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
3.3.2.3 Using DSPTOOL

The following code sample illustrates how to load the DSPTOOL DLL from an application:

Code 3–18 Loading a Dynamic Link Library

#include “dsptool.h”

static HINSTANCE hDll;

typedef u32 (*lpFunc1)(u32);
typedef u32 (*lpFunc2)(void);
typedef void (*lpFunc3)(s16*, u8*, ADPCMINFO*, u32);
typedef void (*lpFunc4)(u8*, s16*, ADPCMINFO*, u32);
typedef void (*lpFunc5)(u8*, ADPCMINFO*, u32);

lpFunc1 getBytesForAdpcmBuffer;
lpFunc1 getBytesForAdpcmSamples;
lpFunc1 getBytesForPcmBuffer
lpfunc1 getBytesForPcmSamples;
lpfunc1 getSampleForAdpcmNibble;
lpfunc1 getNibblesForNSamples;
lpFunc2 getBytesForAdpcmInfo;
lpFunc3 encode;
lpFunc4 decode;
lpFunc5 getLoopContext;

/*--*/
void clean_up(void)
{
 if (hDll)

FreeLibrary(hDll);
}

/*--*/
int getDll(void)
{
 hDll = LoadLibrary("dspadpcm.dll");

 if (hDll)
 {
 if (!(getBytesForAdpcmBuffer =
 (lpFunc1)GetProcAddress(
 hDll,
 "getBytesForAdpcmBuffer"
))) return 1;

 if (!(getBytesForAdpcmSamples =
 (lpFunc1)GetProcAddress(
 hDll,
 "getBytesForAdpcmSamples"
))) return 1;

 if (!(getBytesForPcmBuffer =
 (lpFunc1)GetProcAddress(
 hDll,
 "getBytesForPcmBuffer"
))) return 1;

 if (!(getBytesForPcmSamples =
 (lpFunc1)GetProcAddress(
 hDll,
 "getBytesForPcmSamples"
RVL-06-0035-001-D 28 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
))) return 1;

 if (!(getNibblesForNSamples =
 (lpFunc1)GetProcAddress(
 hDll,
 "getNibbleAddress"
))) return 1;

 if (!(getSampleForAdpcmNibble =
 (lpFunc1)GetProcAddress(
 hDll,
 "getSampleForAdpcmNibble"
))) return 1;

 if (!(getBytesForAdpcmInfo =
 (lpFunc2)GetProcAddress(
 hDll,
 "getBytesForAdpcmInfo"
))) return 1;

 if (!(encodeLittleEndian =
 (lpFunc3)GetProcAddress(
 hDll,
 "encode"
))) return 1;

 if (!(encodeBigEndian =
 (lpFunc4)GetProcAddress(
 hDll,
 "decode"
))) return 1;

 if (!(getLoopContext =
 (lpFunc5)GetProcAddress(
 hDll,
 "getLoopContext"
))) return 1;

 return(0);
 }

 return(1);
}

/*--*/
void main (void)
{
 if (getDll)
 {
 clean_up();
 exit(1);
 }

// do stuff here

 clean_up();
}

© 2006-2008 Nintendo 29 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
The DSPTOOL library provides services for encoding and decoding sound data, as well as functions for cal-
culating loop contexts, determining ADPCM addresses for loop points, and counting the number of bytes in
ADPCM encoded data.

Figure 3–3 Basic Data Flow of the DSPTOOL DLL

Some notes on using the DSPTOOL library and ADPCM samples in general:

• The ADPCM decoding hardware built into the Nintendo Revolution audio system addresses ADPCM
samples by nibble (4-bit words). Thus, the DSPTOOL library will calculate loop points as nibble-address
offsets. This differs from the SOUNDFILE library, which designates specific samples as loop points.

Note: SOUNDFILE counts samples starting at zero. Applications must take care to reconcile these
two methods when converting looped sound effects between PCM and ADPCM.

• ADPCM data are stored in frames. These frames are 16 nibbles (8 bytes) in length. Header information
resides in the first two nibbles.

• ADPCM frames must be 8-byte aligned in main memory.

• Loop start and end addresses must point to actual samples, never to header nibbles. Otherwise, the
DSP may behave unpredictably (such as looping unexpectedly when mixing a sound effect, or gener-
ating pop/click artifacts).

