
The contents in this document are highly

confidential and should be handled accordingly.

© 2006-2007 Nintendo RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution

THP Library Guide
Version 1.01

Revolution THP Library Guide Revolution SDK

RVL-06-0017-001-D 2 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

Revolution SDK Revolution THP Library Guide
Table of Contents
Revision History .. 5
1 Introduction... 7

1.1 Overview... 7
1.2 Sample Program... 7
1.3 Organization of this Document ... 8

2 Using the Simple Player to Play Back THP Movie Data... 9
2.1 Source Files.. 9
2.2 How to Use the Simple Player .. 10

3 How to Create THP Movie Data ... 17
3.1 Overview... 17
3.2 Usage ... 17

3.2.1 Converting Serial JPEG files into THP Movie Data... 17
3.2.2 Replacing or Adding THP Audio Data in THP Movie Data...................................... 19

3.3 Data Formats .. 21
3.3.1 Serial JPEG Files .. 21
3.3.2 WAV Files ... 22
3.3.3 THP Movie Data.. 22

3.4 When Creating THP Movie Data .. 27
3.4.1 Specifying the Path ... 27
3.4.2 Sufficient Available Hard-disk Space .. 27

4 Cautions ... 29
4.1 General Cautions.. 29

4.1.1 Sub-sampling .. 29
4.1.2 The Players and the GX settings .. 29
4.1.3 Output of THP Audio Data for Players .. 29
4.1.4 Sampling Rate of THP Audio Data with Simultaneous Use of Audio Libraries 29
4.1.5 Monitoring the Optical Disc Drive during Streaming Playback................................ 30
4.1.6 Handling Sample Data .. 30

4.2 Regarding the THP Player.. 31
4.2.1 Main Loop ... 31
4.2.2 THPPlayerDrawCurrentFrame function... 31
4.2.3 VI Post Callback.. 32
4.2.4 Interlaced Movies.. 32
4.2.5 Displaying THP Movie Data Created for NTSC on a PAL System.......................... 33

Appendix A.Function List .. 35
A.1 THP Low-level Functions.. 35
A.2 THP Simple Player Functions... 35
A.3 THP Player Functions... 36

Code Examples
Code 2-1 Example of Simple Player Use (main.c)... 4
Code 2-2 Definition of READ_BUFFER_NUM / AUDIO_BUFFER_NUM in THP Simple Player........... 8
Code 2-3 Definition of THP_WORK_SIZE in THP library .. 8
Code 2-4 Definitions of the Argument of the THPSimplePreLoad function..................................... 9
Code 3-1 THPConv Syntax when Converting Serial JPEG files .. 11
Code 3-2 THPConv Syntax when Replacing or Adding THP Audio Data .. 13
Code 3-3 Using Serial JPEG Files to Create THP Movie Data.. 15
Code 3-4 THPFrameCompInfo... 18
Code 4-1 Example: Monitoring the Drive within the Main Loop ... 24
Code 4-2 Restriction on Main Loop when Using the THP Player .. 25
Code 4-3 Making Certain the Call to the THPPlayerDrawCurrentFrame Function Succeeds ... 26
© 2006-2007 Nintendo 3 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
Tables
Table 3-1 THPConv Arguments for Serial JPEG Files ... 11
Table 3-2 THPConv Options for Conversion of Serial JPEG Files... 11
Table 3-3 THPConv Arguments when Replacing or Adding THP Audio Data 13
Table 3-4 THPConv Options when Replacing or Adding THP Audio Data 14
Table 3-5 THP Component Descriptors... 18
Table 3-6 THP Video Data Format Descriptors ... 19

Figures
Figure 3-1 The THP File Format .. 20
Figure 4-1 4:2:0 Sub-Sampling .. 23

Equations
Equation 2-1 Size of the Work Region for the THP Simple Player .. 8
Equation 3-2 Required Available Hard-disk Space for THPConv... 21
RVL-06-0017-001-D 4 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
Revision History

Revision
Date

Revised
Item Description

1.01 2006/12/21 2.2 Updated source code to the newest version.

3.2.1 Removed -on flag.

3.2.2 Removed -on flag.

3.3.2 Updated the caution regarding playback frequency for
Revolution.

3.3.3.1 Changed the file where the version number is defined.

3.4.1 Changed path for dsptoo.dll.

3.4.3 Removed section.

1.00 2006/03/01 - First release by Nintendo of America Inc.
© 2006-2007 Nintendo 5 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
RVL-06-0017-001-D 6 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
1 Introduction

1.1 Overview

The THP library is designed for the playback of movies on Revolution. By using the THP library, movie data
comprising interleaved video data and audio data (THP movie data) can be played on Revolution.

The format of the video data handled by the THP library (THP video data) is customized for rapid decoding
by Revolution. The THP library has been optimized to a high extent for decoding of this THP video data.

Note: For increased speed, the THP library uses functions unique to the Broadway CPU (that is, locked
cache, as well as GQR). Exercise caution when using the THP library.

Because THP movie data can be decoded so rapidly, it is extremely well suited for applications inside the
game. For example, a movie displayed to a screen size of 640 x 480 pixels at a frame rate of 60 frames per
second that has been compressed to around 1 bit per pixel, requires about a 40 percent load on the CPU
when it is being decoded. If the frame rate is 30 frames per second, the compression ratio can be lowered
to 5 or 6 bits per pixel (raising picture quality).

Note: The actual compression ratio is influenced by limits on the speed at which data is read from the
optical disc. The slowest optical disc read speed is 3 MB per second. Accordingly, for a movie dis-
played at 30 frames per second, compress data to 102.4 K, or less, per frame.

By utilizing high-speed THP movie data, you can decode and display a movie in real time, while rendering
objects in front of the movie.

THP video data is created from the conversion of normal JPEG data. The JPEG data is converted into THP
video very quickly and with no loss in picture quality from the original JPEG data.

Through the use of THP movie data, you can estimate how much time is needed to decode movie data and
what kind of picture quality will be realized on Revolution when the data is decoded.

The THP movie audio data (THP audio data) is compressed in the same format as the Revolution audio
system's DSPADPCM. This THP audio data is appropriately processed to synchronize the video data and
the audio data as required for the movie.

In summary, with the THP library, you can playback high-quality video and audio movies with only a mini-
mal burden on the CPU.

1.2 Sample Program

Every frame of THP video data is compressed independently of every other frame. Therefore, movie play-
back is easy with the THP library, compared to other movie libraries, which require that information from
prior and subsequent frames be referenced when decoding the present frame.

However, a slightly complicated procedure is required to achieve appropriate synchronization of the video
and audio data during movie playback.

