
The content of this document is highly

confidential and should be handled accordingly.

© 2006-2008 Nintendo RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK

Texture Palette Library (TPL)
Version 1.1

Confidential

These coded instructions, statements, and computer programs contain proprietary information of Nintendo

and are protected by national and international copyright laws. They may not be disclosed to third parties

or copied or duplicated in any form, in whole or in part, without the prior written consent of Nintendo.

Revolution SDK Texture Palette Library (TPL) Revolution SDK

RVL-06-0039-001-C 2 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
Contents
Revision History .. 2
1 Introduction... 3
2 Features and Characteristics of the TPL Format and TexConv ... 5

2.1 Optimized Texture Creation.. 5
2.2 Support for Color Index Textures.. 5

3 TPL File Conversion ... 7
3.1 How to Use TexConv.. 7
3.2 Texture Conversion Script File ... 7

3.2.1 Basic Formatting Rules... 8
3.2.2 Commands.. 9

3.3 List Order .. 11
3.4 Image Files that Can Be Used as Input .. 11
3.5 Conversion Process Flow ... 12

3.5.1 Input .. 13
3.5.2 Setup... 13
3.5.3 Convert and Export ... 13

3.6 Cache File... 13
4 TPL File Access.. 15

4.1 Texture Palettes in Memory.. 15
4.2 Initialization ... 15
4.3 Obtaining Texture Information .. 16
4.4 Simple Utility Functions .. 17

Code Examples
Code 3–1 TexConv Command ... 7
Code 3–2 Texture Conversion Script.. 8
Code 4–3 Texture Palette Structure ... 15
Code 4–4 Initialization Function.. 16
Code 4–5 Function for Getting Texture Information.. 16
Code 4–6 Texture Descriptor Structure .. 16
Code 4–7 Texture Header Structure... 16
Code 4–8 Color Lookup Table (CLUT) Structure.. 17
Code 4–9 Functions that Obtain Texture Data Using GXTexObj and GXTlutObj............................. 17
Code 6–10 Simple TPL File Decompression and Deallocation .. 17

Figures
Figure 3–1 Creating an RGBA Image from Two Separate Files... 9
Figure 3–2 Generating and Remapping LOD Levels.. 10
Figure 3–3 Conversion Process Flow for TPL Files.. 12
Figure 3–4 A Texture Palette in Memory .. 15
© 2006-2008 Nintendo 1 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK
Revision History

Version
Date

Revised
Item Description

1.1 2008/07/24 - Integrated content with the TPL Files and TexConv
document.

3.1 Added "3.1 How to Use TexConv" on page 7.

4 Removed “Making CLUT into Instances in the Texture
Palette”.

Added "4 TPL File Access" on page 15, and added
descriptions of structures and functions.

1.00 2006/03/01 - First release by Nintendo of America Inc.
RVL-06-0039-001-C 2 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
1 Introduction

The TPL (texture palette) image format was a part of the Character Pipeline SDK provided in the
Nintendo GameCube development environment. It was very versatile and is used in some of the GX
library’s sample demos. The Revolution SDK provides a smaller version of the TPL library to access this
TPL format.

Using the TPL library provides easy access to TPL format files and allows users to render graphics that
use these files.

This document describes the following.

• Features and characteristics of the TPL format and of TexConv, an application for texture conversion

• How to convert into the TPL format using TexConv

• How to access TPL files using the TPL library
© 2006-2008 Nintendo 3 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK
RVL-06-0039-001-C 4 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
2 Features and Characteristics of the TPL Format and TexConv

The TPL format and TexConv have the following features and characteristics.

• Disc loads are faster because multiple textures are stored in a single file.

• Efficiency is improved by storing multiple textures that share temporal locality with respect to an
application in a single file.

• Many different texture maps and color lookup tables of different formats can be stored in a single file.

• Except for Z textures, all of the texture formats (RGBA, IA, I, CI, and CMPR) supported by the Wii
console can be stored in a TPL file (TexConv does not support some formats).