Note: DSPTOOL ensures that loop addresses are valid and do not point to header nibbles.

3.3.3 The sndconv Program

The sndconv.exe tool is a WIN32 command-line application. It uses the SOUNDFILE and DSPTOOL
libraries to import and compress sound data from standard WAV and AIFF files.

The tool provides a scripting interface so that users can specify a multitude of sound files to import. The
program packs these sound files together into a form that an application can easily manipulate during runt-
ime.

DSPTOOL DLL

typedef struct
{
 s16 coef[16];
 u16 gain;
 u16 pred_scale;
 s16 yn1;
 s16 yn2;
 u16 loop_ps;
 u16 loop_yn1;
 u16 loop_yn2;

} ADPCMINFO;

hdr

1 ADPCM Frame

samples

p s s0 s1 s2 s3 s12 s13

p s s0 s1 s2 s3 s12 s13

p s s0 s1 s2 s3 s12 s13

p s s0 s1 s2 s3 s12 s13

16-bit PCM data
RVL-06-0035-001-D 30 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
The tool generates three output files:

• A C header file that enumerates all of the imported sound effects

• An *.SPT table file that contains parameter information for each sound effect

• An *.SPD file that contains the actual sound samples to be stored in a main memory buffer

3.3.3.1 Source Code

The source code for the sndconv.exe application is in the Nintendo Revolution SDK installation directory
under the following path:

/build/tools/sndconv

This program is a Microsoft Visual Studio .NET project and can be accessed by opening the workspace
file:

/build/tools/sndconv/vc++/sndconv.vcproj

3.3.3.2 Program Flow and Implementation Notes

In general, the tool operates like this:

1. Upon execution, the tool parses any command line arguments and searches for the specified script
file.

2. The tool maintains a pair of data structures (SNDCONVDATA and ADPCMINFO) that describe the sound
file it is currently processing. The tool clears the data structures upon encountering a BEGIN
command.

3. The tool updates the various parameters of SNDCONVDATA as it reads attributes within the BEGIN-END
clause.

4. Upon encountering an END command, the tool executes the specified conversion operations (if any)
and writes the converted sound data to the SPD file. The contents of SNDCONVDATA are added to a
table, which will be used to generate the SPT file when script processing is complete.

5. If a sound file is converted to ADPCM, then the file’s associated ADPCMINFO data are stored in another
table. This table will be appended to the SPT file when script processing is complete.

6. The tool continues to process the script, repeating steps 2-5 until the end of the script is reached.

7. Upon reaching the end of the script, the accumulated entries for SNDCONVDATA and ADPCMINFO are
written to the SPT file.

8. The tool generates the C header file based on the accumulated SNDCONVDATA information.

Other notes:

• The tool allows a maximum of 65,536 sound files to be processed and packed in a single SPD file

• Sound effects are enumerated starting from 0x0000
© 2006-2008 Nintendo 31 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
3.3.3.3 Data Abstraction and File Formats

Each sound effect processed by the sndconv script is described by an entry in the SPT table. Each entry
is a data structure of type SNDCONVDATA, defined in Code 3–19:

Code 3–19 The SNDCONVDATA Structure

typedef struct
{
 u32 type;

#define SP_TYPE_ADPCM_ONESHOT 0
#define SP_TYPE_ADPCM_LOOPED 1
#define SP_TYPE_PCM16_ONESHOT 2
#define SP_TYPE_PCM16_LOOPED 3
#define SP_TYPE_PCM8_ONESHOT 4
#define SP_TYPE_PCM8_LOOPED 5

 u32 sampleRate;
 u32 loopAddr;
 u32 loopEndAddr;
 u32 endAddr;
 u32 currentAddr;
 u32 adpcm;

} SNDCONVDATA;

The type parameter specifies the bit size of each sample in the sound effect and whether or not the sound
effect is looped.

The sampleRate parameter specifies the base sampling frequency, in Hertz.

The loopAddr parameter specifies the address at which the loop, if any, begins.

Note: The address specifies the first sample played within the loop.

The loopEndAddr parameter specifies the address at which the loop, if any, ends.

Note: The address specifies the last sample played within the loop.

The endAddr parameter specifies the address of the last sample in the sound effect.

The currentAddr parameter specifies the address of the first sample in the sound effect.

