
 2007-2009 Nintendo RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

WiiConnect24 Programming Manual

Version 1.2.2

The content of this document is highly confidential

and should be handled accordingly.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 2  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

and/or its licensed developers and are protected by national and international copyright laws. They may not

be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 3 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

Table of Contents

1 Introduction ...8

1.1 Requirements..8

1.2 RevoEX (Revolution SDK Extensions) ...8
1.2.1 Preparing the Development Environment ...8

1.2.2 Using the Wii Menu ...8

1.2.3 Configuration Procedures to Use the Communication Features...9

1.2.4 Support Codes and Errors...9

1.2.5 Cautions for Configuration Items That Limit Use of Communication Features.............................9

2 Structure of the WiiConnect24 System...10

2.1 NWC24 Firmware (Subsystems) ..10

2.2 NWC24 Library ...10

2.3 NWC24 and Wii Console NAND Memory...10

2.3.1 NWC24 System Files ..10

2.3.2 NWC24 User Files...11

2.4 Wii Menu and Wii Message Board..11

3 NWC24 Library ...12

3.1 Notes for Designing Applications ..12

3.2 Opening and Closing the NWC24 Library...12

3.2.1 Opening the NWC24 Library ...14

3.2.2 Closing the NWC24 Library...15

3.3 Checking the NWC24 System’s Operational State...15

4 Messages..17

4.1 Initializing the Message API ..17

4.2 Creating Messages ...17

4.3 Obtaining the Message List ..20

4.4 Viewing Messages ..22

4.4.1 Obtaining the Sender ..22

4.4.2 Obtaining the Recipient ...23

4.4.3 Obtaining the Subject ..25

4.4.4 Obtaining the Creation Time and Date..26

4.4.5 Obtaining the Body Text ..26

4.4.6 Obtaining the Attached Binary Data ..28

4.4.7 Obtaining Miscellaneous Information ..29

4.5 Deleting Messages ...29

4.6 Searching for Messages ...30

5 Downloading ...34

WiiConnect24 Programming Manual

RVL-06-0271-001-D 4  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

5.1 Splitting Usage with the RVL DWC(-DL) Library .. 34

5.1.1 Content Size Restrictions ... 34

5.1.2 Immediacy... 35

5.2 Terminology and Overview ... 35

5.2.1 Download Task.. 35

5.2.2 Download Task List ... 35

5.2.3 Download Box... 36

5.2.4 Download Signature.. 36

5.3 Download Task Configuration Items... 36

5.3.1 URL... 36

5.3.2 Update Verification Interval ... 37

5.3.3 Priority ... 37

5.3.4 Download Count ... 37

5.3.5 File Name.. 37

5.3.6 Server Side Update Interval.. 38

5.3.7 Retry Margin ... 38

5.3.8 Flag ... 38

5.4 Configuration Items for Individual Applications .. 39

5.4.1 Download Box... 39

5.4.2 Public Keys and Shared Keys .. 39

5.5 Using the Download API... 40

5.5.1 Initializing the Download API .. 40

5.5.2 Obtaining Tasks... 40

5.5.3 Creating New Tasks .. 40

5.5.4 Updating the Remaining Download Count.. 43

5.5.5 Registering Tasks.. 43

5.5.6 Deleting Tasks... 44

5.5.7 Executing Downloads Immediately... 44

5.5.8 Getting the Errors Recorded for a Download Task ... 44

5.6 Precautions When Designing Receivable Content .. 45

5.6.1 How to Verify Content Updates from the Application.. 45

5.6.2 Independence from the Timing at Which Data Is Obtained .. 45

5.6.3 Preparing “Empty Content” ... 46

5.7 Precautions During Development... 46

5.7.1 Changing the Development Environment ... 46

5.7.2 Deleting Save Data ... 46

6 Relationship Between the NWC24 API and the Wii Message Board... 47

6.1 Posting Messages from Applications to the Wii Message Board ... 47

6.1.1 Message Format Requirements ... 47

6.1.2 Cautions When Posting Messages... 48

6.1.3 Sending Application Data Simultaneously .. 48

WiiConnect24 Programming Manual

 2007-2009 Nintendo 5 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

6.1.4 Detailed Control Features ...49

6.2 Timing When the Wii Message Board Processes Messages ...49

6.3 Letterhead Template ...49

6.3.1 Composition of Letterhead Data ...49

6.3.2 Thumbnail Image...50

6.3.3 Images for Enlarged Display ...51

6.3.4 Restrictions on Images Used in Letterhead Data..51

6.3.5 Creating Letterhead Data ..52

6.3.6 Attaching Letterhead Data...53

7 Friend Roster ..54

7.1 Using the Friend Roster API ...54

7.1.1 Initializing the Friend Roster API ...54

7.1.2 Obtaining Friend Information...54

7.1.3 Searching for Friend Information...57

7.1.4 Number of Friend Information Items ...57

7.2 Registering to the Friend Roster...57

7.3 Nickname Display ...57

8 Scheduler Operation ...58

8.1 Effect of Running the Scheduler ...58

8.2 Scheduler Operation API ..58

8.2.1 Relation to the NWC24 Library ...59

8.2.2 Scheduler Initial State..59

8.3 Scheduler Operational Conditions ..59

8.3.1 Start Timing for the Send/Receive Message Process...59

8.3.2 Start Timing for the Download Process ...60

8.3.3 Startup Timing After Resuming the Scheduler ..60

8.4 Stopping the Scheduler...60

9 Miscellaneous Information ..61

9.1 Operational Environment on the Production Version..61

9.2 Behavior Over a Broadband Connection ..61

9.3 NWC24API Errors...61

9.4 Messages to Users with Whom a Friend Relationship Is Not Established...61

9.5 Application-Specific Wii Message Names...61

9.6 Specifications Related to the Destination Region...61

9.7 Communication Between Different Applications ...62

WiiConnect24 Programming Manual

RVL-06-0271-001-D 6  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

Code

Code 3-1 Functions to Open and Close the NWC24 Library... 12

Code 3-2 Example for Opening and Closing the NWC24 Library ... 13

Code 4-1 Example for Creating Messages.. 17

Code 4-2 Example for Obtaining Message Lists ... 20

Code 4-3 Example of Obtaining the Sender .. 22

Code 4-4 Example of Obtaining the Recipient .. 23

Code 4-5 Example of Obtaining the Subject.. 25

Code 4-6 Example of Obtaining the Creation Date and Time ... 26

Code 4-7 Example of Obtaining the Body Text.. 27

Code 4-8 Example of Obtaining the Attached Binary Data.. 28

Code 4-9 Function to Delete Messages .. 30

Code 4-10 Example of Searching Messages .. 30

Code 5-1 Example of Obtaining Download Tasks ... 40

Code 5-2 Example of Creating New Tasks.. 42

Code 5-3 Example of Setting the Remaining Download Count... 43

Code 5-4 Example of Registering Tasks.. 43

Code 5-5 Function to Delete a Download Task ... 44

Code 5-6 Function to Execute a Download Task... 44

Code 7-1 Example of Obtaining Friend Information of Wii Friends with Whom a Relation Is Established.... 54

Code 7-2 Functions to Search for Friend Information ... 57

Code 7-3 Functions to Obtain the Number of Friend Information Items.. 57

Code 8-1 Functions to Operate the Scheduler .. 58

Tables

Table 3-1 Error Codes That Prohibit Subsequent Use of WiiConnect24... 15

Table 3-2 Error Codes Returned by the NWC24Check Function and Their Causes 16

Table 4-1 Types of Binary Data That Can Be Attached to Messages.. 20

Figures

Figure 5-1 When a Delay Surpassing the Retry Margin Has Occurred... 38

Figure 6-1 Thumbnail Image Part Distribution... 50

Figure 6-2 Part Distribution of the Image for Enlarged Display ... 51

WiiConnect24 Programming Manual

 2007-2009 Nintendo 7 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

Revision History

Version Revision Date Description

1.2.2 2008/08/15 • Added an explanation on handling keys in section 5.4.2 Public
Keys and Shared Keys.

1.2.1 2008/07/29 • Added section 5.4 Configuration Items for Individual Applications

1.2.0 2008/04/13

• Added Chapter 2 Structure of the WiiConnect24 System

• Added section 3.1 Notes for Designing Applications

• Added section 5.1 Splitting Usage with the RVL DWC(-DL) Library

• Removed explanations of independent server use from section
5.3.2 Update Verification Interval

• Added section 5.4.7 Executing Downloads Immediately

• Added section 5.4.8 Getting the Errors Recorded for a Download
Task

• Added section 5.5 Precautions When Designing Receivable
Content and section 5.6 Precautions During Development

• Added section 8.4 Stopping the Scheduler

1.0.1 2007/12/06

• Added a note to section 3.2 Creating Messages concerning
specification changes to slot illumination in Wii Menu version 3.0

• Added supplementary information to section 4.1.2 Download Task
List and section 4.2.2 Update Verification Interval on the existence
of restrictions in the Programming Guidelines

• Changed section 4.3.3 Creating New Tasks to confirm that the
download box was successfully mounted

• In section 5.1.1 Message Format Requirements and section 5.3.2
Thumbnail Image, deleted the explanation stating that still images
cannot be attached to messages for the Wii Message Board

• Added an explanation to section 5.1.4 Detailed Control Features
on how to delay displaying to the Wii Message Board

1.0.0 2007/07/24 Initial version.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 8  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

1 Introduction
This document describes how to develop applications that support WiiConnect24.

1.1 Requirements

The following SDKs are required to develop applications that support WiiConnect24.

• Revolution SDK

Library that includes the basic features.

• Revolution SDK Extensions

Extended library that includes communication features, abbreviated as RevoEX. The Revolution

SDK is required.

1.2 RevoEX (Revolution SDK Extensions)

With RevoEX, wireless/wired network features using the Internet, features for data communication

with the Nintendo DS, and similar features can be used.

1.2.1 Preparing the Development Environment

To prepare the development environment, refer to the "Quick Start" section in the RevoEX README.

Also, prepare the required SDK version and development equipment to apply the most recent patch,

and update the NDEV firmware.

1.2.2 Using the Wii Menu

After preparing the development environment, it is not required that you also use the Wii Menu.

However, in the following cases, version 2.0 or later of the Wii Menu must be installed.