• A TPL file uses 32-byte tiles for all of its texture data, so it can be used directly by the GX library.

• Input palettes can be converted into the RGB565 and RGB5A3 output formats.

• Mipmaps can be generated.

• S3TC textures can be compressed.

• Colors (for example, RGBA to IA, CI to RGB, or RGB to RGBA) can be automatically converted.

2.1 Optimized Texture Creation

When creating textures, a designer typically wants to add many detailed revisions to the original image file,
until he or she is satisfied with its final appearance. To make image generation more efficient, the TexConv
texture converter updates only those parts of a TPL file that have changed since TexConv was last
executed. This speeds conversion by removing the overhead associated with recreating an entire TPL file
every time a small change is added to a texture.

When TexConv is run, it compares each of the new images and palettes with the contents of the most
recently created TPL file. If a data block matches, the existing block will be copied directly to a new TPL
file, skipping the conversion process.

2.2 Support for Color Index Textures

Compression and animation are two large reasons to use a color index texture (CI texture). However,
many developers use the CMPR (S3TC) texture compression format instead of the CI format because the
former can provide high-quality compressed textures from true color images. Consequently, TexConv was
designed without support for creating CLUTs (color lookup tables) from true color images. Do not confuse
this with the TexConv feature that automatically converts from a CI input format to an RGB output format.

TexConv does not support encoding methods for CI texture animations. This is because it is difficult to
define a CLUT encoding method for CI texture animations. For the most part, these encoding methods are
unique to the animation being requested, and the relevant animation techniques themselves are unique to
each game. Ultimately, TexConv only has very simple support for CI textures and is not the ideal way to
create CI textures specific to a game. Instead, it is used to show developers how to use CLUTs and CI
textures on the Wii console.

TexConv only supports CI8, but it stores 16-bit color index textures internally. The output indices are
copied directly from the input indices. No bit masks or bit shifts are used.

Consequently, it is the developer’s responsibility to ensure that the input color index is placed precisely
within the output bit range. If the output format is CI8, the input indices must be between 0 and 255.
© 2006-2008 Nintendo 5 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK
RVL-06-0039-001-C 6 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
3 TPL File Conversion

The texture conversion application TexConv converts other files to TPL files according to script file
specifications.

3.1 How to Use TexConv

By using TexConv, you can convert image files in the Truevision Graphics Adapter (TGA) format into TPL
files. Run TexConv with the following command.

Code 3–1 TexConv Command

TexConv (TCS file) (TPL file)

A TGA file is not directly specified as an argument to TexConv. Instead, specify a texture conversion script
(TCS) file, which contains the path of the TGA file to convert as well as other settings.

3.2 Texture Conversion Script File

The following is a sample texture conversion script (TCS) file.
© 2006-2008 Nintendo 7 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK
Code 3–2 Texture Conversion Script
 ; Comments start with a semicolon and continue to the end of the line

path = c:/level1/mario ; Sets the path of the directory in which files exist
 ; If “path” is NULL, the full path is required in the filename
 ; “path” will be attached to all of the filenames that come after it
 ; “path” can be set on any line
 ; “path” can be an absolute or relative path

file 0 = marioHead_rgba8.tga
 ; The complete filename is
 ; c:/level1/mario/marioHead_rgba8.tga
image 0 = 0, 0, RGBA8 ; With image0[RGB]=file0 and image0[A]=file0,
 ; convert into RGBA8.
texture 0 = 0, x ; The image index for texture 0
 ; in the TPL file is image0.
 ; This is not a color index texture,
 ; so the CLUT index is “x”.