The adpcm parameter is an index into the ADPCMINFO table that is appended to the SPT file. If the sound
effect is an ADPCM-encoded sample, then the index points to the relevant entry in the ADPCMINFO table.

Note: The addresses in this data structure are offsets into the SPD file. Furthermore, the addressing
mode of each address will vary depending on the sample type. For more details, see "3.3.3.4.1
Sample Addressing" on page 35.
RVL-06-0035-001-D 32 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
Code 3–20 ADPCMINFO Data Structure

typedef struct
{
 // initial state
 u16 coef[16];
 u16 gain;
 u16 pred_scale;
 u16 yn1;
 u16 yn2;

 // loop context
 u16 loop_pred_scale;
 u16 loop_yn1;
 u16 loop_yn2;

} ADPCMINFO;

Each ADPCMINFO entry describes the decoding parameters for a given ADPCM-encoded sound effect. The
table of ADPCMINFO data is appended to the end of the SPT file.

The format of the SPT file is illustrated below.

Figure 3–4 Format and Internal References of SPT Files

*.SP T file

ADPCMINFO entry 1

ADPCMINFO entry 2

ADPCMINFO entry
(num_ADPCM_sounds-1)

ADPCMINFO entry 0

typedef struct
{
 s16 coef[16];
 u16 gain;
 u16 pred_scale;
 s16 yn1;
 s16 yn2;
 u16 loop_ps;
 u16 loop_yn1;
 u16 loop_yn2;

} ADPCMINFO;

typedef struct
{
 u32 type;
 u32 sampleRate;
 u32 loopAddr;
 u32 loopEndAddr;
 u32 endAddr;
 u32 currAddr;
 u32 adpcm;

} SNDCONVDATA;

SNDCONVDATA entry 0

SNDCONVDATA entry 3

SNDCONVDATA entry 4

SNDCONVDATA entry
(num_entries-1)

SNDCONVDATA entry 2

SNDCONVDATA entry 1

u32 num_entries
© 2006-2008 Nintendo 33 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
The SPT file is prefaced by an integer (32-bit, unsigned, big-endian), which indicates the number of
SNDCONVDATA entries that are present in the file.

Immediately following the SNDCONVDATA table is another table, which captures the ADPCMINFO data for all
sound effects that have been ADPCM encoded.

Note: The number of ADPCMINFO entries is unspecified; however, the remainder of the file contains only
the ADPCMINFO table.

In the illustration above, sound effect entries 1 and 3 are ADPCM encoded, and therefore point to the first
and second ADPCMINFO entries, respectively.

Each entry in the SNDCONVDATA table corresponds to a sound effect packed into the associated SPD file.
Furthermore, a macro definition for each sound effect is placed in the C header file generated by sndconv.
The mapping between the sndconv output files is shown in Figure 3–5:

Figure 3–5 Mapping between Header File, SPT File and SPD File

Some notes on the data format of the output files:

• All data in the SPT table file and SPD data file are big-endian

• The sndconv tool packs ADPCM-encoded sound effects on 8-byte boundaries in the SPD data file

• The sndconv tool packs 16-bit sound effects on 2-byte boundaries in the SPD data file

• The sndconv tool packs 8-bit sound effects on byte boundaries in the SPD data file

ADPCMINFO entry 1

ADPCMINFO entry 2

ADPCMINFO entry
(num_ADPCM_sounds-1)

ADPCMINFO entry 0

SNDCONVDATA entry 0

SNDCONVDATA entry 3

SNDCONVDATA entry 4

SNDCONVDATA entry
(num_entries-1)

SNDCONVDATA entry 2

SNDCONVDATA entry 1

u32 num_entries

//
// Test.h
// AX Sound Pipeline
// SNDCONV Header file
//
// Sound Effects

#define SFX_BOINK 0x0000
#define SFX_PLONK 0x0001
#define SFX_BEEP 0x0002
#define SFX_BOOP 0x0003
#define SFX_BLAM 0x0004
 .
 .
 .
 .