To avoid complexity, two movie players have been prepared that hide this procedure in the THP library,
making the playback of movies even simpler.

The first movie player is an extremely simple player designed to provide a basic understanding of how to
use the THP library.

The second movie player is an advanced player that assumes use in applications. This advanced player
has been created with flexibility to meet the needs of the game for movie playback.

The THP library was created so that movies could be actively played inside even ordinary game scenes.
However, the game system affects the movie player when it is used in this way. Therefore, even though the
THP movie player library is easy to use, modify the configuration of the player to suit the environment of
your game.
© 2006-2007 Nintendo 7 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
Source code is distributed along with the movie players. You can modify this source to suit the THP movie
data playback environment.

1.3 Organization of this Document

This document is organized as follows:

• "2 Using the Simple Player to Play Back THP Movie Data" on page 9 explains the minimal procedure
required for playing THP movie data on Revolution

• "3 How to Create THP Movie Data" on page 17 explains how to create THP movie data

• "4 Cautions" on page 29 reviews the use of the THP library

• Function List includes a list of functions in the THP library
RVL-06-0017-001-D 8 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
2 Using the Simple Player to Play Back THP Movie Data
The THP simple player (Simple Player) is a THP movie player that provides the minimal set of functions
needed for playing THP movie data on Revolution.

This section explains how to use the Simple Player.

2.1 Source Files

The Simple Player is supplied as the sample program THPSimple in the THP library (build/demos/
thpdemo). The Simple Player is comprised of the following source files:

• src/THPSimple/THPSimple.c

This file describes the functions of the Simple Player. The player calls the low-level THPVideoDecode
function when decoding THP video data and the low-level THPAudioDecode function when decoding THP
audio data.

• src/THPSimple/THPDraw.c

The THPVideoDecode function, which is called by the Simple Player when decoding THP video data, out-
puts the decoded data in YUV texture format. This file describes the functions for drawing this data to the
EFB with the graphics processor.

• src/THPSimple/main.c

This is a simple sample of THP movie data for playback, using the Simple Player.

• include/THPSimple.h

This file contains the definitions for the functions used by the Simple Player.

• include/THPDraw.h

This file contains the definitions for the functions used for drawing the decoded YUV texture format data to
the EFB with Hollywood.
© 2006-2007 Nintendo 9 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
2.2 How to Use the Simple Player

"Code 2-1 Example of Simple Player Use (main.c)" on page 10 is a simple application using the Simple
Player for playback of THP movie data. This application is described in build/demos/thpdemo/src/
THPSimple/main.c.

Code 2-1 Example of Simple Player Use (main.c)

1: #include <stdlib.h>
2: #include <string.h>
3: #include <demo.h>
4: #include <revolution/mem.h>
5:
6: #include "THPSimple.h"
7: #include "axseq.h"
8:
9: MEMHeapHandle __ExpHeap;
10:
11: void main(void)
12: {
13: u32 size, x, y, count;
14: s32 frame, start, vol, audioTrack;
15: u16 buttonDown, button;
16: u8 *buffer;
17: GXRenderModeObj *rmode;
18: THPVideoInfo videoInfo;
19: THPAudioInfo audioInfo;
20: void *arenaMem2Lo;
21: void *arenaMem2Hi;
22:
23: DEMOInit(&GXNtsc480Int);
24:
25: arenaMem2Lo = OSGetMEM2ArenaLo();
26: arenaMem2Hi = OSGetMEM2ArenaHi();
27: _ExpHeap = MEMCreateExpHeap(arenaMem2Lo, (u32)arenaMem2Hi - (u32) arenaMem2Lo);
28:
29: AIInit(NULL);
30:
31: AXSeqSetup();
32:
33: THPSimpleInit(THP_MODE_WITH_AX);
34:
35: GXSetDispCopyGamma(GX_GM_1_0);
36:
37: // Open THP file
38: if (THPSimpleOpen("thpdemo/fish_mlt.thp") == FALSE)
39: {

40: OSHalt("THPSimpleOpen fail");
41: }
42:
43: THPSimpleGetVideoInfo(&videoInfo);
44: THPSimpleGetAudioInfo(&audioInfo);
45:
46: rmode = DEMOGetRenderModeObj();
47:
48: x = (rmode->fbWidth - videoInfo.xSize) / 2;
49: y = (rmode->efbHeight - videoInfo.ySize) / 2;
50:
51: // Allocate work area
52: size = THPSimpleCalcNeedMemory();
53:
54: buffer = MEMAllocFromExpHeapEx(__ExpHeap, size, 32);
RVL-06-0017-001-D 10 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
55:
56: if (!buffer)
57: {
58: OSHalt("Can't allocate the memory\n");
59: }
60:
61: THPSimpleSetBuffer(buffer);
62:
63: OSReport("\n#######################################\n");
64: OSReport("Push A button : restart the movie, select audio track at random\n");
65: OSReport("Push B button : play/stop midi file using AX\n");
66: OSReport("Push Start button : application end\n");
67: OSReport("Pad up : volume up\n");
68: OSReport("Pad down : volume down\n");
69: OSReport("#######################################\n");
70:
71: RESTART:
72: // Read ahead for playback
73: if (THPSimplePreLoad(THP_PLAY_LOOP) == FALSE)
74: {
75: OSHalt("THPSimplePreLoad fail");
76: }
77:
78: audioTrack = (s32)(OSGetTick() % audioInfo.sndNumTracks);
79:
80: start = 1;
81:
82: count = VIGetRetraceCount();
83:
84: while(1)
85: {
86: DEMOPadRead();
87:
88: buttonDown = DEMOPadGetButtonDown(PAD_CHAN0);
89: button = DEMOPadGetButton(PAD_CHAN0);
90:
91: DEMOBeforeRender();
92:
93: // Decode single frame of THP data
94: if (THPSimpleDecode(audioTrack) == VIDEO_DECODE_FAIL)
95: {
96: OSHalt("Fail to decode video data");
97: }
98:
99: // Render decoded THP video data
100: frame=THPSimpleDrawCurrentFrame(rmode,x,y, videoInfo.xSize, videoInfo.ySize);
101:
102: while (VIGetRetraceCount() < count + 1)
103: {
104: VIWaitForRetrace();
105: }
106:
107: DEMODoneRender();
108:
109: count = VIGetRetraceCount();
110:
111: if (start)
112: {
113: // Allow audio output
114: THPSimpleAudioStart();
115: start = 0;
116: }
117:
118: if (buttonDown & PAD_BUTTON_A)
119: {
© 2006-2007 Nintendo 11 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
120: // Pause playback and restart
121: THPSimpleAudioStop();
122: THPSimpleLoadStop();
123: goto RESTART;
124: }