path = d:/temp/mario/ ; change the path
file 1 = marioArm_rgb565.tga
 ; The complete filename is
 ; d:/temp/mario/marioArm_rgb565.tga
image 1 = 1, x, RGB565, 0, 3, 0
 ; Generate mipmaps 0 to 3 (four levels of detail) and remap to 0
texture 1 = 1, x

file 2 = marioFoot_ci8.tga
image 2 = 2, x, CI8 ; Convert to CI format
palette 0 = 2, RGB565 ; Create palette 0 from image 2
 ; Convert palette entries into RGB565 format
texture 2 = 2, 0 ; texture 2[RGB] = image 2,
 ; texture 2[CLUT] = palette 0

path = NULL ; No path setting
file 3 = c:/marioBody_i8.tga
 ; In this case the full path is required here
image 3 = 3, x, I8, GX_REPEAT, GX_REPEAT
 ; TexConv automatically converts
 ; RGB input into intensity output.
 ; The S and T wrap modes can be configured
 ; in order to repeat the image.
 ; The wrap mode can be set in the same
 ; way as the mipmap arguments.
texture 3 = 3, x

3.2.1 Basic Formatting Rules

Script files have the following basic rules.

• Spaces are ignored. Both "image1=1" and "image 1 = 1" are considered to be identical.

• Text is parsed line by line. A line ends with a newline character and cannot contain more than 255
characters.

• Images, textures, and palettes can be listed in any order, as can their indices. TexConv sorts each list
in ascending order before converting them.

• Comments start with a semicolon and continue to the end of the line.

• Unspecified elements are written as "x". For example, "image 1 = 1, x, RGB565" describes an
image without an alpha plane, while "texture 1 = 1, x" describes a texture without a palette.

• The directory path name is specified as either an absolute or a relative path from the current directory.
RVL-06-0039-001-C 8 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
3.2.2 Commands

This section describes the script file commands recognized by TexConv.

3.2.2.1 Command to Change a Reference Directory Path

path = directory_path

Input files exist in the directory_path directory. The directory_path will be attached to all of the filenames
that come after it.

The contents of path will be maintained until they are changed. Set path equal to 0 or NULL to disable it.

3.2.2.2 Command to Specify a Reference File

file file_id = file_name

The file_id number refers to the file_name file used by the image and texture commands. Any integer
value of zero or greater is a valid number.

When path is disabled, file_name must include the full path. The path is either an absolute path or a
relative path from the current directory.

When path has been configured, directory_path is attached to file_name in advance.

3.2.2.3 Command to Specify a Reference Image

image image_id = rgb_image_file_id, alpha_image_file_id,
 format [,start_lod, end_lod, remap_lod] [,wrapS, wrapT]

The image_id number refers to the image used by the texture command. Any integer value of zero or
greater is a valid number.

The RGB portion of this image is contained in the rgb_image_file_id file.

The alpha portion of this image is contained in the alpha_image_file_id file.

As described above, the image command is extremely powerful. An output RGBA image can be
constructed from two different files using rgb_image_file_id and alpha_image_file_id. The TGA format
completely supports alpha planes, so this feature might not be used.

Figure 3–1 Creating an RGBA Image from Two Separate Files
© 2006-2008 Nintendo 9 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK
• The output texture format is specified in format. Table 3–1 lists the formats that can be specified.

• The following are optional arguments and only required when creating mipmaps: [, start_lod, end_lod,
remap_lod]. The mipmap levels that must be generated by TexConv are specified by start_lod and
end_lod. The method to use for runtime mapping to a LOD is specified by remap_lod. Generally,
remap_lod is 0.

• The optional arguments [, wraps, wrapT] are added to overwrite the wrap mode in the s and t
directions. The possible values are GX_REPEAT, GX_CLAMP, or GX_MIRROR. By default, these are
GX_REPEAT when the width and height dimensions are a power of 2, and GX_CLAMP otherwise.

The following example shows how to generate 2 LOD levels and remap to lod0 at runtime.