#define SFX_BOOM (num_entries-1)

001000101110
101010101010
101010101011
011110001101

001000101110
101010101010
101010101011
011110001100
110101110011
010110010101

001000101110
101010101010

001000101110
101010101010
001110110101

001000101110
101010101010
001110110101

1st sound effect

2nd sound effect

3rd sound effect

4th sound effect

num_entries
sound effect

'C' header file

*.SPT table file *.SPD data file
RVL-06-0035-001-D 34 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
3.3.3.4 Sample Addressing, Alignment and Loop Point Specification

Perhaps the most vexing aspects of managing sound effects are:

• Sample addressing

• Sample alignment in memory

• Specification of loop points

3.3.3.4.1 Sample Addressing

The DSP contains special hardware to automatically read and, if necessary, decode samples from main
memory. The addressing mode of this hardware as it reads from main memory depends on the type of
sample being read, as noted below.

Table 3–1 Sample Schemes and Addressing Modes

Associated with each sound effect are several addresses that describe its beginning, end, and loop points.

Table 3–2 Associated Addresses

Each address will access either a byte, word, or nibble, depending on the encoding scheme of the sam-
ples.

When generating the SPT table entry for a sound effect, sndconv will reconcile the sample type and
addressing mode and write the appropriate values into the address parameters.

Note: These addresses are actually offsets into the SPD file. This is because the sndconv tool cannot
predict where in memory the sound effects data will be placed. The Sound Pipeline runtime library
(SP) must therefore update each address value by adding the absolute base address at which the
SPD data are loaded. The runtime library will reconcile the absolute base address with the
addressing mode of each sound effect.

Sample Encoding Scheme Addressing Mode

8BIT PCM Byte

16BIT PCM Word (16-bit)

ADPCM Nibble (4-bit)

Address Description

loopAddr Address of first sample in loop. If the sound effect is not looped, this is zero.

loopEndAddr Address of last sample in loop. If the sound effect is not looped, this is zero.

currAddr Address of first sample of sound effect.

endAddr Address of last sample of sound effect.
© 2006-2008 Nintendo 35 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
3.3.3.4.2 Sample Alignment in Memory

Another hazard to consider is the alignment of sound effects in main memory as noted in Table 3–3:

Table 3–3 Sample Types and Memory Alignment

Note: Data must be transferred into main memory at 32-byte boundaries. Based on this restriction,
sndconv automatically pads sound effects to preserve the required alignments.

3.3.3.4.3 Loop Point Specification

Yet another hazard to consider is the specification of loop points.

Loop markers/points are most commonly specified in samples. In other words, if a sound effect has a loop-

start marker at n, then the nth sample (counting from zero) is the first sample played within the loop. The

loop-end marker is indicated similarly: if the end marker is at m, then the mth sample (counting from zero)
is the last sample played within the loop. This is the convention used by many commercial sound editing
applications.

Note, however, that AIFF files encode loops differently. Loop start markers are stored as the first sample in
a loop, counting from zero. But the end marker is the sample AFTER the last sample played in the loop.

The DSP also accesses loop points differently: its decoding hardware expects loop points to be specified
as addresses.

The AX Sound Pipeline reconciles these differences when importing sound effects. Note the calculations
carefully when modifying SP or creating your own tool path.

Incorrect loop points may cause discontinuity artifacts in the sound output (such as ‘clicks’ or ‘pops’). Fur-
thermore, if the loop marker of an ADPCM sound effect points to a frame header, then the DSP may behave
unpredictably (looping sound effects may never end, or sound effects may never start).

Sample Encoding Scheme Required Main Memory Alignment

8-bit PCM Sound effect must start on 8-bit boundary.

16-bit PCM Sound effect must start on 16-bit boundary.

ADPCM Sound effect must start on 64-bit boundary.
RVL-06-0035-001-D 36 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
4 Game Engine Programming with the AX Sound Pipeline

4.1 Overview

The final piece in the AX Sound Pipeline is the SP runtime library. This library works in conjunction with AX
to provide the following:

• An abstraction layer for convenient access to sound effect parameters

• Automatic address resolution for samples in main memory

• Automatic initialization of AX voices to simplify playback of sound effects

 The SP runtime library assumes the following:

• The application loads Sound Table data into main memory from an SPT file

• The application loads the associated Sound Data into main memory from an SPD file

• The application has been compiled with the associated C header file generated by sndconv

Figure 4–1 Relationship between Various Audio Libraries

4.2 Data Abstraction

The SP runtime library defines the SPSoundTable data structure to describe each sound effect:

Code 4–1 SPSoundEntry Data Structure

typedef struct
{
 u32 type;

#define SP_TYPE_ADPCM_ONESHOT 0
#define SP_TYPE_ADPCM_LOOPED 1
#define SP_TYPE_PCM16_ONESHOT 2
#define SP_TYPE_PCM16_LOOPED 3
#define SP_TYPE_PCM8_ONESHOT 4
#define SP_TYPE_PCM8_LOOPED 5

 u32 sampleRate;
 u32 loopAddr;
 u32 loopEndAddr;
 u32 endAddr;
 u32 currentAddr;
 SPAdpcmEntry *adpcm;

} SPSoundEntry;

Each entry describes a sound effect in the associated SPD construct.