125:
126: if (buttonDown & PAD_BUTTON_START)
127: {
128: // Terminate playback and leave main loop
129: THPSimpleAudioStop();
130: THPSimpleLoadStop();
131: THPSimpleClose();
132:
133: MEMFreeToExpHeap(__ExpHeap, buffer);
134:
135: break;
136: }
137:
138: if (buttonDown & PAD_BUTTON_B)
139: {
140: if (GetSeqState())
141: {
142: SeqStop();
143: }
144: else
145: {
146: SeqPlay();
147: }
148: }
149:
150: if (button & PAD_BUTTON_UP)
151: {
152: vol = THPSimpleGetVolume() + 1;
153: if (vol > 127)
154: {
155: vol = 127;
156: }
157: THPSimpleSetVolume(vol, 0);
158: }
159:
160: if (button & PAD_BUTTON_DOWN)
161: {
162: vol = THPSimpleGetVolume() - 1;
163: if (vol < 0)
164: {
165: vol = 0;
166: }
167: THPSimpleSetVolume(vol, 0);
168: }
169: }
170:
171: THPSimpleQuit();
172:
173: VIWaitForRetrace();
174:
175: OSHalt("application end\n");
176:
177: return;
178: }
RVL-06-0017-001-D 12 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
Line 18

The THPVideoInfo structure is declared. This structure maintains the vertical and horizontal size of the
THP video data. The members of this structure are set by the THPSimpleGetVideoInfo function (see
line 43).

Line 29:

Before initializing one of the Revolution audio libraries, AX library, the AIInit function is called to initialize
the audio interface.

Line 31:

The AXSeqSetup function initializes AX internally and prepares for use of the AX sequencer.

Line 33:

The THPSimpleInit function must be called first, before using any of the Simple Player functions. In
addition to initializing the Simple Player control structure (the THPSimple structure), the THPSimpleInit
function enables locked cache and calls the THP library low-level function THPInit. It also registers a
callback function in the Revolution audio interface for the playback of THP audio data. When used at the
same time as AX, initialization functions for the audio library (AXInit) must be called before
THPSimpleInit is called. When used at the same time as AX, THPSimpleInit must be called while
sound output of AX is set to produce no sound. This sample program specifies THP_MODE_WITH_AX for
the argument of THPSimpleInit for simultaneous use of AX.

Line 38:

This opens the THP movie data (fish_mlt.thp) specified by the argument. The THPSimpleOpen func-
tion calls the DVDOpen function to open the THP movie data specified by the argument, and calls the
DVDRead function to read the header portion of that data. After that, the THPSimpleOpen function ana-
lyzes the header to check that the data specified by the argument is valid THP movie data.

Line 43:

This obtains information about THP video data from the header of the THP movie data that was loaded into
main memory in line 38, and stores it in the THPVideoInfo structure specified by the argument. The infor-
mation acquired here is utilized by the application (in this case, the sample program described in main.c).

Line 44:

This obtains information regarding THP audio data from the header of the THP movie data that was loaded
into main memory in line 38 and stores it in the THPAudioInfo structure specified by the argument. The
information acquired here is utilized by the application (in this case, the sample program described in
main.c).

Lines 48, 49:

Calculates the render location (upper-left corner coordinates) of the decoded data so the THP video data is
rendered centered on the screen when the THP movie data is played back.
© 2006-2007 Nintendo 13 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
Line 52:

Calculates the size of the work region to be used by the Simple Player. The
THPSimpleCalcNeedMemory function returns the following:

• A value that is the sum of the size of the buffer used when the THP movie data is read from the optical
disc.

• The size of the YUV texture buffer used when the THP library low-level function decodes the THP
video data.

• The size of the buffer used by the THP audio data.

• The size of the work region used by the THP library low-level functions.

The formula used for this calculation is shown in Equation 2-1:

Equation 2-1 Size of the Work Region for the THP Simple Player

// Size of buffer for reading the THP movie data
size = OSRoundUp32B (Maximum data size of THP frame data) * READ_BUFFER_NUM;

// Size of Y texture buffer
+ OSRoundUp32B (THP video data horizontal size x vertical size)

// Size of U texture buffer
+ OSRoundUp32B (THP video data horizontal size x vertical size/4)

// Size of V texture buffer
+ OSRoundUp32B (THP video data horizontal size x vertical size/4)

// Size of buffer for THP audio data
+ OSRoundUp32B (THP audio data's maximum number of samples x 4) x AUDIO_BUFFER_NUM

// Size of work region used by THP library's low level API functions
+ THP_WORK_SIZE;

Notes:

• The THPConv tool, which is used to create THP movie data, automatically sets the maximum size of
the THP frame data when it is creating THP movie data. This maximum size differs for every set of
THP movie data. In addition, for movies that play back a long time or have screens that change fre-
quently, this value differs largely from the average size that can be calculated from the THP movie data
file size. For example, in the sample data that comes with the THP library (rebirth.thp (dvddata/
thpdemo/rebirth.thp), the average size is 39,552 bytes, and the maximum size is set to 77,728
bytes. This type of localized fluctuation in data size can have a large influence, not only on the required
buffer size for the Simple Player, but also on the data transfer speed from the optical disc and the CPU
load required for decoding. Therefore, try to create well-balanced movies.

• The THPConv tool also automatically sets the maximum size for the THP audio data. Unlike for the
video value, this value for the THP audio data does not fluctuate largely in every frame.

• The values for READ_BUFFER_NUM and AUDIO_BUFFER_NUM are defined in the THP Simple Player
header file, THPSimple.h (build/demos/thpdemo/include/THPSimple.h).
RVL-06-0017-001-D 14 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
Code 2-2 Definition of READ_BUFFER_NUM / AUDIO_BUFFER_NUM in THP Simple Player

#define READ_BUFFER_NUM 10
#define AUDIO_BUFFER_NUM 3

Note: The value of THP_WORK_SIZE is defined in the THP library header file, thp.h (include/
revolution/thp.h).

Code 2-3 Definition of THP_WORK_SIZE in THP Library

#define THP_WORK_SIZE 0x1000

Line 54:

Allocates a work region for the Simple Player.

Line 61:

Registers the work region that was allocated in line 54 to the Simple Player.