Figure 3–2 Generating and Remapping LOD Levels

Table 3–1 List of Specifiable Texture Formats

format Details

I4 4-bit intensity

I8 8-bit intensity

IA4 8-bit intensity + alpha (4 + 4)

IA8 16-bit intensity + alpha (8 + 8)

CI8 8-bit color index

RGB565 16-bit RGB

RGB5A3 16-bit RGB + alpha (RGB555 or RGBA4443)

RGBA8 32-bit RGBA

CMPR Compressed format with 4 bits per texel
RVL-06-0039-001-C 10 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
3.2.2.4 Command to Specify Generated Palette Entries

palette CLUT_palette_id = CLUT_file_id, CLUT_format

The CLUT_palette_id is the number of the palette entry used by the texture command. Any integer value
of zero or greater is a valid number.

The CLUT_file_id is the number of the image to use when creating this palette entry.

The two palette entry formats supported by CLUT_format are RGB565 and RGB5A3.

3.2.2.5 Command to Specify Generated Textures

texture texture_id = image_id, CLUT_palette_id

The texture command defines a texture in the TPL file. An integer of zero or greater must be set for the
value of texture_id.

The image_id is the number of the image depicted by this texture.

The CLUT_palette_id is the number of the palette entry used by this texture. This parameter is “x” for
textures that do not use the color index format.

3.3 List Order

When script file parsing begins, all image, palette, and texture lists are also started. Each line of text is
recognized by its first word (image, palette, texture, and so on), and a new element is added to the
appropriate list.

Once script file parsing has completed, TexConv will sort each list in ascending order. As a result, images,
textures, palettes, and their corresponding indices can be listed in any order within the script file. In other
words, though the images, textures, and palettes are listed interchangeably in "Code 3–2 Texture
Conversion Script" on page 8, all the images could be listed as a group after all of the palettes.

Palettes and texture images are each stored in the TPL file in the order that they occur in their respective
sorted lists.

Normally, the list index matches the position in the sorted list, so that an index of 0 is the start of the list,
and an index of (n-1) is the end of the list. Although this is convenient for commenting out several script file
elements in an attempt to set an optimal TPL file structure, note that the script file may specify an index
that does not match the position in the sorted list. Once the final TPL file structure has been settled, the
script file indices should be redistributed so that they are continuous from 0 to (n-1). Even though this is not
obligatory, it is strongly recommended to avoid confusion when accessing textures at runtime.

3.4 Image Files that Can Be Used as Input

Image files in the Truevision Graphics Adapter (TGA) format are used as input to TexConv.

The TGA format was chosen as the format to support because it has a long history; it can be imported and
exported by many graphics tools; and it can store many texture formats, including true color, intensity,
intensity alpha and color-indexed images, and 256-color palettes.

Refer to the Encyclopedia of Graphics File Formats, 2nd Ed. (ISBN 1-56592-161-5), pp. 860-879, for
details on TGA files.
© 2006-2008 Nintendo 11 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK
3.5 Conversion Process Flow

The TexConv source code is provided. To better understand the code, we provide the following overview of
the major processes performed by TexConv to convert the original TGA file into a TPL file.

Figure 3–3 shows the logical flow of TPL file generation with TexConv.

Figure 3–3 Conversion Process Flow for TPL Files

TPL file conversion can roughly be divided into three stages.
RVL-06-0039-001-C 12 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
3.5.1 Input

Script files are loaded and parsed. An error check confirms that all of the data is consistent and all of the
requested input files exist. If there is a problem with any of this, the program will output an error message
and exit.

3.5.2 Setup

TexConv gathers the input data and structures it for conversion. At this stage, TexConv creates and
manages four information lists. These lists are as follows.

• Source Image List

Lists all of the original input files, along with their size and format information.

• Image List

Contains information for the final images, such as how different files will be combined. For example, a
single image can take RGB information from one source and alpha information from another source.

• Palette List

Holds palette information from the source data. Palettes are extracted from the source files and stored
here.

• Texture List

Contains information for combining files to create images with palettes in the output TPL file.

3.5.3 Convert and Export

TexConv reads the texture list from beginning to end and converts the original data into a format that can
be handled by the Wii console. If data that has already been converted exists, it will be used and
conversion skipped. TexConv generates mipmap levels as necessary during conversion. Each time a
texture has finished converting and is generated, it will be exported to the new TPL file. TexConv will close
the TPL file after it is done processing all textures in the texture list. This completes the runtime library
preparations.