SP AX MIX

アプリケーション

オーディオサブシステム

アプリケーションがSP機能を実
装するためには、主にこれらの
ライブラリが必要です。

Application

Audio Subsystem

Your application will require mainly
these libraries to implement SP
functionality.
© 2006-2008 Nintendo 37 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
The SPInitSoundTable() function does the following:

• Resolves the offset values in loopAddr, loopEndAddr, endAddr, and currentAddr against the
base address of the SPD construct in main memory

• Initializes the SPAdpcmEntry *adpcm pointer with the appropriate ADPCM descriptor entry at the end
of the SPT aggregate

See “SP API” on page 39 for more details on the SPInitSoundTable() function.

Code 4–2 SpAdpcmEntry Data Structure

typedef struct
{
 AXPBADPCM adpcm;
 AXPBADPCMLOOP adpcmloop;

} SPAdpcmEntry;

Each ADPCM-encoded sound effect has a corresponding entry of type SPAdpcmEntry. The constituent
data structures, AXPBADPCM and AXPBADPCMLOOP are defined by the AX library, and are given in Code 4–
3 for completeness:

Code 4–3 AX ADPCM Data Structures

typedef struct _AXPBADPCM
{

 u16 a[8][2]; // coef table a1[0],a2[0],a1[1],a2[1]....

 u16 gain; // gain to be applied (0 for ADPCM, 0x0800 for PCM8/16)

 u16 pred_scale; // predictor / scale combination (nibbles, as in hardware)
 u16 yn1; // y[n - 1]
 u16 yn2; // y[n - 2]

} AXPBADPCM;

typedef struct _AXPBADPCMLOOP
{
 u16 loop_pred_scale; // predictor / scale combination (nibbles, as in hardware)
 u16 loop_yn1; // y[n - 1]
 u16 loop_yn2; // y[n - 2]

} AXPBADPCMLOOP;
RVL-06-0035-001-D 38 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
The application must load the SPT file into memory verbatim. A pointer of type SPSoundTable must be
assigned to the beginning of this data.

Code 4–4 SPSoundTable Data Structure

typedef struct
{

 u32 entries;
 SPSoundEntry sound[];

} SPSoundTable;

Note: The first member is an integer specifying the total number of sound effects recorded in the SPT
table. In addition, the start of the SPAdpcmEntry data is implicit: the SPInitSoundTable()
function simply assigns the start pointer to the end of the SPSoundEntry structures.

The SPInitSoundTable() function initializes each SPSoundEntry structure sequentially. As it encoun-
ters ADPCM-encoded sound effects, it assigns the SPAdpcmEntry *adpcm pointer to subsequent
SPAdpcmEntry entries.

4.3 SP API

This section describes the AX Sound Pipeline runtime library functions.

4.3.1 The SPInitSoundTable Function

Code 4–5 SPInitSoundTable()

#include <revolution/sp.h>

void SPInitSoundTable(SPSoundTable *table, u8 *samples, u8 zerobuffer);

The SPInitSoundTable function does the following:

• Resolves the main memory addresses for each entry in the table against *samples

• Initializes ADPCM information pointers for ADPCM-encoded sound effects

Prior to calling this function, the application must allocate memory for the sound table and load the data
from an SPT file.

Arguments:

SPSoundTable *table

Pointer to an instance of the SPSoundTable structure. Each entry in SPSoundTable corresponds to
a sound effect in an SPD file.

u8 *samples

Pointer to a main memory address (either MEM1 or MEM2) where the corresponding SPD data has
been stored. The SPD data must be 32-byte aligned.

u8 *zerobuffer

Not used. Be sure to specify NULL.