• Debugging after entering network connection settings similar to a production environment

• Registering and using data that has a Mii attached in the address book

• Performing display check to the Wii Message Board

Note: The Wii Menu’s network update feature cannot be used in the development environment.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 9 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

1.2.3 Configuration Procedures to Use the Communication Features

To use communication features with the Wii, the four-step procedure below must be followed.

1. Configure the network connection settings.

2. Test the network connection.

3. Agree to the End User License Agreement (EULA).

4. Configure the WiiConnect24-related settings.

For details on configuration methods and tools, see the Network Development Environment

document included in the RevoEX package.

1.2.4 Support Codes and Errors

After completing the procedures above, a five-digit support code will be displayed. Ignore this code; it

indicates the characteristics of the communication environment and is not necessarily an indication of

an error.

For details on the error correspondence table or error generation methods, see the Network

Development Environment document. Although descriptions of Wii network-related errors and

WiiConnect24 errors are provided, see the Nintendo Wi-Fi Connection Error Simulation Manual for

Nintendo Wi-Fi Connection errors.

1.2.5 Cautions for Configuration Items That Limit Use of Communication Features

Even if an environment using the communication features is arranged and the settings for network

communications have been made appropriately, there are still some configuration items that can limit

the communication features.

• EULA

If not agreed to, some communication features cannot be used.

• WiiConnect24

If OFF, WiiConnect24 cannot be used.

• Parental Controls

If "Use" is selected, some communication features cannot be used.

In WiiConnect24, when Parental Controls is used, the restriction can be turned ON or OFF

separately.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 10  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

2 Structure of the WiiConnect24 System
WiiConnect24 features were created to be always operable, regardless of the operating state of the

Wii console. Consequently, some of the components that constitute WiiConnect24 differ from other

libraries.

An overview of the constituent components is given below.

2.1 NWC24 Firmware (Subsystems)

The NWC24 firmware exists within the Wii console’s firmware and forms the core program of

WiiConnect24. This program can run in the background while the Wii console is in standby mode and

also while applications are running.

The NWC24 firmware is roughly split into three internal modules that have the following

responsibilities.

• Mail Transmission Module

Checks the outbox for queued outgoing messages and sends them to the server; also queries the

incoming mail server for new messages and saves them to the inbox.

• Download Module

Accesses the scheduling data (download task) for each application’s registered downloads and

performs actual download of tasks whose preset times have arrived.

• NWC24 Scheduler

Runs the two aforementioned modules at fixed intervals. Applications running in the foreground are

able to suspend this scheduler’s operations and thereby prevent the WiiConnect24 firmware from

running in the background.

2.2 NWC24 Library

The NWC24 library communicates with the NWC24 firmware, issues commands, and provides

procedures for accessing NWC24-managed data. For details, see Chapter 3 NWC24 Library.

2.3 NWC24 and Wii Console NAND Memory

WiiConnect24 reads and writes a number of files in Wii console NAND memory to run across Wii

console operating states and application barriers.

2.3.1 NWC24 System Files

The NWC24 system files contain system information required to run WiiConnect24. Account

information for the incoming and outgoing mail servers, mailboxes to store composed and received

messages, download scheduling data, and other information are stored in these system files.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 11 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

The NWC24 library is used to access this information (some can be accessed only by the firmware).

WiiConnect24 system files are saved in a special region of the NAND file system and cannot be

accessed by normal means, such as through the NAND API. As a result, the application restrictions

on NAND memory usage and inode count do not apply. Developers do not need to be conscious of

the existence of these files while writing code.

The system files are created and initialized the first time the Wii Menu is started. Therefore, NWC24

system files must be created and initialized using a designated initialization tool on development

consoles that do not have the Wii Menu installed.

2.3.2 NWC24 User Files

Apart from NWC24 system files, there are also files that each application creates in the save data

directory to allow access to the NWC24 firmware. Since these files are created in the save data

directory, they are affected by NAND usage and inode count restrictions for applications and must

therefore be checked using the NANDCheck function in the same manner as normal save data.

These files correspond to the download box and download keys described later.

2.4 Wii Menu and Wii Message Board

The Wii Message Board is an application that comes pre-installed on the Wii console as a Wii Menu

feature. Implemented using the WiiConnect24 system, it is a mechanism for exchanging messages

between family members and with other friends’ Wii consoles. Messages sent from applications can

also be posted to the Wii Message Board.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 12  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

3 NWC24 Library
The NWC24 library provides an environment to send and receive messages and perform downloads

using the WiiConnect24 features.

3.1 Notes for Designing Applications

The NWC24 library is not thread-safe. Do not call NWC24 library functions from two or more threads

at the same time. Also, some NWC24 library functions may block, so we strongly recommend

preparing a NWC24 library processing thread that is solely dedicated to calling NWC24 library

functions.

3.2 Opening and Closing the NWC24 Library

To use the functions for sending messages, managing download tasks, or accessing the Wii

console’s friend roster, you must first open the NWC24 library.

If some of the functions are used when the NWC24 library is not opened, an error is generated. While

the NWC24 library is opened, the NWC24 scheduler is temporarily stopped to maintain consistency.

Because the sending and receiving of messages cannot be performed if the NWC24 library is left

open, be sure to close the library after using the message API or when closing the application. See

Chapter 8 Scheduler Operation for details on stopping and restarting the NWC24 scheduler.

The following functions are used to open or close the NWC24 library.

Code 3-1 Functions to Open and Close the NWC24 Library
NWC24Err NWC24OpenLib(void* workMemory);

NWC24Err NWC24CloseLib(void);

The following sample code opens and closes the NWC24 library.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 13 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

Code 3-2 Example for Opening and Closing the NWC24 Library
/*---*/

MEMHeapHandle HeapHndl;

MEMAllocator Allocator;

/*---*

Main

---/

int main(void)

{

NWC24Err err;

s32 result;

void* arenaLo;

void* arenaHi;

char* libWorkMem;

// Memory allocator initialization.

arenaLo = OSGetMEM1ArenaLo();

arenaHi = OSGetMEM1ArenaHi();

HeapHndl = MEMCreateExpHeap(arenaLo, (u32)arenaHi - (u32)arenaLo);

OSSetMEM1ArenaLo(arenaHi);

MEMInitAllocatorForExpHeap(&Allocator, HeapHndl, 32);

// NAND Library initialization.

result = NANDInit();

if (result != NAND_RESULT_OK) {

OSHalt("NANDInit() failed.\n");

}

// VF Library initialization.

VFInit();

// Allocate work memory.

libWorkMem = MEMAllocFromAllocator(&Allocator, NWC24_WORK_MEM_SIZE);

// Open the NWC24 library.

err = NWC24OpenLib(libWorkMem);

if (err != NWC24_OK) {

OSReport("NWC24OpenLib(): Error %d\n", err);

OSHalt("Failed.\n");

}

WiiConnect24 Programming Manual

RVL-06-0271-001-D 14  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

...

// Close the NWC24 library.

err = NWC24CloseLib();

if (err != NWC24_OK) {

OSReport("NWC24CloseLib(): Error %d\n", err);

OSHalt("Failed.\n");

}

// Release work memory.

MEMFreeToAllocator(&Allocator, libWorkMem);

OSHalt("\nCompleted.\n");

return 0;

}

3.2.1 Opening the NWC24 Library

The NWC24 library requires memory to perform operations internally, so when opening the library,

pass a pointer to a memory region in an argument. The required size for this memory region is

defined with the NWC24_WORK_MEM_SIZE macro. The start address must be 32-byte aligned. The VF

library must also be initialized.

When the return value of the NWC24OpenLib function is an error, as indicated in Table 3-1, the error

message specified in the guidelines is displayed. Do not use WiiConnect24 features after this error

message is displayed.

Even if the return value is an error, if the error is NWC24_ERR_BUSY, NWC24_ERR_INPROGRESS, or

NWC24_ERR_MUTEX, the library is only off-limits temporarily, and normally the library can be opened

without error by calling it again after some time passes. It is recommended that retries are spaced

1–2 seconds apart and are performed for about 10–15 seconds.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 15 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

Table 3-1 Error Codes That Prohibit Subsequent Use of WiiConnect24

Error Type Error Code (Return Value)

NWC24_ERR_FILE_OPEN

NWC24_ERR_FILE_CLOSE

NWC24_ERR_FILE_READ

NWC24_ERR_FILE_WRITE

NWC24_ERR_FILE_NOEXISTS

NWC24_ERR_FILE_BROKEN

NWC24_ERR_FILE_OTHER

NWC24_ERR_BROKEN

NWC24_ERR_NAND_CORRUPT

File corrupted

NWC24_ERR_INTERNAL_VF

Wii Menu must be updated NWC24_ERR_OLD_SYSTEM

NWC24_ERR_FATAL
Other fatal errors

NWC24_ERR_INTERNAL_IPC

The restoration operation for corrupted files is performed with the Wii Menu, so the application does

not need to perform restoration processes.

3.2.2 Closing the NWC24 Library

After the NWC24 library is closed, the memory region passed while opening can be released. The

automatic send/receive feature, which was stopped while the library was in use, becomes operational.

See section 8.3.3 Startup Timing After Resuming the Scheduler for information on behavior when the

automatic send/receive feature is resumed.

3.3 Checking the NWC24 System’s Operational State

When taking the following types of actions using WiiConnect24 features, you must call the

NWC24Check function after opening the NWC24 library to check that the system is in a usable state.

• Creating a Wii Message to send to another Wii console or an external e-mail address (this does not

include posting to the local console’s Wii Message Board)

• Scheduling a download task

• Accessing content that was obtained by a download task

• Enabling disabled application features that use WiiConnect24

When the NWC24Check function returns an error value indicated by Table 3-2, display the error

message specified by the Programming Guidelines. However, if there is a problem connecting to the

server or the outbox has exceeded its size quota, another call to the NWC24Check function after some

time has passed may show that the operational state has returned to normal.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 16  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

Table 3-2 Error Codes Returned by the NWC24Check Function and Their Causes

Error Code (return value) Error Cause

NWC24_ERR_DISABLED WiiConnect24 features are not enabled in the Wii System Settings.

NWC24_ERR_NETWORK Either there is a problem with Internet-related Wii System Settings or some
sort of temporary difficulty is preventing Internet connections.

NWC24_ERR_SERVER Either there has been a problem connecting to the WiiConnect24 server or
some other difficulty is continuing to prevent connections.

NWC24_ERR_FULL The outbox has exceeded its size quota and new messages cannot be
created.