Line 73:

Several frames of THP movie data are read from the optical disc before the THP movie data begins to play.
The THPSimplePreLoad function calls the DVDRead function to read the READ_BUFFER_NUM number of
frames of THP movie data. The method of playback for the THP movie data is set in the argument of the
THPSimplePreLoad function. THP_PLAY_LOOP is specified to loop the THP movie data, and
THP_PLAY_ONESHOT is specified to play the THP movie data only once in one playing. Both
THP_PLAY_LOOP and THP_PLAY_ONESHOT are defined in the header file of the Simple Player
THPPlayerCommon.h (build/demos/thpdemo/include/THPCommon.h).

Code 2-4 Definitions of the Argument of the THPSimplePreLoad Function

#define THP_PLAY_ONESHOT 0x00
#define THP_PLAY_LOOP 0x01

Line 78:

Determines the audio track played back from the time base register value.

Line 80:

The start flag is set to obtain the timing for the start of THP audio data playback (see lines 111-116).

Line 94:

Decodes the THP video data. The decoded data is stored in YUV texture format in a buffer maintained
internally by the Simple Player. If audio data is interleaved in the THP movie data, the audio data from the
audio track specified with audioTrack is also decoded.

Line 100:

Renders the THP video data that was decoded in line 94. For rendering, the
THPSimpleDrawCurrentFrame function takes the YUV texture-format data decoded by the
THPSimpleDecode function and pastes it onto polygons.

Lines 102-107:

Writes from the EFB to the XFB, and waits for two retraces.
© 2006-2007 Nintendo 15 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
When using the Simple Player, the loop portion in which the various Simple Player API functions are called
and the frame buffer is rendered (that is, the portion between lines 84 and 169), must have the same frame
rate as that of the THP movie data being played. For example, if the Simple Player is incorporated into a
loop where objects are being rendered at a frame rate of 60 frames per second, the frame rate for that
object rendering must drop to 30 frames per second, which is the frame rate for playback of THP movie
data.

Note: This sample program is for the playback of THP movie data at a frame rate of 29.97 frames per
second.

Lines 111-116:

Enables start of playback of THP audio data. If start of playback is enabled with the
THPSimpleAudioStart function, decoded THP audio data is sent to the Revolution audio interface.
When audio data plays back-interleaved THP movie data, THPSimpleAudioStart must be called once
immediately after the start of playback.

The best location for the call to this function is immediately after the first frame (line 100) of THP movie
data rendered by the THPSimpleDrawCurrentFrame function has been displayed on the screen (at or
after line 107).

Lines 118 - 124

Stops playback of THP movie data, and restarts playback of that data at the beginning. To do this, first the
THPSimpleAudioStop function (line 121) is called to cancel permission to play the audio data. When the
denial is received, decoded THP audio data is not sent to the Revolution audio interface. Next, the
THPSimpleLoadStop function (line 122) is called to stop preloading of THP movie data and to initialize
the THPSimple structure. Doing so returns the Simple Player to its initial status.

Lines 126 - 136:

Terminates playback of THP movie data. First the THPSimpleAudioStop function (line 129) is called to
stop playback of audio data. Next the THPSimpleLoadStop function (line 130) is called to return the Sim-
ple Player to its initial status. Then, the THPSimpleClose function (line 131) is called to close the THP
file.

Lines 138 - 148:

Uses AX to play back or stop a MIDI file.

Lines 150 - 158:

Turns up the playback volume of THP audio data.

Lines 160 - 168:

Turns down the playback volume of THP audio data.

Line 171:

Terminates the Simple Player. The THPSimpleQuit function calls the LCDisable function to disable
locked cache and to return the Simple Player internal state to the status that it was in before the
THPSimpleInit function was called. To use the Simple Player again, the process must begin with a call
to the THPSimpleInit function. When using AX simultaneously, call the THPPlayerQuit function while
sound output of AX is set to not produce any sound.
RVL-06-0017-001-D 16 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
3 How to Create THP Movie Data

3.1 Overview

The format of THP movie data has specifications unique to Revolution. THP movie data is composed of
THP video data and THP audio data, and both types of data are interleaved in every frame. THP movie
data has high extensibility and can also incorporate a third type of data besides THP video data and THP
audio data.

A unique format is employed for the THP video data. It has been customized for rapid decoding by Revolu-
tion. The JPEG data is converted into THP video data very quickly, with no loss in picture quality from the
original JPEG data.

The THP audio data is compressed in the Revolution audio system DSP ADPCM format. There are no
restrictions on playback frequency. This THP audio data supports both monaural and stereo playback.

The THPConv utility is provided for creating THP movie data. THPConv supports sequential JPEG files
(see Converting Serial JPEG files into THP Movie Data). The tool can also be used to replace the audio
data that is incorporated in the THP movie data (see Replacing or Adding THP Audio Data in THP Movie
Data).

3.2 Usage

THPConv is a Win32 console application. Its use depends on the format of the input data. The following
sections explain how to use the THPConv tool for each input data format. The usage can be displayed by
running the THPConv tool without any options specified.

3.2.1 Converting Serial JPEG files into THP Movie Data

Use THPConv as shown in Code 3-1 when converting serial JPEG files to THP movie data.

Code 3-1 THPConv Syntax when Converting Serial JPEG Files

THPConv.exe -j <*.jpg> -d <outputfile> [-<option> <argument>]

Table 3–1 THPConv Arguments for Serial JPEG Files

The THPConv supports the options shown in Table 3–2:

Table 3–2 THPConv Options for Conversion of Serial JPEG Files

Argument Description

-j <*.jpg> Specifies the input files (serial JPEG files). Wildcard characters (*) can be
used. This argument is required.

-d <outputfile> Specifies the output file (the THP file). This argument is required.

Option Description

-s <wavefile> <wavefile>
<wavefile>

Specifies an audio file (a WAV file) to convert into THP
audio data. If multiple files are specified in the argument,
the data is allocated to audio tracks in the order specified.

-r <framerate> Specifies the movie frame rate. The frame rate can be set
in the range from 1.0 through 59.94. The default value is
29.97).
© 2006-2007 Nintendo 17 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
In the example in Code 3-2, the THPConv tool is used to convert sequential JPEG files into THP movie
data.

Code 3-2 Converting Sequential JPEG Files into THP Movie Data

THPConv -j test*.jpg -d output.thp

When this is run on the command line, the sequential JPEG files located in the current directory
(test001.jpg, test002.jpg, test003.jpg …) are individually converted into THP video data, and
then collected in one THP movie data file named output.thp. See "3.3.1 Serial JPEG Files" on page 21
for information about sequential JPEG files.

Note: When converting sequential JPEG files to THP movie data, make sure the file name of the speci-
fied input file has a .jpg or .jpeg extension.

-o With THP movie data, the offset to the data for each frame
can be stored as a table (see THPFrameOffsetData).
When this argument is specified, THPConv creates an off-
set table in the THP data. If this argument is not specified,
no such table is created.