Return Values:

None.
© 2006-2008 Nintendo 39 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
4.3.2 The SPGetSoundEntry Function

Code 4–6 SPGetSoundEntry()

#include <revolution/sp.h>

SPSoundEntry * SPGetSoundEntry(SPSoundTable *table, u32 index);

For the given sound table instance and sound effect index, the SPGetSoundEntry function returns a
pointer to the corresponding SP sound table entry.

Arguments:

SPSoundTable *table

Pointer to an array of SPSoundTable structures. Each SPSoundTable entry corresponds to a sound
effect in an SPD file.

u32 index

Sound effect ID enumerated in a Sound Pipeline header file generated by sndconv.

Return Values:

Pointer to an SP sound table entry. If index is not within the valid range of entries, this function returns
NULL.

4.3.3 The SPPrepareSound Function

Code 4–7 SPPrepareSound()

#include <dolphin/sp.h>

void SPPrepareSound(SPSoundEntry *sound, AXVPB *axvpb, u32 sampleRate);

The SPPrepareSound function prepares a voice for playback of the specified sound effect.

Note: This function does not start the playback. The application must explicitly set the voice state to
AX_PB_STATE_RUN by using AXSetVoiceState().

Arguments:

SPSoundEntry *sound

Pointer to an entry in an SP sound table. This function will ASSERT a failure if sound is NULL.

AXVPB *axvpb

Pointer to an AX voice parameter block.

Note: The application must acquire a voice from AX before calling this function. This function will
ASSERT a failure if sound is NULL.

u32 sampleRate

Integer specifying the frequency, in Hz, at which the sound must be played. To play the sound with the
default frequency, use sound->sampleRate for this argument.

Return Values:

None.
RVL-06-0035-001-D 40 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
This function copies the parameters of the sound from the SPSoundEntry structure into the appropriate
locations in the AX voice parameter block.

4.3.4 The SPPrepareEnd Function

Code 4–8 SPPrepareEnd()

void SPPrepareEnd(SPSoundEntry *sound, AXVPB *axvpb);

The SPPrepareEnd function marks a looped voice for termination.

The voice is specified by:

• A sound effect entry in an SP sound table

• A voice acquired from AX, currently playing this sound effect

This function is useful for terminating a looped sound effect that is already playing. It simply clears the
loop flag of the voice and resets the end address of the sound effect (if necessary). Thus, the sound effect
plays to the end, and then stops.

This function has no effect on non-looped sound effects.

The function must be called only after a looped sound effect has started.

In other words, calling this function immediately after SPPrepareSound() (within the same audio frame)
does not work because the synchronization bits used for SPPrepareEnd() have precedence over those
asserted by SPPrepareSound(). Therefore, the initialization performed by SPPrepareSound() is lost,
and the sound plays incorrectly.

If you want to play a looped sound one time, clear the loop flag of the voice, and reset its end address
manually after calling SPPrepareSound(). Code 4–9 is an example.

Code 4–9 Clearing a Voice’s Loop Flag and Resetting its End Address Manually

static void foo(SPSoundEntry *sound, AXVPB *axvpb, BOOL one_shot);
{

.

.

.
SPPrepareSound(sound, axvpb, sound->sampleRate);
if (TRUE == one_shot)
{

// This is a looped sound, but we want to play it as a one-shot.
// So, we must revise the loop flag and end address.

 axvpb->pb.addr.loopFlag = AXPBADDR_LOOP_OFF;
axvpb->pb.addr.endAddressHi = (u16)(sound->endAddr >> 16);
axvpb->pb.addr.endAddressLo= (u16)(sound->endAddr & 0xFFFF);

}
.
.
.

} // end foo()

Note: You do not have to assert synchronization bits for the revised loopFlag and endAddressHi/Lo
parameters, because the preparatory SPPrepareSound() function already does so.
© 2006-2008 Nintendo 41 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
Arguments:

SPSoundEntry *sound

Pointer to an entry in an SP sound table.

AXVPB *axvpb

Pointer to an AX voice parameter block.

Return Values:

None.

4.4 Using SP

4.4.1 Source Code

The source code for the SP library can be found in the Nintendo Revolution SDK installation directory at
the following location:

/build/libraries/sp/

The include file can be found at the following location:

/include/revolution/sp.h

Note: The SP runtime library is dependent on the AX header file (ax.h), as well.
RVL-06-0035-001-D 42 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
4.4.2 Loading the SP Sound Table

The SP sound table must reside in main memory. Loading the file from disc is straightforward.