NWC24_ERR_PROTECTED Use is restricted by Parental Controls.

NWC24_ERR_FATAL A fatal error has occurred.

See the Function Reference Manual for information on each processing sequence and other details.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 17 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

4 Messages
The NWC24 message API provides the environment wherein messages that are exchanged between

two Wii consoles or an external e-mail address can be created, viewed, and managed.

4.1 Initializing the Message API

The NWC24 library must be opened to use the NWC24 message API. For help when opening and

closing the NWC24 library, see section 3.2 Opening and Closing the NWC24 Library.

4.2 Creating Messages

The sequence for creating messages is described using an example from NWC24 library sample

code, as shown in Code 4-1.

Code 4-1 Example for Creating Messages
/*---*

Data for this test.

---/

static char* TestSubject = "Test Message";

static char* TestMsgText =

"Hello WiiConnect24 World!!\x0d\x0a"

"This is a test mail.\x0d\x0a"

"Thank you.\x0d\x0a";

static NWC24UserId TestIdTo = (u64)12345678;

/*---*

Post a test message into the send box.

---/

void PostTestMsg(void)

{

NWC24Err err;

NWC24MsgObj msgObj;

// Initialize the message object as a message from a Wii to another Wii.

err = NWC24InitMsgObj(&msgObj, NWC24_MSGTYPE_WII_APP);

if (err != NWC24_OK) {

OSReport("NWC24InitMsgObj(): error %d\n", err);

return;

}

WiiConnect24 Programming Manual

RVL-06-0271-001-D 18  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

// Destination (user ID specification)

err = NWC24SetMsgToId(&msgObj, TestIdTo);

if (err != NWC24_OK) {

OSReport("NWC24SetMsgToId(): error %d\n", err);

return;

}

// Subject line

err = NWC24SetMsgSubject(&msgObj, TestSubject, (u32)strlen(TestSubject));

if (err != NWC24_OK) {

OSReport("NWC24SetMsgSubject(): error %d\n", err);

return;

}

// Message text

err = NWC24SetMsgText(&msgObj, TestMsgText, (u32)strlen(TestMsgText),

NWC24_US_ASCII, NWC24_ENC_7BIT);

if (err != NWC24_OK) {

OSReport("NWC24SetMsgText(): error %d\n", err);

return;

}

// Finalize message settings, and post message to the send box.

err = NWC24CommitMsg(&msgObj);

if (err != NWC24_OK) {

OSReport("NWC24CommitMsg: error %d\n", err);

return;

}

OSReport("Posted a test message successfully.\n");

return;

}

To create a message, the prepared message object must first be initialized with the

NWC24InitMsgObj function. The type of message to create must be decided at the time the message

object is initialized. In the code example above, NWC24_MSGTYPE_WII_APP is specified and a message

from one Wii to another Wii is created. See the NWC24 library function reference for the other types of

messages.

To set an addressee in the created message object, use either the NWC24SetMsgToId or

NWC24SetMsgToAddr function. In the code example above, the NWC24SetMsgToId function is used,

and the Wii having Wii number 12345678 is specified as the addressee. The NWC24SetMsgToAddr

message is used to specify a general e-mail address as the addressee, but NWC24_MSGTYPE_PUBLIC

must be specified when the message object is initialized. The buffer used to specify the e-mail

address must not be released until the NWC24CommitMsg function is called and the message has

finished being created.

To set a message subject line when creating a message to a Wii, use the NWC24SetMsgSubject

WiiConnect24 Programming Manual

 2007-2009 Nintendo 19 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

function. The string passed to the subject must be characters that can be displayed in 7 bits (ASCII,

ISO-2022-JP, or similar). Furthermore, the subject is not displayed when displaying on the Wii

Message Board. For messages to general e-mail addresses, use the NWC24SetMsgSubjectPublic

function instead because character code conversion and MIME encoding for the mail header is

required. The string passed to the subject must be UTF-16BE, which is used for internal encoding.

For either function, the buffer used to specify the subject must not be released until the

NWC24CommitMsg function is called and the message has finished being created.

To set the body text of the message when creating a message to Wii, use the NWC24SetMsgText

function. The character set and MIME encoding method must be selected to match the body text

character code. In Code 4-1, because the entire body text is input as ASCII characters that can be

displayed in 7 bits, NWC24_US_ASCII is specified in the character set and NWC24_ENC_7BIT is

specified in the MIME encoding method. When designating a string that cannot be represented using

7 bits, either specify NWC24_ENC_BASE64 or convert the encoding of the designated string. See section

6.1.1 Message Format Requirements when sending messages to the Wii Message Board because

several restrictions apply.

For messages to general e-mail addresses, the NWC24SetMsgTextPublic function is used. The

character set and MIME encoding method are not specified and the body text string is passed as

UTF-16BE, with the hint setting specified for automatic encoding detection, along with substitute

characters for characters that could not be encoded. With general mail clients, if a message is sent

with different character encoding for the subject name and body, characters may display corrupted. To

prevent this occurrence, use the NWC24SetMsgSubjectAndTextPublic function, which sets the

subject name and body at the same time. Regardless of which function is used, the buffer and work

area used must not be released until the NWC24CommitMsg function is called and the message has

finished being created.

Finally, the message creation is completed by writing the message to the send box with the

NWC24CommitMsg function. However, the single exception is messages that have one's own Wii

number set as the addressee. These are written to the receive box and not the send box. Buffers and

so forth that were used to create messages can be released after this function completes.

The following functions, which were not used in Code 4-1, are also available.

With the NWC24SetMsgAttached function, up to two binary data files can be attached to a message.

See Table 4-1 for types of data that can be attached.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 20  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

Table 4-1 Types of Binary Data That Can Be Attached to Messages

Sender Wii PC (Reference)

Destination Wii PC Wii

Text data O O O (Note 1)

Static image data O O O (Note 1)

Data dependent on an application O X X

Letterhead data O X X

D
ata

typ
e

Mii data O X X

Note 1: A total of 400 kilobytes can be sent from a PC to a Wii. In addition, only one JPEG-formatted image file can be sent.

By adding a tag number to a message with the NWC24SetMsgTag function, the message that matches

the sender's address, application ID, and tag number can be updated by being overwritten. This can

be used to leave only one copy of a message in the receive box when that message is frequently

updated and contains information that is only meaningful when it is the most recent (such as high

scores).

Using the NWC24SetMsgLedPattern function, the slot illumination of the Wii console can be used in a

specified pattern when a message arrives. The slot illumination is only lit for messages to the Wii

Message Board. Beginning with Wii Menu version 3.0, the slot can also be illuminated when an

application posts a message directly to the Wii Message Board. However, with Wii Menu version 2.0,

the slot can only be illuminated when the message was sent via the network. Also, if the Wii console

settings or application restrict slot illumination, it will not illuminate even if a message is received by

the Wii Message Board.

4.3 Obtaining the Message List

The sequence for obtaining the message list is described using an example from NWC24 library

sample code (Code 4-2).

Code 4-2 Example for Obtaining Message Lists
/*---*

Listing

---/

void ListMessageBox(NWC24MsgBoxId mBoxId)

{

u32 numMsgs;

u32 bufSize;

u32* idListBuf;

NWC24Err err;

int i;

WiiConnect24 Programming Manual

 2007-2009 Nintendo 21 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

// Obtains the number of messages in the specified message box.

err = NWC24GetNumMsgs(mBoxId, &numMsgs);

if (err != NWC24_OK) {

OSReport("NWC24GetNumMsgs(): error %d\n", err);

return;

}

if (numMsgs == 0) {

OSReport("(No message.)\n");

return;

}

// Allocates memory to store the message ID list.

bufSize = OSRoundUp32B(numMsgs * sizeof(u32));

idListBuf = (u32*)MEMAllocFromAllocator(&Allocator, bufSize);

// Obtains the message ID list.

err = NWC24GetMsgIdList(mBoxId, idListBuf, numMsgs);

if (err != NWC24_OK) {

OSReport("NWC24GetNumMsgList(): error %d\n", err);

MEMFreeToAllocator(&Allocator, idListBuf);

return;

}

for (i = 0 ; i < numMsgs ; ++i) {

NWC24MsgObj msgObj;

NWC24MsgType type;

// Obtains the message objects.

err = NWC24GetMsgObj(&msgObj, mBoxId, idListBuf[i]);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgObj(): error %d\n", err);

MEMFreeToAllocator(&Allocator, idListBuf);

return;

}

...

}

MEMFreeToAllocator(&Allocator, idListBuf);

return;

}

To check the number of messages stored in the send or receive box, use the NWC24GetNumMsgs

function.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 22  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

Obtain the message ID list with the NWC24GetMsgIdList function. When preparing the array to store

the message ID list to pass in an argument, the number of messages (as obtained earlier) may be

used.

To obtain the message objects, specify the message box type and the message ID and call the

NWC24GetMsgObj function. The following section describes the method for viewing message contents.

4.4 Viewing Messages

To view messages, first message objects must be obtained, either by getting the message list as

described above or searching for messages. This section describes how to obtain information stored

in a message, such as its sender, using an example from NWC24 library sample code.

4.4.1 Obtaining the Sender

To obtain the sender information from the message object, use the NWC24GetMsgFromId function for

messages between Wii consoles and the NWC24ReadMsgFromAddr function for messages from a

general e-mail address.

Code 4-3 Example of Obtaining the Sender
/*---*

Views 'from' address.

---/

void ViewFrom(NWC24MsgObj* msgObj)

{

NWC24Err err;

NWC24MsgType type;

// Obtains the message type.

err = NWC24GetMsgType(msgObj, &type);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgType(): error %d\n", err);

return;

}

switch (type) {

// Message type used for exchange between Wii consoles

case NWC24_MSGTYPE_WII_MENU_SHARED:

case NWC24_MSGTYPE_WII_APP:

case NWC24_MSGTYPE_WII_MENU:

case NWC24_MSGTYPE_WII_APP_HIDDEN:

{

NWC24UserId uid;

// Obtains the sender by the user ID.

err = NWC24GetMsgFromId(msgObj, &uid);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgFromId(): error %d\n", err);

return;

WiiConnect24 Programming Manual

 2007-2009 Nintendo 23 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

}

...