-non or -odd or -even Specifies the format of the THP video data (see
"THPVideoInfo"). If the video data is in interlaced format
and starts from an odd-numbered field, specify –odd. If the
video data is in non-interlaced format and starts from an
even-numbered field, specify –even. If this argument is not
specified, the THP video data format is automatically set
as non-interlaced (-non).

-v Enables verbose mode.

Option Description
RVL-06-0017-001-D 18 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
3.2.2 Replacing or Adding THP Audio Data in THP Movie Data

Code 3-3 THPConv Syntax when Replacing or Adding THP Audio Data

THPConv.exe -c <inputfile> -s <wavefile> <wavefile>... -d <outputfile> [-<option> <argument>]

Table 3–3 THPConv Arguments when Replacing or Adding THP Audio Data

Argument Description

-c <inputfile> Specifies the input file (THP file). This argument is
required.

-s <wavefile> <wavefile>
<wavefile>

Specifies the sound file (WAV file) to be substituted. If mul-
tiple files are specified in the argument, the data is allo-
cated to the audio tracks in the order specified. If a THP
file format not supporting multi-tracks is input, the format is
changed to provide this support.

-d <outputfile> Specifies the output file (a THP file). If this argument is
not specified, the THPConv tool overwrites the
input file.
© 2006-2007 Nintendo 19 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
THPConv supports the options shown in Table 3–4.

Table 3–4 THPConv Options when Replacing or Adding THP Audio Data

Option Description

-r <framerate> Specifies the movie frame rate. The frame rate can be set in
the range from 1.0 through 59.94. The default value is 29.97.

-o With THP movie data, the offset to the data for each frame can
be stored as a table (see THPFrameOffsetData). When this
argument is specified, the THPConv tool creates an offset table
in the THP data. If this argument is not specified, no such table
is created.

-non or –odd or -even Specifies the format of the THP video data (see "(1)
THPVideoInfo" on page 25). If the video data is in interlaced
format and starts from an odd-numbered field, specify –odd. If
the video data is in non-interlaced format and starts from an
even-numbered field, specify –even. If this argument is not
specified, the THP video data format is automatically set as
non-interlaced (–non).

-trk <track No.> <wavefile> Use this option instead of –s when you want to substitute only
one audio data track. In the first argument, you specify the
number of the audio track that you want to replace (0 or
higher). In the second argument, the sound file (WAV file) that
carries out the substitution is specified. If this option is used, –
r, –o, –non, –odd, and –even are disabled. In addition, the –
on option is ignored, and the playback frequency conversion is
automatically set to match the other audio tracks. This option
can be used only with THP file formats that support multiple
tracks.

-v Turns verbose mode on.
RVL-06-0017-001-D 20 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
Notes:

• When THPConv replaces the audio data in the THP movie data, the old THP audio data is deleted
and cannot be recovered. Moreover, if an output file is not specified when the audio data is
replaced, the THPConv tool will overwrites the existing THP movie data. Therefore, when replac-
ing audio data, create a backup file or specify an output file so that you do not lose data.

• If the playback duration of the WAV file is longer than that of the THP movie data, the portion of the
WAV file that is longer than the THP movie data is not converted when the WAV file is substituted
for the existing audio data. Conversely, if the playback duration of the THP movie data is longer
than that of the WAV file, there will be no sound during that extra time.

• If the THP movie data that has been specified as the input file does not contain audio data, this
operation adds THP audio data to the specified file.

• If you are including multiple audio data files in the THP movie data, the number of channels for the
audio data and the playback frequencies must be consistent.

3.3 Data Formats

3.3.1 Serial JPEG Files

The THPConv tool can convert serial JPEG files (a group of JPEG files with consecutive numbers at the
end of the files that indicate the ordered sequence for playback) into THP movie data. If audio data is inter-
leaved in the serial JPEG files, either a WAV file must be specified with the -s option during the conversion
process, or the WAV file must be added after the sequential JPEG files have been converted.

The following restrictions apply to the serial JPEG files that can be handled by the THPConv tool:

• Consecutive numbers corresponding to the frame numbers must be at the end of the serial JPEG files

• The JPEG file that corresponds to the first frame of the THP movie data can have any number, but the
files must be numbered consecutively

• The frame number at the end of the file name must have the same number of digits as the final frame,
with zeros attached to the front

• All the JPEG files that in a set of THP movie data must have the same number of vertical pixels and
the same number of horizontal pixels

In Code 4, sequential JPEG files are used to create 4 seconds of THP movie data at a frame rate of 30
frames per second. The sequential JPEG files (testxxxx.jpg) are numbered as shown:

Code 3-4 Using Serial JPEG Files to Create THP Movie Data

Frame 1 : test001.jpg
Frame 2 : test002.jpg
Frame 3 : test003.jpg

: :
Frame 51 : test051.jpg
Frame 52 : test052.jpg

: :
Frame 118 : test118.jpg
Frame 119 : test119.jpg
Frame 120 : test120.jpg
© 2006-2007 Nintendo 21 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
The following restrictions apply to the individual JPEG files that comprise the serial JPEG file group:

• Only the JPEG baseline DCT format is supported

• Only sequential encoding is supported

• Only 4:2:0 sub-sampling is supported

• The pixel count must be a multiple of 16 both vertically and horizontally

• The maximum number of pixels in the horizontal direction is 672. There is no restriction in the vertical
direction.

If the serial JPEG files do not fully meet these restrictions, THPConv raises an error, and processing stops.

Note: Serial JPEG files must have the extension .jpg or .jpeg.

3.3.2 WAV Files

THPConv can convert a common WAV file into THP audio data and interleave it with the THP movie data.
However, there are the following restrictions on what kinds of WAV files THPConv can convert:

• Files must be uncompressed 16-bit PCM data

• Monaural (1 channel) and stereo (2 channels) are supported

If the WAV file does not fully meet these restrictions, THPConv raises an error, and processing stops.

Although there are no playback frequency restrictions on wav files converted with THPConv, keep the fol-
lowing in mind:

• Wii, unlike the Nintendo GameCube, outputs audio data at the configured playback frequency
(48,000 Hz or 32,000 Hz)

• WAV files with playback frequencies other than 32,000 Hz and 48,000 Hz can also be converted
with THPConv. When playing THP movie data created with this type of WAV file, use
THPPlayerStrmAX.
Even when you create THP movie data with a WAV file having a playback frequency of 32,000 or
48,000 Hz, if the Revolution playback frequency setting differs from the WAV file playback fre-
quency, use THPPlayerStrmAX.