3.6 Cache File

In the process of creating a texture, designers will repeatedly edit, convert, and then preview the texture.
Each time, almost all of the textures within the TPL file will probably be unchanged since the previous
conversion results. TexConv saves conversion time by making block copies of unchanged textures from
the previous TPL file and converting only the modified textures.

To determine if an image or palette needs to be converted, TexConv manages a cache file (CSF) that
describes the content of the previous TPL file. TexConv consults the CSF file, the previous TPL file, and
the source image files to check for changes; if nothing has changed, it copies the data that exists in the
cache file.

The CSF file is saved in C:\Temp\tplCache.csf.

The CSF file itself does not need to be read or changed. However, if this is necessary, the .csf file format
is entirely explained in comments and structures at the beginning of the file below.

$(REVOLUTION_SDK_ROOT)/build/libraries/tc/src/TCTPLToolBox.cpp
© 2006-2008 Nintendo 13 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK
The following situations will result in complete reconversion.

• The CSF file does not exist.

• The previous TPL file does not exist.

• The previous TPL file has been changed since it was created.

• The version number of the previous TPL file does not match the current “code” version number.

• The previous TPL file and the new TPL file do not have any common images or palettes.

When determining whether to convert or copy data blocks, TexConv checks whether the previous TPL file
has image or palette blocks with the same filename and attributes as the images or palettes to convert.
This means that even if the script file index or TPL filename is changed between conversions, the data that
has already been converted can be used.

The following situations will result in partial reconversion.

Note: To determine whether data can be reused, TexConv checks script file tokens and the timestamp at
which changes were added to a file. The check does not extend to the actual bits in the source
image. This would cause errors whenever the conversion code has been rewritten between
consecutive invocations. In such cases, the previous TPL file can no longer be synchronized with
the current conversion code. To force a complete reconversion, delete either the CSF file or the
previous TPL file.

Table 3–2 Causes of a Partial Reconversion

State TexConv Behavior

The Last Modified date on a source image file
has changed

Reconvert the image and palette for this file

The script file includes changes Reconvert the corresponding images and palettes

Content has been added to the script file Convert the new images and palettes
RVL-06-0039-001-C 14 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
4 TPL File Access

The TPL library provides access to textures. It offers basic functionality for obtaining information describing
individual textures in a texture palette that has been loaded from disc and decompressed into memory, and
for loading textures into hardware.

Refer to the “TPL library” section of the Revolution Function Reference Manual for details on its various
functions and structures.

4.1 Texture Palettes in Memory

When a TPL file is loaded into memory and decompressed, it is simply expressed as a list of texture
descriptors. The texture descriptors maintain pointers to the texture images and, if required, pointers to
color look-up tables (CLUTs).

Figure 3–4 A Texture Palette in Memory

4.2 Initialization

When an application uses a TPL file, it will load the file into memory, decompress the internal pointers
immediately afterwards, and then store the texture palette information in a texture palette structure,
TPLPalette.

Code 4–3 Texture Palette Structure

typedef struct
{
 u32 versionNumber;
 u32 numDescriptors;
 TPLDescriptorPtr descriptorArray;

} TPLPalette, *TPLPalettePtr;

TPL File

Texture
Descriptor 1

Texture
Descriptor 2

Texture
Descriptor 3

Texture
Descriptor n

Texture Image

Color Lookup Table
© 2006-2008 Nintendo 15 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK
The TPL library provides an initialization function to perform the aforementioned operations.

Code 4–4 Initialization Function

void TPLBind (TPLPalettePtr pal)

4.3 Obtaining Texture Information

The TPL library provides a function to get texture information from a texture palette structure.

Code 4–5 Function for Getting Texture Information

TPLDescriptorPtr TPLGet (TPLPalettePtr pal, u32 id)

By using the TPLGet function, you can extract a texture descriptor structure containing texture information
from a texture palette structure.