}

break;

// Message type from a device other than a Wii

case NWC24_MSGTYPE_PUBLIC:

{

char addrStr[NWC24MSG_MAX_ADDRSTR];

// Obtains the sender by the e-mail address.

err = NWC24ReadMsgFromAddr(msgObj, addrStr, NWC24MSG_MAX_ADDRSTR);

if (err != NWC24_OK) {

OSReport("NWC24ReadMsgFromAddr(): error %d\n", err);

return;

}

...

}

break;

default:

break;

}

return;

}

4.4.2 Obtaining the Recipient

To obtain the recipient information from the message object, first obtain the number of registered

recipients with the NWC24GetMsgNumTo function. Then use NWC24ReadMsgToId for messages between

Wii consoles or NWC24ReadMsgToAddr for messages from a general e-mail address.

Code 4-4 Example of Obtaining the Recipient
/*---*

Views 'to' addresses.

---/

void ViewTo(NWC24MsgObj* msgObj)

{

NWC24Err err;

NWC24MsgType type;

u32 numTo;

u32 i;

// Obtains the message type.

err = NWC24GetMsgType(msgObj, &type);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgType(): error %d\n", err);

return;

}

WiiConnect24 Programming Manual

RVL-06-0271-001-D 24  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

// Obtains the number of recipients registered.

err = NWC24GetMsgNumTo(msgObj, &numTo);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgNumTo(): error %d\n", err);

return;

}

switch (type) {

// Message type used for exchange between Wii consoles

case NWC24_MSGTYPE_WII_MENU_SHARED:

case NWC24_MSGTYPE_WII_APP:

case NWC24_MSGTYPE_WII_MENU:

case NWC24_MSGTYPE_WII_APP_HIDDEN:

{

NWC24UserId uid;

for (i = 0 ; i < numTo ; ++i) {

// Obtains the recipients by the user IDs.

err = NWC24ReadMsgToId(msgObj, i, &uid);

if (err != NWC24_OK) {

OSReport("NWC24ReadMsgToId(): error %d\n", err);

return;

}

...

}

}

break;

// Message type from a device other than a Wii

case NWC24_MSGTYPE_PUBLIC:

{

char addrStr[NWC24MSG_MAX_ADDRSTR];

for (i = 0 ; i < numTo ; ++i) {

// Obtains the recipients by the e-mail addresses.

err = NWC24ReadMsgToAddr(

msgObj, i, addrStr, NWC24MSG_MAX_ADDRSTR);

if (err != NWC24_OK) {

OSReport("NWC24ReadMsgToAddr(): error %d\n", err);

return;

}

...

}

}

break;

default:

break;

}

return;

}

WiiConnect24 Programming Manual

 2007-2009 Nintendo 25 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

4.4.3 Obtaining the Subject

To obtain the subject information from the message object, first prepare a buffer to store the subject

string that is the size obtained by the NWC24GetMsgSubjectSize function. Then call the function to

obtain the subject string with that buffer passed in an argument.

Code 4-5 uses the NWC24ReadMsgSubject function, which is primarily used for messages exchanged

between Wii consoles. The NWC24ReadMsgSubjectPublic function automatically performs the

internal conversion process based on the mail header and the encode information included in

messages from general e-mail addresses. Ultimately, a string in UTF-16BE format, which is the

character encoding for internal formatting, can be obtained. To use this function, a sufficient region

must be allocated as a work area to be used for character conversion.

Code 4-5 Example of Obtaining the Subject
/*---*

Views subject.

---/

void ViewSubject(NWC24MsgObj* msgObj)

{

NWC24Err err;

u32 bufSize;

char* buffer;

u32 i;

// Obtains the size of the buffer needed to store the subject.

err = NWC24GetMsgSubjectSize(msgObj, &bufSize);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgSubjectSize(): error %d\n", err);

return;

}

// Allocates a buffer to store the subject.

buffer = (char*)MEMAllocFromAllocator(&Allocator, OSRoundUp32B(bufSize));

// Obtains the subject.

err = NWC24ReadMsgSubject(msgObj, buffer, bufSize);

if (err != NWC24_OK) {

OSReport("NWC24ReadMsgSubject(): error %d\n", err);

MEMFreeToAllocator(&Allocator, buffer);

return;

}

...

// Release the buffer storing the subject.

MEMFreeToAllocator(&Allocator, buffer);

return;

}

WiiConnect24 Programming Manual

RVL-06-0271-001-D 26  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

4.4.4 Obtaining the Creation Time and Date

To obtain the send date and time information from the message object, use the NWC24GetMsgDate

function. The information on the date and time when the message was created is stored in the

OSCalendarTime structure passed in an argument.

Code 4-6 Example of Obtaining the Creation Date and Time
/*---*

Views date.

---/

static const char* MonStr[12] =

{

"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};

static const char* WdayStr[7] =

{

"Sun", "Mon", "Tue", "Wed", "Thr", "Fri", "Sat"

};

void ViewDate(NWC24MsgObj* msgObj)

{

NWC24Err err;

OSCalendarTime cTime;

// Obtains the message creation date and time.

err = NWC24GetMsgDate(msgObj, &cTime);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgDate(): error %d\n", err);

return;

}

OSReport("%s, %d %s %d ",

WdayStr[cTime.wday], cTime.mday, MonStr[cTime.mon], cTime.year);

OSReport("%02d:%02d -0000\n", cTime.hour, cTime.min);

return;

}

4.4.5 Obtaining the Body Text

To obtain the body text information from the message object, first prepare a buffer that is the size

obtained by the NWC24GetMsgTextSize function to store the body text string. Then call the function to

obtain the body text with that buffer passed in an argument.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 27 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

Code 4-7 uses the NWC24ReadMsgText function, which is primarily used for messages exchanged

between Wii consoles. With the NWC24ReadMsgTextEx function, which performs the same operation,

the character code information can be obtained in a string.

The internal conversion process based on the encode information included in messages from general

e-mail addresses is performed automatically with the NWC24ReadMsgTextPublic function, and

ultimately a string in UTF-16BE format (which is the character encoding for internal formatting) can be

obtained. To use this function, a sufficient region must be allocated as a work area to be used for

character conversion.

Code 4-7 Example of Obtaining the Body Text
/*---*

Views body text.

---/

void ViewBodyText(NWC24MsgObj* msgObj)

{

NWC24Err err;

u32 bufSize;

char* buffer;

u32 i;

NWC24Charset charset;

NWC24Encoding encoding;

// Obtains the size of the buffer needed to store the body text.

err = NWC24GetMsgTextSize(msgObj, &bufSize);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgTextSize(): error %d\n", err);

return;

}

// Allocates a buffer to store the body text.

buffer = (char*)MEMAllocFromAllocator(&Allocator, OSRoundUp32B(bufSize));

// Obtains the body text.

err = NWC24ReadMsgText(msgObj, buffer, bufSize, &charset, &encoding);

if (err != NWC24_OK) {

OSReport("NWC24ReadMsgText(): error %d\n", err);

MEMFreeToAllocator(&Allocator, buffer);

return;

}

WiiConnect24 Programming Manual

RVL-06-0271-001-D 28  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

OSReport("--------- [Charset=%08X Encoding=%d] -----------\n",

charset, encoding);

for (i = 0 ; i < bufSize ; ++i) {

if (buffer[i] != 0x0A) {

OSReport("%c", buffer[i]);

}

}

// Release the buffer storing the body text.

MEMFreeToAllocator(&Allocator, buffer);

return;

}

4.4.6 Obtaining the Attached Binary Data

To obtain the number of binary data files attached to the message, use the NWC24GetMsgNumAttached

function. Prepare a buffer to store the binary data based on the size of the various binary data files

obtained with the NWC24GetMsgAttachedSize function and then obtain the binary data files with the

NWC24ReadMsgAttached function. To obtain the type of binary data, use the

NWC24GetMsgAttachedType function.

Code 4-8 Example of Obtaining the Attached Binary Data
/*---*

Views attachment binaries.

---/

void ViewAttachment(NWC24MsgObj* msgObj)

{

NWC24Err err;

u32 bufSize;

char* buffer;

u32 i, j;

u32 numAttach;

NWC24MIMEType fileType;

// Obtains the number of binary data files attached.

err = NWC24GetMsgNumAttached(msgObj, &numAttach);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgNumAttached(): error %d\n", err);

return;

}

for (j = 0 ; j < numAttach ; ++j) {

// Obtains the size of the attached binary data files.

err = NWC24GetMsgAttachedSize(msgObj, j, &bufSize);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgAttachedSize(): error %d\n", err);

return;

}

WiiConnect24 Programming Manual

 2007-2009 Nintendo 29 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

// Allocates a buffer to store the attached binary data.

buffer = (char*)MEMAllocFromAllocator(

&Allocator, OSRoundUp32B(bufSize));

// Obtains the attached binary data.

err = NWC24ReadMsgAttached(msgObj, j, buffer, bufSize);

if (err != NWC24_OK) {

OSReport("bufsize = %d\n", bufSize);

OSReport("NWC24ReadMsgAttached(): error %d\n", err);

MEMFreeToAllocator(&Allocator, buffer);

return;

}

// Obtains the type of binary data attached.

err = NWC24GetMsgAttachedType(msgObj, j, &fileType);

if (err != NWC24_OK) {

OSReport("NWC24GetMsgAttachedType(): error %d\n", err);

MEMFreeToAllocator(&Allocator, buffer);

return;

}

OSReport("[Attached binary %d : Type=%08X]\n", j, fileType);

for (i = 0 ; i < bufSize ; ++i) {

OSReport(" %02X", (u8)buffer[i]);

if ((i % 16) == 15) {

OSReport("\n");

}

}

OSReport("\n");

// Releases the buffer storing the attached binary data.

MEMFreeToAllocator(&Allocator, buffer);

}

return;

}

4.4.7 Obtaining Miscellaneous Information

The message object also includes other information, such as the application ID, group ID, and tag

number. These can be obtained with the NWC24GetMsgAppId, NWC24GetMsgGroupId, and

WC24GetMsgTag functions, respectively. See the NWC24 API for details about these information items.

4.5 Deleting Messages

To delete messages in the send or receive box, call the NWC24DeleteMsg function with the message

box and the message ID of the message to delete passed in arguments. As a rule, only the

application that created the message can delete it.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 30  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

Use the function call in Code 4-9 to delete a message.

Code 4-9 Function to Delete Messages
NWC24Err NWC24DeleteMsg(NWC24MsgBoxId mboxId, u32 msgId);

4.6 Searching for Messages

The NWC24 library provides a search feature where simple limiting conditions can be specified.