Note: If you are including multiple audio data files in the THP movie data, the number of channels for the
audio data and the playback frequencies must be consistent.

Note: WAV files must have the extension .wav.

3.3.3 THP Movie Data

The following sections explain the format of the THP movie data that is output by THPConv.

3.3.3.1 THPHeader

THPHeader is situated at the beginning of the THP movie data. It holds information for the proper initializa-
tion of the THP Player.

“THP\0” (magic[4]) and the version number are stored at the start of THPHeader to identify the THP
movie data. The upper 2 bytes of the version number indicate the major version number, and the lower 2
bytes the minor version number. THPConv automatically sets the version number. The version number is
defined in the header file (include/revolution/thpfile.h) as THP_VERSION.

Following this information in THPHeader is information about the maximum frame data size (bufSize)
and the maximum number of audio samples (audioMaxSamples), which are used by the THP Player to
calculate the size of the work region.
RVL-06-0017-001-D 22 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
After this comes other information, including the THP movie data frame rate (frameRate) and the total
number of frames (numFrames).

The THP movie data format is designed with extensibility in mind and can accommodate additional data.
The THP offset to this additional data can also be stored in THPHeader (after
finalFrameDataOffsets).

3.3.3.2 THPFrameCompInfo

Data can be interleaved in frames and stored inside the THP movie data. In the THP library, this inter-
leaved data is referred to as components. THP video data and THP audio data are also components.
Designed with extensibility in mind, the THP movie data can store components other than video and audio.

THPFrameCompInfo holds numComponents, which is the number of components included in the THP
movie data, and frameComp[], an array showing the order of the components stored in each frame. This
array stores the THP Components descriptors (see Table 3–5) in the order in which the components are
interleaved.

Table 3–5 THP Component Descriptors

For example, if the first component of the frame is THP video data and the second component is THP
audio data, THPFrameCompInfo looks like Code 3-5:

Descriptor Order

Video Comp 0

Audio Comp 1

Undefined 2

Undefined 3

Undefined 4

Undefined 5

Undefined 6

Undefined 7

- 8

. 9

. 10

. 11

. 12

. 13

. 14

. 15

Nothing FF
© 2006-2007 Nintendo 23 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
Code 3-5 THPFrameCompInfo

numComponents = 2 : Number of components
frameComp[0] = 0 : Video data descriptor
frameComp[1] = 1 : Audio data descriptor
frameComp[2..15] = FF : No data

After THPFrameCompInfo, comes information on each component (THPVideoInfo, THPAudioInfo,
etc.). This component information must also be in the order of the THP Components descriptors stored in
the frameComp array.
RVL-06-0017-001-D 24 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
(1) THPVideoInfo

THPVideoInfo holds the THP video data vertical and horizontal size information (xSize, ySize). This
information is used for proper playback of the THP video data.

The THP video data format (videoType) is stored next. The values shown in Table 3–6 are stored for the
video format, based on the options when using THPConv.

Table 3–6 THP Video Data Format Descriptors

(2) THPAudioInfo

THPAudioInfo holds the number of channels (sndChannels), the playback frequency
(sndFrequency), and the total number of audio samples (sndNumSamples) of THP audio data. It also
holds the number of audio data tracks (sndNumTracks) included in the THP audio data. This data is used
for proper playback of the THP audio data.

3.3.3.3 THPFrameOffsetData

The THP movie data can also maintain a data table with the offset to the start of every frame. When
THPConv is used with the -o option, THPFrameOffsetData is created in the THP movie data. If the -o
option is not specified, THPFrameOffsetData is not created. Use this offset data table for special play-
back purposes, such as to start movie playback from any frame.

3.3.3.4 MovieData

MovieData holds the interleaved component data for each frame.

(1) FrameHeader

FrameHeader is situated at the front of the MovieData data for each frame.

Stored at the start of FrameHeader are the size of the previous frame (frameSizePrevious) and the
size of the next frame (frameSizeNext). For the first frame, the size of the last frame is stored in
frameSizePrevious. Similarly, for the last frame, the size of the first frame is stored in
frameSizeNext.

Following these two values, FrameHeader stores the data size information in each component interleaved
in that frame. This size information must be stored in the order in which the components are interleaved, as
defined in THPFrameCompInfo.

The size of each frame must be a multiple of 32 bytes. Frames must be padded with 0, as needed, at the
end of the frame data to meet this requirement.

Notes:

• The component data sizes included in FrameHeader store the size information for each compo-
nent. However, in the case of audio components, the data size of one audio track is stored.

• The THP audio data is compressed in the Revolution audio system DSP ADPCM format. There-
fore, the number of audio data samples stored in each frame (with the exception of the last frame)
must be a multiple of 14.

Video Format THPConv Option videoType

Non-interlaced None or [-non] 0

Interlaced starting from odd-numbered fields [-odd] 1

Interlaced starting from even-numbered fields [-even] 2
© 2006-2007 Nintendo 25 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
Figure 3-1 THP File Format
RVL-06-0017-001-D 26 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
3.4 When Creating THP Movie Data

The following items should be noted when using THPConv.

3.4.1 Specifying the Path

THPConv makes use of dsptool(D).dll, which comes with the Revolution SDK. It is stored in the fol-
lowing location: $REVOLUTION_SDK_ROOT\x86\bin.

3.4.2 Sufficient Available Hard-disk Space

THP movie data output by THPConv is nearly the same size as the original data before the conversion.
When THPConv converts video data and audio data into THP movie data, it creates temporary files in the
current directory. These temporary files are also about the same size as the original data.

Be sure to confirm that there is sufficient available space on the hard disk when using THPConv.

Equation 3-1 Required Available Hard-disk Space for THPConv

<Necessary free hard-disk space> = <Size of original data> x 3

When THPConv creates temporary files, it names the temporary file for video data __tmp_VD and the tem-
porary file for audio data __tmp_AD. If files with these file names exist in the current directory, THPConv
overwrites them.
© 2006-2007 Nintendo 27 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
4 Cautions

4.1 General Cautions

4.1.1 Sub-sampling

The THP library supports only 4:2:0 sub-sampling.

For a JPEG file with 4:2:0 sub-sampling, the Cb and Cr components are culled as shown in Figure 4-1 in
regards to the Y component:

Figure 4-1 4:2:0 Sub-Sampling

If the input JPEG data does not have 4:2:0 sub-sampling, the THPConv tool raises an error, and conver-
sion processing stops. If it is not clear what kind of sub-sampling is performed on the JPEG data output by
a commercial graphics application, you can determine whether the THP library can decode the data by
seeing what happens when the file is input to THPConv.