Code 4–10 Loading the SPT File into Main Memory

#include <revolution.h>
#include <revolution/sp.h>
#include <revolution/mem.h>

#define mROUNDUP32(x) (((u32)(x) + 32 - 1) & ~(32 - 1))
MEMHeapHandle hExpHeap;
void *arenaMem2Lo;
void *arenaMem2Hi;
static SPSoundTable *sp_table;

static void *load_file(char *path, u32 *length)
{
 DVDFileInfo dvdFileInfo;
 u32 roundLength;
 void *buffer;

 // open file
 DVDOpen(path, &dvdFileInfo));

 // get length, round up to next 32 Bytes
 roundLength= mROUNDUP32(DVDGetLength(&dvdFileInfo));

 // allocate memory

 buffer = MEMAllocFromExpHeapEx(hExpHeap, roundlength, 32);

 // read data; assume DVD auto-invalidate is ON!
 DVDRead(&dvdFileInfo, buffer, (s32)(roundLength), 0);

 *length = roundLength;

 return(buffer);

} // end load_file()

.

.

.
{
 u32 length;

 //initialize Exp Heap on MEM2
 arenaMem2Lo = OSGetMEM2ArenaLo();
 arenaMem2Hi = OSGetMEM2ArenaHi();
 hExpHeap = MEMCreateExpHeap(arenaMem2Lo, (u32)arenaMem2Hi - (u32)arenaMem2Lo);

 sp_table = (SPSoundTable *)load_file(“test.spt”, &length);

}

Note: This example allocates memory for the SPT data at runtime using the MEM library. If you want to
allocate memory statically, be sure that the buffer is 32-byte aligned.
© 2006-2008 Nintendo 43 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
Code 4–11 Statically Allocating Memory

static u8 *buffer[SPT_SIZE] ATTRIBUTE_ALIGN(32);

Also be sure that your buffer is rounded up to the next multiple of 32 bytes.

4.4.3 Loading the SPD file into Main Memory

In the following example, the load_file function (described previously) loads an SPD file from disc into
memory (spd_buffer) allocated using the MEM library.

Code 4–12 Loading SPD Files into Main Memory

#include <revolution.h>
#include <revolution/sp.h>
#include <revolution/mem.h>

MEMHeapHandle hExpHeap;
void *arenaMem2Lo;
void *arenaMem2Hi;
void *spd_buffer;
 .
 .
 .
{
 u32 length;
 .
 .
 .
 // initialize Exp Heap on MEM2
 arenaMem2Lo = OSGetMEM2ArenaLo();
 arenaMem2Hi = OSGetMEM2ArenaHi();
 hExpHeap = MEMCreateExpHeap(arenaMem2Lo, (u32)arenaMem2Hi – (u32)arenaMem2Lo);

 // use load_file() function from previous example
 spd_buffer = load_file(“test_sfx.spd”, &length);

}

RVL-06-0035-001-D 44 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
4.4.4 Initializing the SP Sound Table

When the sound table and data have been loaded, you can initialize the SP library, as shown in Code 4–
13.

Code 4–13 SP Sound Table Initialization

#include <revolution.h>
#include <revolution/sp.h>
#include <revolution/mem.h>

static SPSoundTable *sp_table;
static u8 *sp_data;.
.
{
 .
 .
 .
 // load SPT data (see examples above)
 .
 .
 .
 // load SPD data (see examples above)
 .
 .
 .

 // Here we go!
 SPInitSoundTable(sp_table, sp_data, NULL);

 // that’s it!

}

4.4.5 Preparing a Sound Effect for Playback

Code 4–14 Playing a Sound Effect

#include <revolution.h>
#include <revolution/sp.h>

#include “test_sfx.h”

static AXVPB *voice;

static SPSoundTable *sp_table;
static SPSoundEntry *sp_entry;

.

.