The following conditions can be specified as search conditions.

• Message Box Type (Send Box/Receive Box)

• Sender's Wii Number

• Application ID of the Application that Created the Message

• Whether Displayed in the Wii Message Board

The functions that are used are NWC24SetSearchCondMsgBox, NWC24SetSearchCondFromAddrId,

NWC24SetSearchCondAppId, and NWC24SetSearchCondForMenu.

When multiple conditions are specified at once, they will be treated as AND conditions and serve to

narrow the search. To reset a condition, first clear the search conditions by calling the

NWC24InitSearchConds function.

After setting the conditions, call the NWC24SearchMsgs function to store the message objects

matching the conditions in an argument array. Other arguments passed include a variable to return

the number stored and a variable to return the number of messages remaining. By not clearing the

search conditions and calling this function until zero messages remain, all search results can be

obtained.

Code 4-10 is NWC24 library sample code. While changing the search conditions, the content of the

messages obtained as search results are displayed in an array of message objects containing

MSGOBJ_ARRAY_SIZE number of objects.

Code 4-10 Example of Searching Messages
int main(void)

{

NWC24Err err;

s32 result;

void* arenaLo = NULL;

void* arenaHi = NULL;

char* libWorkMem = NULL;

u8 iLoop;

WiiConnect24 Programming Manual

 2007-2009 Nintendo 31 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

// Memory allocator initialization.

arenaLo = OSGetMEM1ArenaLo();

arenaHi = OSGetMEM1ArenaHi();

s_HeapHndl = MEMCreateExpHeap(arenaLo, (u32)arenaHi - (u32)arenaLo);

OSSetMEM1ArenaLo(arenaHi);

MEMInitAllocatorForExpHeap(&s_Allocator, s_HeapHndl, 32);

// NAND Library initialization.

result = NANDInit();

if (result != NAND_RESULT_OK) {

OSHalt("NANDInit() failed.\n");

}

// VF Library initialization.

VFInit();

OSReport("***\n");

OSReport(" MessageBox Search demo\n");

OSReport("***\n");

// Allocate work memory.

libWorkMem = MEMAllocFromAllocator(&s_Allocator, NWC24_WORK_MEM_SIZE);

// Open the NWC24 library.

err = NWC24OpenLib(libWorkMem);

if (err != NWC24_OK) {

OSReport("NWC24OpenLib(): Error %d\n", err);

OSHalt("Failed.\n");

}

// Obtains own user ID. (used for search conditions)

err = NWC24GetMyUserId(&s_uidMy);

if (err != NWC24_OK) {

OSReport("NWC24GetMyUserId(): Error %d\n", err);

OSHalt("Failed.\n");

}

// Obtains current application ID. (used for search conditions)

s_appId = *(u32*)OSGetAppGamename();

// Post test message.

PostTestMsg();

WiiConnect24 Programming Manual

RVL-06-0271-001-D 32  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

// Search while changing search conditions, and display results.

for (iLoop = 0; iLoop < 5; ++iLoop) {

u32 iObj;

u32 numStored;

u32 numRemain;

NWC24MsgObj msgObjArray[MSGOBJ_ARRAY_SIZE];

// Change the search condition with the number of loops.

switch (iLoop) {

case 0: break;

case 1: s_bSCondSendBox = TRUE; break;

case 2: s_bSCondAppId = TRUE; break;

case 3: s_bSCondFromAddrId = TRUE; break;

case 4: s_bSCondForMenu = TRUE; break;

}

// Set the search conditions.

(void)NWC24InitSearchConds();

if (s_bSCondSendBox) (void)NWC24SetSearchCondMsgBox(

NWC24_SEND_BOX);

if (s_bSCondAppId) (void)NWC24SetSearchCondAppId(s_appId);

if (s_bSCondFromAddrId) (void)NWC24SetSearchCondFromAddrId(

s_uidMy);

if (s_bSCondForMenu) (void)NWC24SetSearchCondForMenu();

// Display the search conditions.

ViewSearchConds();

do

{

// Search for messages.

err = NWC24SearchMsgs(msgObjArray, MSGOBJ_ARRAY_SIZE,

&numStored, &numRemain);

if (err != NWC24_OK) {

OSReport("NWC24SearchMsgs(): Error %d\n", err);

OSHalt("Failed.\n");

}

WiiConnect24 Programming Manual

 2007-2009 Nintendo 33 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

OSReport("===\n");

OSReport(" [NWC24SearchMsgs(): Stored: %d Remain: %d]\n",

numStored, numRemain);

OSReport("===\n");

// Displays the message contents.

for (iObj = 0 ; iObj < numStored ; ++iObj) {

ViewMessage(&msgObjArray[iObj]);

}

}

while (numRemain > 0);

// Repeats until all messages meeting the search conditions are displayed.

}

// Close the NWC24 library.

err = NWC24CloseLib();

if (err != NWC24_OK) {

OSReport("NWC24CloseLib(): Error %d\n", err);

OSHalt("Failed.\n");

}

// Release work memory.

MEMFreeToAllocator(&s_Allocator, libWorkMem);

OSHalt("\nCompleted.\n");

return 0;

}

WiiConnect24 Programming Manual

RVL-06-0271-001-D 34  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

5 Downloading
While an application is executing or in standby mode, the Wii can automatically download content

from the server and synchronize it with Wii console NAND memory. Using this feature, the application

can obtain add-on data without making the user wait.

Using the NWC24 Download API to control scheduling information (download tasks) for this automatic

synchronization, a developer can write a program to automatically download data (content) from a

designated location (URL) on the network without needing to write network communication

processing code. Using the Download API also guarantees that the downloaded data is not falsified.

5.1 Splitting Usage with the RVL DWC(-DL) Library

The ability to synchronize content using the NWC24 download feature significantly reduces the user’s

wait time.

However, there are several restrictions and disadvantages associated with using the NWC24

download feature, and depending on the intended purpose, the NWC24 download feature might not

be the most appropriate feature to use. Switch between it and the download feature provided by the

RVL DWC(-DL) library to suit the application.

5.1.1 Content Size Restrictions

The NWC24 download feature is not well suited for downloading large pieces of content, for the

following reasons.

• Size restrictions from the Programming Guidelines

Even when the Wii console is in standby mode, WiiConnect24 periodically downloads data and

saves it to Wii console NAND memory. When dealing with large pieces of content, depending on

their update frequency on the server, there is a danger that downloading these files with the NWC24

download feature will adversely affect the network’s load or the lifetime of Wii console NAND

memory. For this reason, size restrictions have been established in the Programming Guidelines.

During use of the NWC24 download feature, a storage region of the maximum expected size must

be reserved within the application’s save data region. Considering the number of save data blocks

required for this is another reason why the NWC24 download feature is not recommended for

handling large data.

• Increase in download time

NWC24 downloads might take longer than direct downloads using a library such as the RVL

DWC(-DL) library. This difference is a result of first saving the obtained content in Wii console NAND

memory and then requiring the application to reload the data that was written there. These reads

and writes incur VF library overhead. The difference in download time grows more pronounced with

the size of the content to handle.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 35 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

When working with large content, divide it between the NWC24 and RVL DWC(-DL) libraries so that

the NWC24 download feature handles update information and other control data that is small in size,

and the RVL DWC(-DL) library handles the main data content.

5.1.2 Immediacy

NWC24 downloads are suitable for handling content that is preferably updated, but that does not

necessarily need to be in the most recent state. The NWC24 firmware checks for updates at times

entirely unrelated to user interaction.

The application can immediately start a download if the most recent possible content is required. This

is useful as a backup strategy in situations such as when content is updated on the server and the

user starts an application immediately afterwards, preventing the application from obtaining the most

recent content. However, this download will take longer to process than an RVL DWC(-DL) download,

as explained in section 5.1.1 Content Size Restrictions.

If a disc application always needs the most recent content possible, it is advisable to use only the

RVL DWC(-DL) library. The reason is that because it takes time to load from a disc and perform other

such processes, it is difficult for users to notice when data is being downloaded in the background.

Because WiiWare titles have short loading times on startup and can use Channel Script to directly

handle content obtained through NWC24 downloads, NWC24 downloads are more compatible with

WiiWare.

5.2 Terminology and Overview

This section summarizes the terms specific to the NWC24 Download API. Refer to WiiConnect24

Overview or WiiConnect24 Programming Guidelines for details on the restrictions related to the

download feature.

5.2.1 Download Task

The download task combines into one all the settings required to preschedule the download, such as

the interval to confirm URL or content updates.

5.2.2 Download Task List

The download task list is a list of download tasks that are currently enabled. Download tasks first

become enabled when they are registered in this download task list.

A maximum of two download tasks can be registered from a single application. The total number of

tasks that can be registered by a normal application is 112. When the 113th task is registered, the

oldest task (the task with the oldest registration time or the one with the oldest rewrite time) is deleted.

The upper limit for the data volume that can be downloaded at a single time is 500 kilobytes.

Restrictions on the registration count and data capacity depend on the WiiConnect24 Programming

Guidelines. For details, see these guidelines.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 36  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

5.2.3 Download Box

The download box is a save region that exists, one for each application, to store downloaded

contents. When first starting an application, a download box is created within the application’s save

region and can be any size that is within the save data’s size restrictions. The download box must be

in a usable state when download tasks are registered.

Because the download box is a VF library archive that allows referencing and updating from other

applications, the VF library API must be used to obtain its contents.

5.2.4 Download Signature

WiiConnect24 can automatically verify digital signatures to guarantee that the downloaded data is not

falsified. It employs RSA-SHA1 (2048-bit key length) for the signature algorithm.

Because falsified data can easily be sent to a Wii through spoofing attacks, contents obtained through

HTTP must include a signature. WiiConnect24 includes the signature in the content file to simplify

handling files. However, content obtained through HTTPS does not require signature verification

because the communication route is secure and the legitimacy of the sender is certain. For this

reason, content files uploaded to the server are divided into two types: with and without signatures.

In order for an application to use the digital signature feature, it is necessary to configure keys.

5.3 Download Task Configuration Items

The download feature was designed with consideration for keeping the impact on the server, network,

and currently running applications as small as possible. For this reason, detailed parameter settings

are possible, but developers need be concerned about only a few of them.

This section describes the items that are set for download tasks.

5.3.1 URL

This specifies the location where the contents to be obtained exist.

Both HTTP and HTTPS protocols are supported, but the following restrictions are in place to preserve

security.