4.1.2 The Players and the GX settings

The THP Simple Player and the THP Player both utilize the THP library low-level function
THPVideoDecode to decode THP video data. This function outputs the decoded data in YUV texture for-
mat. Both players render to the screen by pasting this YUV texture format decoded data to polygons.

Both players make major changes to the GX settings when rendering the decoded data. For applications
that use THP movie data, and especially for applications that play movies and draw objects at the same
time, be sure to rectify the GX settings that are used for rendering objects, fixing them in each frame after
the movie has been rendered and before the object is rendered.

4.1.3 Output of THP Audio Data for Players

When the THP Simple Player and THP Player (THPPlayer) are used at the same time as AX, they mix
audio output data from the audio libraries with THP audio data, using the CPU, and send it to the audio
interface.

In contrast, the THP player that uses AX audio streaming (THPPlayerStrmAX) sends the THP audio data
to the audio library, and any subsquent processing (until audio data is output from Revolution) is handled
by the audio library.

4.1.4 Sampling Rate of THP Audio Data with Simultaneous Use of Audio Libraries

The sampling rate for THP audio data must be 32 KHz when the THP Simple Player and the THP Player
are used with AX simultaneously.
RVL-06-0017-001-D 28 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
When using THP Player utilizing AX audio streaming (THPPlayerStrmAX), the audio library internally con-
verts the sampling rate to 32KHz, so there are no limitations on the THP audio data sampling rate.

4.1.5 Monitoring the Optical Disc Drive during Streaming Playback

When streaming THP movie data from the optical disc for playback, monitor the state of the disc drive from
inside the main loop that calls the THP Player functions and renders the frame buffer, and perform the
proper process for the specified disc drive state. (The code shown in Example: Monitoring the Drive within
the Main Loop is an example of such processes; the exact procedure need not be followed.)

Code 4-1 Example: Monitoring the Drive within the Main Loop

switch(DVDGetDriveStatus())
{

case DVD_STATE_FATAL_ERROR:
Stop playback
break;

case DVD_STATE_NO_DISK:
Stop playback
break;

case DVD_STATE_COVER_OPEN:
Pause playback
break;

case DVD_STATE_WRONG_DISK:
Stop playback
break;

case DVD_STATE_RETRY:
Stop playback
break;

}

4.1.6 Handling Sample Data

The sample data that accompanies this library (rebirth.thp) is provided strictly for reference purposes.
The misappropriation of this sample data and its duplication or alteration without the permission of Nin-
tendo of America is prohibited.

Sample dataa

a. All queries regarding this sample data should be directed to Nintendo of America, Inc.
(support@noa.com).

rebirth.thp Copyright © 2000 Nintendo

Created by: mix core:

http://www.mix-core.com

CG Designers: Shinichi Shirai, Yutaka Nishikawa, Makoto Nishibori, Taka-
hiro Onishi, Hiroyuki Kusukawa

Sound Com-
poser:

Masaya Tsunemoto

Violinist: Yoko Yoshida
© 2006-2007 Nintendo 29 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

mailto:support@noa.com

Revolution THP Library Guide Revolution SDK
4.2 Regarding the THP Player

4.2.1 Main Loop

When playing THP movie data, program your application so that the main loop that renders to the screen
and calls the THP Player loops once per vsync.

Code 4-2 Restriction on Main Loop When Using the THP Player

THPPlayerPlay()

while(1)
{

.

.

THPPlayerDrawCurrentFrame();
.
.

VISetNextFrameBuffer();
VIFlush();
VIWaitForRetrace();

}

THP movie data may not play smoothly if the main loop is set to loop at anything other than once per
vsync.

4.2.2 THPPlayerDrawCurrentFrame function

Sometimes, the call to the THPPlayerDrawCurrentFrame function may fail (return –1), even after the
call to the THPPlayerPlay function has succeeded. This is because, internally, playback has been
delayed past the proper timing for the start of play.

Essentially, the first frame of decoded data is fetched by the THP Player VI post callback function at the
time of the vsync, right after the THPPlayerPlay function is called (although, in the case of an inter-
laced movie, this action could be delayed due to restrictions on the first field). Rendering of video data by
the THPPlayerDrawCurrentFrame function becomes possible after this process.

If you are rendering movies and objects at the same time, check the value returned by the
THPPlayerDrawCurrentFrame function and confirm that it is not –1 (failure) before displaying the
object.
RVL-06-0017-001-D 30 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
If it is not an interlaced movie, you can use the procedure in Making Certain the Call to the THPPlayer-
DrawCurrentFrame Function Succeeds to ensure that the THPPlayerDrawCurrentFrame function is
called successfully:

Code 4-3 Making Certain the Call to the THPPlayerDrawCurrentFrame Function Succeeds

THPPlayerPlay();

VIWaitForRetrace(); <------- At the time of this vsync, the first frame is
fetched by the VI post callback.

while(1)
{

.

.

THPPlayerDrawCurrentFrame();
.
.

VISetNextFrameBuffer();
VIFlush();
VIWaitForRetrace();

}

4.2.3 VI Post Callback

The THP Player utilizes VI post callbacks to control movie playback. Callbacks that are registered before
the registration of the THP Player's VI post callback function are called by the player's VI post callback. At
the end of playback (that is, when THPPlayerStop is called), the player returns the VI post callback to its
origin.

4.2.4 Interlaced Movies

The THP Player supports the playback of interlaced movies, but only if the format is such that the data in
every frame contains even fields and odd fields that are alternately interleaved in each scan. The even and
odd fields should be set up so that each field comes 1/59.94 seconds after the previous field for NTSC and
MPAL, and 1/25 seconds for PAL

When the data is in this format, the timing for the start of playback is affected by whether the data in each
frame begins with the even field or the odd field.

The THP Player uses the second argument of the THPPlayerPrepare function to get information on the
scanning order of the interlaced movie and to automatically adjust the timing of the start of playback.

There are no restrictions on the screen size for interlaced movies that can be played by the THP Player.
However, whether each frame begins with an even field or an odd field places restrictions on the rendering
location when the movie is drawn to the screen. You must adjust the rendering location.

When an interlaced movie is scaled, the position of the even and odd lines in the frame is misaligned, and
it may not be possible to play the movie back correctly. Therefore, do not scale interlaced movies for play-
back.
© 2006-2007 Nintendo 31 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
The following restrictions apply to interlaced movies that can be played with the THP Player:

• The even fields and the odd fields must be interleaved

• The frame rate must be 29.97 frames per second for NTSC and MPAL, and 25 frames for PAL

• You must specify in the THP Player whether the frame data that comprises the interlaced movie is
scanned in the order of even field—odd field, or odd field—even field

• There are no restrictions on screen size, but the rendering location must be adjusted

• The decoded data cannot be scaled

4.2.5 Displaying THP Movie Data Created for NTSC on a PAL System

When creating software versions for markets that use PAL, you may want to repurpose THP movie data
created in the NTSC format for release in a PAL format.