.
{
 // Initialize AX and Mixer (see AX and MIX documentation)

 // Load SPT file (see previous examples)

 // Load SPD data (see previous examples)

 // Initialize SPT table
© 2006-2008 Nintendo 45 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
 // Get sound table entry for given sound effect index
 // NOTE: The index is defined in the test_sfx.h header file
 sp_entry = SPGetSoundEntry(sp_table, SFX_BLAMMO);

 // Now acquire a voice!
 voice = AXAcquireVoice(15, NULL, 0);

 if (voice)
 {
 // play at default sampling frquency
 SPPrepareSound(sp_entry, voice, sp_entry->sampleRate);

 // setup a mixer channel for this voice
 MIXInitChannel(voice, 0, 0, -960, -960, 64, 127, 0);

 // Set voice state to run!
 AXSetVoiceState(voice, AX_PB_STATE_RUN);

 }

}

Note: The sound effect enumeration, SFX_BLAMMO, is defined in the header file associated with the SPT
and SPD data (test_sfx.h).

A voice must be acquired before a sound effect is prepared for playback. Playback must be also started
manually with a call to AXSetVoiceState().
RVL-06-0035-001-D 46 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution AX Sound Pipeline
4.4.6 Preparing a Looped Effect for Termination

Code 4–15 Stopping a Looped Sound Effect

#include <revolution.h>
#include <revolution/sp.h>

#include “test_sfx.h”

static AXVPB *voice;

static SPSoundTable *sp_table;
static SPSoundEntry *sp_entry;

.

.

.
{
 // Initialize AX and Mixer (see AX and MIX documentation)

 // Load SPT file (see previous examples)

 // Load SPD data (see previous examples)

 // Initialize SPT table

 // Start playing a looped sound effect (see previous examples)

 .
 .
 .

 if (TRUE == please_stop_this_sound)
 {
 // Refresh voice parameter data from SP sound entry
 SPPrepareEnd(sp_entry, voice);
 }

}

Once a looped sound effect is playing, you can easily terminate the sound, using the SPPrepareEnd()
function. This function re-initializes the loop state information of the voice with values from the table entry
of the sound effect, thus causing the voice to stop. The AX user application can then free the voice.

Note: We recommend applying a volume envelope or a fade-out before stopping a voice, to prevent dis-
continuity.
© 2006-2008 Nintendo 47 RVL-06-0035-001-D
CONFIDENTIAL Released: October 17, 2008

Revolution AX Sound Pipeline Revolution SDK
TM and ® are trademarks of Nintendo.

Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.

IBM is a trademark of International Business Machines Corporation.

Roland GS Sound Set is a trademark of Roland Corporation U.S.

All other trademarks and copyrights are property of their respective owners.
RVL-06-0035-001-D 48 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

© 2006-2008 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

	1 Introduction
	1.1 Document Organization

	2 Importing Sound Effects into the AX Sound Pipeline
	2.1 Functionality
	2.1.1 Supported Input Formats
	2.1.2 Conversion Functions

	2.2 Using sndconv.exe
	2.2.1 The Command Line
	2.2.2 Scripting
	2.2.2.1 Command syntax
	2.2.2.2 Attributes
	2.2.2.3 General Notes on Scripting

	3 Tools Programming with the AX Sound Pipeline
	3.1 Functionality
	3.2 Architecture
	3.3 Modules
	3.3.1 The SOUNDFILE DLL
	3.3.1.1 Source Code
	3.3.1.2 Data Abstraction
	3.3.1.3 API
	3.3.1.4 Using SOUNDFILE

	3.3.2 The DSPTOOL DLL
	3.3.2.1 Data Abstraction
	3.3.2.2 API
	3.3.2.3 Using DSPTOOL

	3.3.3 The sndconv Program
	3.3.3.1 Source Code
	3.3.3.2 Program Flow and Implementation Notes
	3.3.3.3 Data Abstraction and File Formats
	3.3.3.4 Sample Addressing, Alignment and Loop Point Specification

	4 Game Engine Programming with the AX Sound Pipeline
	4.1 Overview
	4.2 Data Abstraction
	4.3 SP API
	4.3.1 The SPInitSoundTable Function
	4.3.2 The SPGetSoundEntry Function
	4.3.3 The SPPrepareSound Function
	4.3.4 The SPPrepareEnd Function

	4.4 Using SP
	4.4.1 Source Code
	4.4.2 Loading the SP Sound Table
	4.4.3 Loading the SPD file into Main Memory
	4.4.4 Initializing the SP Sound Table
	4.4.5 Preparing a Sound Effect for Playback
	4.4.6 Preparing a Looped Effect for Termination