• HTTP

The WiiConnect24 signature detection feature must be enabled. An API can be used to disable the

signature verification feature, but only for debug applications.

• HTTPS

The connected server must have a certificate issued by the Nintendo CA (Certificate Authority).

WiiConnect24 Programming Manual

 2007-2009 Nintendo 37 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

5.3.2 Update Verification Interval

This specifies the interval to query the server where the update content exists. The time is specified in

minutes, and the range is from a minimum value of 6 hours to a maximum value of 168 hours (one

week). Longer times will reduce the content update frequency, making it easier for content to be out-

of-sync with the server for longer periods of time. However, this will also increase the maximum time

period during which the download task will exist in the task list. For this reason, decide on a value

according to the characteristics of the data to distribute. (For example, using a design that requires as

little immediacy as possible and allows tasks to be registered for a long time is effective because it

can bring back users who have not played in a while.)

Refer to the WiiConnect24 Programming Guidelines, provided separately, for established restrictions

on the update verification interval and the priority value, discussed later in this document.

Please note that update verification is not always performed at the value set for the interval. The

verification may be delayed due to a variety of causes, such as the Wii console being disconnected

from power or application restrictions.

5.3.3 Priority

When the timing for verifying updates overlaps, the task with the highest priority among the

overlapping tasks is given precedence and the update verification for the other tasks is pushed back

to the next time (about two minutes afterwards).

For download tasks with short update verification intervals, please specify a low priority so that other

tasks have precedence. The values are specified in the range between NWC24_DL_PRIORITY_LIMIT

(128) and NWC24_DL_PRIORITY_LOWEST (255), with a default of NWC24_DL_PRIORITY_DEFAULT (192).

Smaller values have a higher priority.

5.3.4 Download Count

The download count is the number of times that update verification for content is performed. Each

time the update verification process is performed, the count is decremented by one. When zero is

reached, that download task is deleted from the download task list. No update verification process will

then be performed for the deleted task until the application registers it again. The values are specified

in the range of 1–100, with a default of NWC24_DL_COUNT_DEFAULT (1).

5.3.5 File Name

This specifies the file name when storing to the download box. Normally, this does not need to be

specified.

This specification can be used when you want to preserve an earlier file in the download box. If a

directory is prepared in advance, a location other than the root directory can be specified.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 38  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

5.3.6 Server Side Update Interval

This specifies the interval by which the content specified in the URL is updated.

This setting is reserved for future expansion, but is not currently used.

5.3.7 Retry Margin

When power to the Wii console is turned off or the NWC24 scheduler is stopped, each task’s

scheduled checks for updated content will no longer run. For this reason, the time when the

verification process is performed may be much later than the originally intended time. The amount of

permissible time delay is specified in the retry margin. When a delay greater than allowed has passed

between the originally intended update verification time and the time when it is determined a delay

has occurred, the next task update verification process is performed.

Figure 5-1 When a Delay Surpassing the Retry Margin Has Occurred

It is easy for conflicts to arise with update verification processes when WiiConnect24 begins operation

after being in an extended state where operation was not permitted. Afterwards, the download

process may continue for a fixed period of time and negatively impact other network processes.

For tasks satisfying the following conditions, the retry margin value must be set to a smaller value so

that other tasks will have precedence.

• Their update interval is short.

• Their priority is high.

• Their download content is large, and operations preferably would be avoided after starting.

Normally the developer does not have to specify the retry margin because the library automatically

sets an appropriate value.

5.3.8 Flag

Various additional features for download tasks can be specified with flags.

To specify additional features, the following flags have been provided.

• NWC24_DL_FLAG_SEND_USERINFO

Includes Wii information in the file request (limited to use for debug application).

Update Verification IntervalRetry Margin

Update Verification Time Next Update Verification TimeCurrent Time

WiiConnect24 Programming Manual

 2007-2009 Nintendo 39 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

• NWC24_DL_FLAG_USE_MYPUBLICKEY

Verifies signatures by using public keys specified by the application.

• NWC24_DL_FLAG_RAW_CONTENT

Disables the signature verification feature and accepts unprocessed data as is (can only be set

when using HTTPS).

• NWC24_DL_FLAG_USE_MYSECRETKEY

Decodes content using the secret key configured by the application.

• NWC24_DL_FLAG_GROUP_WRITABL

Allows task contents to be modified among applications with the same company code.

5.4 Configuration Items for Individual Applications

These are items configured separately for each application that handles download tasks. Each task

contains information on the application that registered it, and this information can be used to

reference individual application configuration items.

Because the items listed below are stored as files in each application's home directory (specifically,

as NWC24 user files), it is necessary to call the NANDCheck function. These files can be created

regardless of whether download tasks have been registered, so we recommend creating them along

with save data when that is created.

5.4.1 Download Box

The application must prepare a VF archive to store pieces of content obtained by the tasks it has

registered.

5.4.2 Public Keys and Shared Keys

Public keys are used to verify content signatures. Shared keys are used to decrypt encrypted

content.

Although WiiConnect24 has public and shared keys in internal system regions that cannot be

accessed, during normal operation each application should separately provide keys.

Application keys are stored by the NWC24SetDlKeys function in a file named wc24pubk.mod. This file

uses 1 FS block and consumes 1 inode.

If a key has already been configured (there is already a key file), it will be overwritten with the new

key. Each application can set only 1 public key and 1 shared key.

This file can be deleted by calling the NWC24ClearDlKeys function.

The key file is handled in the same way as save data. It will not be automatically deleted when a

task disappears.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 40  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

5.5 Using the Download API

Use of the NWC24 Download API is explained following the download task registration flow and by

using sample code.

5.5.1 Initializing the Download API

The NWC24 library must be opened, and the NWC24 system’s operational state must be confirmed

to use the Download API.

5.5.2 Obtaining Tasks

If download tasks previously registered by the application remain in the download task list, those

tasks are obtained.

Code 5-1 Example of Obtaining Download Tasks
NWC24DlTask mytask;

BOOL bAlreadyRegist;

NWC24Err err;

// Obtains download tasks created by the currently executing application.

err = NWC24GetDlTaskMine(&mytask);

if (err == NWC24_OK) {

// When download tasks exist

bAlreadyRegist = TRUE;

} else

if (err == NWC24_ERR_NOT_FOUND) {

// When download tasks do not exist

bAlreadyRegist = FALSE;

} else {

OSReport("NWC24GetDlTaskMine(): Error %d\n", err);

OSHalt("Failed.\n");

}

The NWC24GetDlTaskMine function obtains download tasks that were registered by an application

having the same application ID as the application calling the function. To obtain tasks that were

registered by an application different than the currently executing application, either call the

NWC24GetDlTaskByAppId function or call the NWC24GetDlTask function using the task ID obtained

with the NWC24GetDlTaskIdByAppId function as an argument.

5.5.3 Creating New Tasks

If no previously registered download tasks remain as download tasks, create new tasks.

The download box to save the downloaded content must be created when the application first starts.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 41 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

The download box is an archive file handled by the VF library. It can be created and formatted and

have its permissions changed by NWC24CreateDIVf in a single series of creation operations. Note

that the specified file size includes space for the FAT region. The space that can actually be used is

approximately 10 KB less than the specified file size.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 42  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

Code 5-2 Example of Creating New Tasks
#define MY_DL_URL "http://foobar/dlcontents.bin"

#define MY_DLBOX_SIZE 256 * 1024

NWC24Err err;

if (bAlreadyRegist == FALSE) {

// Initialize the download task.

err = NWC24InitDlTask(&mytask, NWC24_DLTYPE_OCTETSTREAM);

if (err != NWC24_OK) {

OSReport("NWC24InitDlTask(): Error %d\n", err);

OSHalt("Failed.\n");

}

// Set the URL of the download content.

err = NWC24SetDlUrl(&mytask, MY_DL_URL);

if (err != NWC24_OK) {

OSReport("NWC24SetDlUrl(): Error %d\n", err);

OSHalt("Failed.\n");

}

// Set the update verification interval. (24 hour interval)

err = NWC24SetDlInterval(&mytask, 1 * 24 * 60);

if (err != NWC24_OK) {

OSReport("NWC24SetDlInterval(): Error %d\n", err);

OSHalt("Failed.\n");

}

}

char vfpath[64];

// Obtain the file name of the download box.

err = NWC24GetDlVfPathByTask(&mytask, vfpath, sizeof(vfpath));

if (err != NWC24_OK) {

OSReport("NWC24GetDlVfPathByTask(): Error %d\n", err);

OSHalt("Failed.\n");

}

// Re-create the download box if it failed to mount

if (VFMountDriveNANDFlash("C", vfpath) != VF_ERR_SUCCESS) {

// Create the download box.

err = NWC24CreateDlVf(&mytask, MY_DLBOX_SIZE);

if (err != NWC24_OK) {

OSReport("NWC24CreateDlVf(): Error %d\n", err);

OSHalt("Failed.\n");

}

} else {

VFUnmountDrive("C");

}

WiiConnect24 Programming Manual

 2007-2009 Nintendo 43 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

Normally, when creating a download task, you must always specify the URL where the download

content exists. The update verification interval should also be configured to a value that is appropriate

for the content type. See the NWC24 Library Function Reference for details about the other settings.

Since the download box might have been deleted by the Wii Menu or corrupted by an unexpected

accident, confirm that mounting succeeded regardless of whether there are download tasks and, if

mounting failed, re-create the download box with the NWC24CreateDlVf function.

5.5.4 Updating the Remaining Download Count

This sets the remaining download count.

Each time the update verification process for download content is performed, its download count is

decremented. When the count reaches zero, that download task disappears from the download task

list. For this reason, the application must restore the original value of any remaining download counts

whenever it is started. However, this does not apply when execution only needs to occur once.

Code 5-3 Example of Setting the Remaining Download Count
#define MY_DLCOUNT 3

// Set the remaining download count.

err = NWC24SetDlCount(&mytask, MY_DLCOUNT);

if (err != NWC24_OK) {

OSReport("NWC24SetDlCount(): Error %d\n", err);

OSHalt("Failed.\n");

}

Code 5-3 sets the remaining download count to three. This process is executed regardless of whether

the download task already existed or was new.

5.5.5 Registering Tasks

This registers download tasks to the download task list.

For tasks that are already registered, call the NWC24UpdateDlTask function. This function does not

change the next update verification time but updates the remaining download count.