When THP movie data created for NTSC televisions at a rate of 29.97 FPS is displayed on an NTSC tele-
vision, the movie plays correctly if the screen is refreshed every other Vsync. If the same data is displayed
on a PAL television and the screen is refreshed every other Vsync, because PAL televisions display 25
frames (50 fields) per second, not all of the frames are displayed, and the movie does not appear smooth
(when using THP player).

The easiest way to avoid this lack of smoothness in display is to change the screen refresh rate to every
Vsync. This allows all the frames in the THP movie data to be displayed on the television and reduces the
loss of fluidity.

The critical thing here is when to display each frame. The THP Player monitors the time since the playback
started and determines the frame to draw with the THPPlayerDrawCurrentFrame function. Accordingly,
the user does not need to worry about the timing and can simply call the THPPlayerDrawCurrentFrame
function each Vsync.

In contrast, the THP Simple Player does not internally monitor the time since the start of playback. The
user must monitor the time and decode and display the frame at the right time.

Note: The above method can be applied only to NTSC movie data that is not interlaced and has a frame
rate below 50 fps.
RVL-06-0017-001-D 32 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
Appendix A. Function List

A.1 THP Low-level Functions

A.2 THP Simple Player Functions

API Process

THPInit Prepares for decoding with the THP library.

THPVideoDecode Decodes THP video data.

THPAudioDecode Decodes THP audio data.

API Process

THPSimpleInit Initializes the THP Simple Player.

THPSimpleQuit Quits the THP Simple Player.

THPSimpleOpen Opens THP movie data.

THPSimpleClose Closes THP movie data.

THPSimpleCalcNeedMemory Obtains the size of the work area for the THP Simple
Player.

THPSimpleSetBuffer Sets the work area in the THP Simple Player.

THPSimplePreLoad Starts the pre-load of THP movie data.

THPSimpleLoadStop Stops the pre-load of THP movie data.

THPSimpleDecode Decodes THP video and audio data.

THPSimpleDrawCurrentFrame Renders decoded THP video data immediately after call-
ing the THPSimpleDecode function.

THPSimpleAudioStart Starts playback of THP audio data.

THPSimpleAudioStop Stops playback of THP audio data.

THPSimpleSetVolume Sets the playback volume for THP audio data.

THPSimpleGetVolume Obtains the current volume setting of THP audio data.

THPSimpleGetVideoInfo Obtains information for THP video data.

THPSimpleGetAudioInfo Obtains information for THP audio data.

THPSimpleGetFrameRate Obtains the frame rate for THP movie data.

THPSimpleGetTotalFrame Obtains the total number of frames for THP movie data.
© 2006-2007 Nintendo 33 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK
A.3 THP Player Functions

API Process

THPPlayerInit Initializes the THP Player.

THPPlayerQuit Quits the THP Player.

THPPlayerOpen Opens THP movie data.

THPPlayerClose Closes THP movie data.

THPPlayerCalcNeedMemory Obtains the size of the work area for the THP Player.

THPPlayerSetBuffer Sets the work area in the THP Player.

THPPlayerPrepare Prepares playback of THP movie data.

THPPlayerPlay Starts playback of THP movie data.

THPPlayerStop Stops playback of THP movie data.

THPPlayerPause Pauses playback of THP movie data.

THPPlayerSkip Skips one frame of THP movie data.

THPPlayerDrawCurrentFrame Renders THP video data, synchronizing with playback of
THP audio data.

THPPlayerDrawDone Use this function instead of GXDrawDone when playing
back THP movie data.

THPPlayerSetVolume Sets the playback volume for THP audio data.

THPPlayerGetVolume Obtains the current volume setting of THP audio data.

THPPlayerGetVideoInfo Obtains information for THP video data.

THPPlayerGetAudioInfo Obtains information for THP audio data.

THPPlayerGetFrameRate Obtains the frame rate for THP movie data.

THPPlayerGetTotalFrame Obtains the total number of frames for THP movie data.

THPPlayerGetState Obtains the current status of the THP Player.
RVL-06-0017-001-D 34 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

Revolution SDK Revolution THP Library Guide
TM and ® are trademarks of Nintendo.

Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.

IBM is a trademark of International Business Machines Corporation.

Roland GS Sound Set is a trademark of Roland Corporation U.S.

All other trademarks and copyrights are property of their respective owners.
© 2006-2007 Nintendo 35 RVL-06-0017-001-D
CONFIDENTIAL Released: October 22, 2007

Revolution THP Library Guide Revolution SDK

RVL-06-0017-001-D 36 © 2006-2007 Nintendo
Released: October 22, 2007 CONFIDENTIAL

© 2006-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

	Table of Contents
	1 Introduction
	1.1 Overview
	1.2 Sample Program
	1.3 Organization of this Document

	2 Using the Simple Player to Play Back THP Movie Data
	2.1 Source Files
	2.2 How to Use the Simple Player

	3 How to Create THP Movie Data
	3.1 Overview
	3.2 Usage
	3.2.1 Converting Serial JPEG files into THP Movie Data
	3.2.2 Replacing or Adding THP Audio Data in THP Movie Data

	3.3 Data Formats
	3.3.1 Serial JPEG Files
	3.3.2 WAV Files
	3.3.3 THP Movie Data
	3.3.3.1 THPHeader
	3.3.3.2 THPFrameCompInfo
	3.3.3.3 THPFrameOffsetData
	3.3.3.4 MovieData

	3.4 When Creating THP Movie Data
	3.4.1 Specifying the Path
	3.4.2 Sufficient Available Hard-disk Space

	4 Cautions
	4.1 General Cautions
	4.1.1 Sub-sampling
	4.1.2 The Players and the GX settings
	4.1.3 Output of THP Audio Data for Players
	4.1.4 Sampling Rate of THP Audio Data with Simultaneous Use of Audio Libraries
	4.1.5 Monitoring the Optical Disc Drive during Streaming Playback
	4.1.6 Handling Sample Data

	4.2 Regarding the THP Player
	4.2.1 Main Loop
	4.2.2 THPPlayerDrawCurrentFrame function
	4.2.3 VI Post Callback
	4.2.4 Interlaced Movies
	4.2.5 Displaying THP Movie Data Created for NTSC on a PAL System

	Appendix A. Function List