Code 4–6 Texture Descriptor Structure

typedef struct
{
 TPLHeaderPtr textureHeader;
 TPLClutHeaderPtr CLUTHeader;

} TPLDescriptor, *TPLDescriptorPtr

The texture descriptor structure stores pointers to a texture header structure and a CLUT structure.

Code 4–7 Texture Header Structure

typedef struct
{
 u16 height;
 u16 width;
 u32 format;
 Ptr data;

 GXTexWrapMode wrapS;
 GXTexWrapMode wrapT;
 GXTexFilter minFilter;
 GXTexFilter magFilter;

 float LODBias;
 u8 edgeLODEnable;
 u8 minLOD;
 u8 maxLOD;
 u8 unpacked;

} TPLHeader, *TPLHeaderPtr

The texture header structure stores texture information such as the size and format of texture images.
RVL-06-0039-001-C 16 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

Revolution SDK Revolution SDK Texture Palette Library (TPL)
Code 4–8 Color Lookup Table (CLUT) Structure

typedef struct
{
 u16 numEntries;
 u8 unpacked;
 u8 pad8;
 GXTlutFmt format;
 Ptr data;

} TPLClutHeader, *TPLClutHeaderPtr

The CLUT structure stores the number of palette entries in the color lookup table, the data format, and
other information.

In addition to obtaining texture data via the texture descriptors, the TPL library provides two functions to
directly initialize GXTexObj and GXTlutObj. These functions simply look at the texture descriptors and
initialize the specified GX object as appropriate.

Code 4–9 Functions that Obtain Texture Data Using GXTexObj and GXTlutObj

void TPLGetGXTexObjFromPalette (TPLPalettePtr pal, GXTexObj *to, u32 id)

void TPLGetGXTexObjFromPaletteCI (TPLPalettePtr pal, GXTexObj *to,
 GXTlutObj *tlo, GXTlut tluts, u32 id)

4.4 Simple Utility Functions

The Character Pipeline SDK provided with the Nintendo GameCube development environment was
designed to automatically allocate memory from within the library and load from the disc during TPL file
decompression. To provide the same convenience, the following utility function is registered as an inline
function in demo.h in the DEMO library.

Code 6–10 Simple TPL File Decompression and Deallocation

void TPLGetPalette (TPLPalettePtr *pal, char *name)

void TPLReleasePalette (TPLPalettePtr *pal)

These internally call functions such as OSAlloc and DVDRead to implement the same automatic file
decompression as the Character Pipeline SDK.
© 2006-2008 Nintendo 17 RVL-06-0039-001-C
CONFIDENTIAL Released: October 17, 2008

Revolution SDK Texture Palette Library (TPL) Revolution SDK

RVL-06-0039-001-C 18 © 2006-2008 Nintendo
Released: October 17, 2008 CONFIDENTIAL

© 2006-2008 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part with-
out the prior approval of Nintendo.

All trademarks and copyrights are the property of their respective owners.

	1 Introduction
	2 Features and Characteristics of the TPL Format and TexConv
	2.1 Optimized Texture Creation
	2.2 Support for Color Index Textures

	3 TPL File Conversion
	3.1 How to Use TexConv
	3.2 Texture Conversion Script File
	3.2.1 Basic Formatting Rules
	3.2.2 Commands
	3.2.2.1 Command to Change a Reference Directory Path
	3.2.2.2 Command to Specify a Reference File
	3.2.2.3 Command to Specify a Reference Image
	3.2.2.4 Command to Specify Generated Palette Entries
	3.2.2.5 Command to Specify Generated Textures

	3.3 List Order
	3.4 Image Files that Can Be Used as Input
	3.5 Conversion Process Flow
	3.5.1 Input
	3.5.2 Setup
	3.5.3 Convert and Export

	3.6 Cache File

	4 TPL File Access
	4.1 Texture Palettes in Memory
	4.2 Initialization
	4.3 Obtaining Texture Information
	4.4 Simple Utility Functions