For tasks that are newly created, call the NWC24AddDlTask function.

Code 5-4 Example of Registering Tasks
if (bAlreadyRegist == TRUE) {

// Update (re-register) a download task.

err = NWC24UpdateDlTask(&mytask);

if (err != NWC24_OK) {

OSReport("NWC24UpdateDlTask(): Error %d\n", err);

OSHalt("Failed.\n");

}

WiiConnect24 Programming Manual

RVL-06-0271-001-D 44  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

} else {

// Newly register a download task.

err = NWC24AddDlTask(&mytask);

if (err != NWC24_OK) {

OSReport("NWC24AddDlTask(): Error %d\n", err);

OSHalt("Failed.\n");

}

}

5.5.6 Deleting Tasks

When download tasks are no longer necessary, for example, because the content has already been

obtained, and it is unnecessary to verify updates, the download task can be deleted from the

download task list by calling the NWC24DeleteDlTask function with the object of the task to be deleted

set in an argument.

Use the function in Code 5-5 to delete a download task.

Code 5-5 Function to Delete a Download Task
NWC24Err NWC24DeleteDlTask(NWC24DlTask* taskPublic);

5.5.7 Executing Downloads Immediately

Registered download tasks are automatically executed according to a controlled schedule. Although it

is advisable to design applications to not be hindered if the most recent data is not always present,

the following function can be used to immediately execute a desired download task if the most recent

possible data is required.

Code 5-6 Function to Execute a Download Task
NWC24Err NWC24ExecDownloadTask(u32 operationFlags, u16 taskId, u32 subTaskMask);

This function should not be used any more often than can be avoided; it takes longer to process this

than to use RVL DWC(-DL) download features or other such functionality. It also cannot be used if the

scheduler has been stopped.

5.5.8 Getting the Errors Recorded for a Download Task

A download task can be executed even when the application that registered it is no longer running. In

such cases it is impossible to know whether errors occurred when the download task was run.

Use the NWC24GetDlError function to check whether errors occurred when a download task was run.

By using this function, it is possible to get the total number of errors that occurred as well as the error

code of the last one to occur. However, information is available for server-related errors only. Access

point connection failures and other errors that occur during network initialization are not recorded and

thus cannot be known.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 45 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

However, when the NWC24ExecDownloadTask function is used to immediately execute download

tasks, even these network initialization error codes can be obtained. Because error information is also

recorded in the task, information on server-related errors can also be obtained by using this method.

Error code information obtained in this way can be used to notify the user of server problems.

Knowing this information is also useful to analyze behavior while debugging.

5.6 Precautions When Designing Receivable Content

5.6.1 How to Verify Content Updates from the Application

WiiConnect24 uses a method set by the HTTP 1.1 standard (the If-Modified-Since header) to

check for updated server content and get as little duplicate content as possible. The time of the most

recent update for previously received content is stored in the task list, so the update check will be

properly performed even if the files in the download box are deleted.

Nevertheless, the user environment, proxy server settings, and other configurations might on rare

occasions cause checks for updates using HTTP to be performed improperly and duplicate content to

be obtained. You should design programs that will not fail when they receive the same content twice.

The synchronization feature implemented by checking for updates should only be considered a

measure for reducing the data volume transferred by the server.

Unless there is a particular reason to do otherwise, some kind of application-side screening for

duplicate content is recommended. For example, embed sequence numbers in content and ignore

any content that does not have a larger sequence number than what was previously received.

An embedded sequence number is recommended for the following example usage.

• Distribution of game items or other content that affects save data when it is obtained

If files like these are processed by assuming all files in the download box are new data, blindly

applying them to in-game content and then deleting them, it might be possible to acquire more than

one valuable item.

An embedded sequence number is unnecessary for the following example usage.

• Distribution of ranking data or other content that is merely displayed once it is obtained

5.6.2 Independence from the Timing at Which Data Is Obtained

The time at which download tasks are executed might be delayed for various reasons. It is therefore

safest to not assume that new content can be obtained at a specific time and to prevent the user from

seeing any original dates and times within the distributed content.

Additionally, do not depend on the various download tasks executing at some relative time. For

example, you cannot assume that tasks will continue to execute with approximately the same timing

only because they check for updates at the same intervals and were registered at the same time. This

is by design: to distribute network load, no more than a single task is run every two minutes; thus,

tasks are prevented from running at overlapping times and will slowly become out of sync.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 46  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

5.6.3 Preparing “Empty Content”

It is possible to remove files from the server or prohibit access to them to stop distributing certain

content. However, this will cause update queries themselves to fail and then be processed internally

as errors. This makes it impossible to use scheduling algorithms that use the most recent update time

and prevents distinctions from being made between these errors and true errors.

It is therefore recommended to define “empty content” that will be ignored by the application if it is

received, such as content that has only the control header used by the application, and stop

distribution by using this “empty content” instead.

5.7 Precautions During Development

The settings and data contained in download tasks are stored in one of the following locations.

• Per-application save data directory (public keys, private keys, and download box)

• WiiConnect24 system region (items not mentioned above that are accessed by a dedicated API)

Although the NWC24 API maintains consistency among these files and storage, it might be lost due

to specific operations during development, leading to states that were not intended by the developer.

Be cautious when performing the following types of operations.

5.7.1 Changing the Development Environment

In addition to the registered application’s application ID, download tasks will internally maintain the

home directory path; the values of each are decided when a new task is created. Access to download

boxes and similar data is restricted using these values.

In this way, the download API assumes that each application has a different application ID and home

directory. If the application ID or home directory changes in the process of developing a single

application, this might cause operations that were unintended by the developer.

Specifically, caution must be exercised in the following situations.

• Switching between the Optical Disc Drive (DVD) library and the CNT library during NAND

application development

• Rewriting the GameCode in the DDF file

In these cases, it is recommended to make a clean sweep by deleting all download tasks once.

5.7.2 Deleting Save Data

When save data is deleted within the DEVKIT system menu or Wii Menu versions prior to 3.0,

download tasks will remain unchanged, but the keys and download boxes that they reference will no

longer exist.

Beginning with version 3.0 of the Wii Menu, registered download tasks will also be searched for and

deleted at the same time as save data. This behavior differs from the results of deleting data from the

DEVKIT system menu.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 47 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

6 Relationship Between the NWC24 API and the
Wii Message Board

The Wii console’s "Wii Message Board" is a standard feature of the Wii Menu.

The Wii Message Board is an application that comes pre-installed on the Wii console as a Wii Menu

feature. Implemented using the WiiConnect24 system, it is a mechanism for exchanging messages

between family members and with other friends’ Wii consoles. Messages sent from applications can

also be posted to the Wii Message Board.

This chapter explains methods for doing this.

6.1 Posting Messages from Applications to the Wii Message Board

There are two major methods to post messages to the Wii Message Board using the NWC24 API.

• Posting directly to the local Wii Message Board.

Create and send a message with one's own Wii number in the destination address and

NWC24_MSGTYPE_WII_MENU set as the message type.

This feature can be used even if use of WiiConnect24 is not enabled in the WiiConnect24 setting

screen.

• Send a message to a Wii Friend and post to the Wii Message Board of the other Wii console.

Create and send a message with the Wii number of the Wii Friend (or multiple friends) in the

destination address and NWC24_MSGTYPE_WII_MENU or

NWC24_MSGTYPE_WII_MENU_SHARED as the message type.

To use this feature, message delivery with WiiConnect24 must be enabled in the Wii console

settings.

6.1.1 Message Format Requirements

The format of messages that are displayed on the Wii Message Board must fulfill the following

conditions.

Note: The following are requirements for displaying on the Wii Message Board. These

requirements do not necessarily need to be met for unopened messages that are

exchanged between applications without being displayed to the Wii Message Board.

• The text to be displayed is specified in the body text, the UTF-16BE format is used as the character

code, and UTF-16 formatted carriage returns (0x000A) are used as carriage return codes.

• The maximum number of characters that can be displayed is 3,000. Because it is treated as UTF-16,

both single-byte and double-byte characters are two bytes.

• When posting to one's own Wii, specify the encoding passed to the NWC24SetMsgText function as 8

bit (NWC24_ENC_8BIT). To post to another Wii, specify base64 (NWC24_ENC_BASE64).

WiiConnect24 Programming Manual

RVL-06-0271-001-D 48  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

• Because the subject is not displayed on the Wii Message Board, create the message with the

subject blank.

• By attaching data in the NWC24_APP_WII_MSGBOARD format as attached binary data, the background

pattern used when displaying on the Wii Message Board can be specified as letterhead data. (For

information regarding letterhead data, see section 6.3 Letterhead Template.)

• When letterhead data is not attached, the default letterhead is used.

6.1.2 Cautions When Posting Messages

Normally, specifications call for the sending player’s nickname (defined in the Wii console’s friend

roster) to be displayed in the sender's field of messages displayed on the Wii Message Board. For

this reason, even if a message is sent automatically, the nickname of the owner of the Wii console

that originated it is used for the sender’s field of the message when it is displayed. If a Wii console

sends a message locally to itself, the sender’s field will be empty.

To prevent this situation, a mechanism has been provided to display a different name (such as the

game’s name or an in-game character’s name). The different name that is displayed is called the

alternate nickname.

The alternate nickname is set with the same format as the nickname registered with the friend roster

and is given precedence over the name set in the friend roster. The alternate nickname is set using

the NWC24SetMsgAltName function and must fulfill the following conditions.

• The character code must be specified using UTF-16BE format.

• It can be up to 35 characters, and the terminal character (0x0000) counts as one character.

• A single carriage return can be included. Use the UTF-16 carriage return (0x000A), which counts as

one character.

• Up to 17 characters can be on one line (when there is no carriage return, the line wraps after the

17th character automatically, but display may be distorted depending on the character width).

Use the NWC24SetMsgMBNoReply function so that users cannot reply to messages that applications

post to the Wii Message Board. This function can hide the reply button when messages are displayed

in the Wii Message Board.

6.1.3 Sending Application Data Simultaneously

When notifying the Wii Message Board that data to be used by the application has been sent in a

message, two types of messages must be prepared: one for the application to use and one to post to

the Wii Message Board.

Include body text for the notification and, if necessary, letterhead data in the message to be sent to

the Wii Message Board. Attach the binary data without adding body text to the message for the

application and then send the message.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 49 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

6.1.4 Detailed Control Features

A received message can be posted to any date on the Wii Message Board calendar. Specify any date

between January 1, 2000 and December 31, 2035 with the NWC24SetMsgMBRegDate function. This

function only specifies the date on the calendar to which to display the message. It does not cause

the message to be displayed only when that date arrives.

To delay the display of a message, use the NWC24SetMBDelay function. This function can delay the

display of a message on the local console’s Wii Message Board. The range of time that can be

specified for the delay is from 1 hour to 240 hours (10 days),and is specified in hours. To delay

display of a Wii Message Board message sent over the network, use the

NWC24SetMsgDesignatedTime function to delay the message transmission itself. The

NWC24SetMBDelay and NWC24SetMsgDesignatedTime functions can only be used when messages

are created on a Wii console with Wii Menu version 3.0 or later installed.

6.2 Timing When the Wii Message Board Processes Messages

The Wii Message Board is implemented as a part of the Wii Menu.

When the Wii Menu starts, the message box is searched and messages to the Wii Message Board

are picked up and registered to the Wii Message Board. For this reason, messages that are posted

directly to the local console’s Wii Message Board or received from an external source while the

application is running are not reflected in the Wii Message Board until returning to the Wii Menu the

next time.

6.3 Letterhead Template

Normally, messages posted to the Wii Message Board from an application are displayed with the

default design prepared for the Wii Message Board, but they can also be displayed with a design

consistent with the presentation design of the application. When letterhead data for the display of a

designed letterhead is attached to the message posted to the Wii Message Board, it is drawn based

on that letterhead data. This mechanism is called the letterhead template.

Although effects and controls other than rendering are possible when letterhead templates are used,

only rendering is discussed here. For information on non-rendering topics, see the reference manual.

6.3.1 Composition of Letterhead Data

With the letterhead template, rendering is performed using a total of 10 images: one thumbnail image

and nine images for enlarged display (three each of the header, body, and footer.) All the images are

created in TPL format and with designated file names and folder structure.

The LZ77 compressed archive of these images is called the letterhead data, and this data is attached

to the message as NWC24_APP_WII_MSGBOARD format data.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 50  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

6.3.2 Thumbnail Image

The location of each part arranged in the thumbnail image to be displayed on the Wii Message Board

is shown in Figure 6-1.

Figure 6-1 Thumbnail Image Part Distribution

The caption portion displays the first 6 characters of the sender's name and a 3-point leader. (The

nickname is used when the recipient is registered as a Wii Friend by the recipient. The alternate

nickname has precedence when it is set with the NWC24SetMsgAltName function.)

Caption: 120 x 30 px
(The line has 6 characters
+ 3-point leader)
Center: (0, -27)

Thumbnail Image: 144x96 px

Center: (0, 0)

Still Image: 53.76 x 40.32 px

Center: (39.05, 13.18)

Mii: 46 x 46 px

Center: (-40, 13)

A B C D E F ...

WiiConnect24 Programming Manual

 2007-2009 Nintendo 51 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

6.3.3 Images for Enlarged Display

Figure 6-2 shows the location of each part of the image for enlarged display, which is displayed when

a thumbnail image is selected on the Wii Message Board.

Figure 6-2 Part Distribution of the Image for Enlarged Display

The body text portion is displayed extending 8 pixels to the left and right of the body center part.

When the body text exceeds 4 lines, the body portion is displayed in repeated 4-line units.

6.3.4 Restrictions on Images Used in Letterhead Data

Each image used in the letterhead template must be of the same or smaller height and width as each

part indicated in sections 6.3.2 Thumbnail Image and 6.3.3 Images for Enlarged Display. When the

height/width size is smaller, the image is scaled and then displayed.

The supported file format for images is only the TPL (texture palette library) format. By using

TexConv.exe, TGA format images can be converted to TPL format.

For the texel format, use a format other than GX_TF_RGBA8 that is supported by the layout library.

Specifically, the following formats can be used.

• GX_TF_I4

• GX_TF_I8

• GX_TF_IA4

Body Text: 400 x 168 px
(16 double-byte characters x 4 lines)
Character Height: 32 px
Leading: 10 px

Still Image: 92 x 76 px
Center: (190, 90)

Mii: 76 x 76 px
Center: (-194, 89)

A B C D E F G H I J K L M N O P
A B C D E F G H I J K L M N O P
A B C D E F G H I J K L M N O P

A B C D E F G H I J K L M N O P Q

A B C D E F G H I J K L M N O P Q

Sender: 400 x 58.8 px
(17 double-byte characters x 2 lines)
Center: (0, 151)

[Header]
Left: 64 x 144 px
Center: 384 x 144 px
Right: 64 x 144 px

[Body]
Left: 64 x 168 px
Center: 384 x 168 px
Right: 64 x 168 px

[Footer]
Left: 64 x 64 px
Center: 384 x 64 px
Right: 64 x 64 pxScreen Center:

(0, 0)

A B C D E F G H I J K L M N O P

WiiConnect24 Programming Manual

RVL-06-0271-001-D 52  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

• GX_TF_IA8

• GX_TF_RGB565

• GX_TF_RGB5A3

• GX_TF_CMPR

• GX_TF_C4

• GX_TF_C8

6.3.5 Creating Letterhead Data

First, create images for each part using darchD.exe to create two archive files for the thumbnail

image and the enlarged image. At this time, use the following folder structure and file names for the

archive.

• Thumbnail image

img/my_LetterS_b.tpl

• Image for enlarged display

img/my_Letter_a.tpl ... (Header left)

img/my_Letter_b.tpl ... (Header center)

img/my_Letter_c.tpl ... (Header right)

img/my_Letter_d.tpl ... (Body left)

img/my_Letter_e.tpl ... (Body center)

img/my_Letter_f.tpl ... (Body right)

img/my_Letter_g.tpl ... (Footer left)

img/my_Letter_h.tpl ... (Footer center)

img/my_Letter_i.tpl ... (Footer right)

The thumbnail image should be archived as a file named thumbnail.arc, and the enlarged images

for display should be archived as a file named letter.arc.

Next, use ntcompress.exe to perform LZ77 compression on these archive files. These must be

4-byte aligned.

Example:
$ ntcompress -l -A4 -o thumbnail_LZ.bin thumbnail.arc

convert thumbnail.arc (27808 bytes) to thumbnail_LZ.bin (4580 bytes)

$ ntcompress -l -A4 -o letter_LZ.bin letter.arc

convert letter.arc (369536 bytes) to letter_LZ.bin (56816 bytes)

WiiConnect24 Programming Manual

 2007-2009 Nintendo 53 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

The compressed archive files should be archived with the following folder structure and file names.

./thumbnail_LZ.bin

./letter_LZ.bin

The archive file obtained in the last step can be freely named. Although this archive file is attached to

a message as letterhead data, the size of the letterhead template archive cannot exceed 120 KB. The

NWC24SetMsgAttached function will return an error if this limit is exceeded.

6.3.6 Attaching Letterhead Data

The letterhead template is a Wii Message Board-specific feature. The letterhead template feature

cannot be used from a PC or from non-Wii applications.

To use this feature, attach the created letterhead data as NWC24_APP_WII_MSGBOARD format binary

data to a Wii message that has either NWC24_MSGTYPE_WII_MENU or

NWC24_MSGTYPE_WII_MENU_SHARED specified as the message type.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 54  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

7 Friend Roster
The Wii console provides a Wii console’s friend roster to register the Wii number or e-mail address of

partners that are used to send and receive messages with WiiConnect24.

The friend roster can be managed with the Wii address book, which is provided as a feature of the Wii

Message Board, and has the following characteristics.

• Can be used from applications.

• Can register up to 100 Wii numbers or e-mail addresses.

• As a rule, prevents the Wii console from accepting messages from addresses that are not registered

to the friend roster.

The NWC24 Friend Roster API provides the environment for accessing the friend roster.

7.1 Using the Friend Roster API

The use of the NWC24 Friend Roster API is explained using sample code for obtaining friend

information.

7.1.1 Initializing the Friend Roster API

To use the Friend Roster API, the NWC24 library must be opened.

7.1.2 Obtaining Friend Information

The following sample code (Code 7-1) stores only the friend information of those with whom a friend

relationship is established to the list prepared from the specified item number.

Code 7-1 Example of Obtaining Friend Information of Wii Friends with Whom a Relation Is

Established
/*---*

Name : GetEstablishedFriendInfo

Description : Gets for "list" the friend information of the Wii friend with

whom a relation is established from the "start" numbered item

up to a maximum of "listSize" items.

Arguments : list - List where the obtained friend information is stored.

listSize - The size of the list.

start - Specifies from what item number to store information

to the list.

allocator – Allocator used to obtain the friend information.

Returns : Number of items stored in the list. If an error is generated,

returns -1.

---/

WiiConnect24 Programming Manual

 2007-2009 Nintendo 55 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

int GetEstablishedFriendInfo(NWC24FriendInfo *list, int listSize,

int start, MEMAllocator* allocator)

{

NWC24FriendInfo* info;

int numReturns;

int numEstInfos;

u32 numInfos;

NWC24Err err;

int i, ierr;

// The memory storing the friend information must be 32-byte aligned.

info = (NWC24FriendInfo*) MEMAllocFromAllocator(

allocator, sizeof(NWC24FriendInfo));

if(info == NULL) return -1;

// Obtains the number of friend information items that can be registered to the

// Wii console’s friend roster.

err = NWC24GetNumFriendInfos(&numInfos);

if (err != NWC24_OK) {

OSReport("NWC24GetNumFriendInfos(): Error %d\n", err);

MEMFreeToAllocator(allocator, info);

return -1;

}

numReturns = 0;

numEstInfos = 0;

for (i = 0; i < numInfos; i++) {

// Checks whether friend information is registered in the specified index.

ierr = NWC24IsFriendInfoThere(i);

// A returned negative value means an error was generated.

if (ierr < 0) {

OSReport("NWC24IsFriendInfoThere(): Error %d\n", ierr);

MEMFreeToAllocator(allocator, info);

return -1;

}

// Friend information is not registered.

if (ierr == 0) continue;

// Friend information is registered.

if (ierr == 1) {

// Obtain friend information.

memset(info, NULL, sizeof(NWC24FriendInfo));

err = NWC24ReadFriendInfo(info, i);

WiiConnect24 Programming Manual

RVL-06-0271-001-D 56  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

if (err != NWC24_OK) {

OSReport("NWC24ReadFriendInfo(): Error %d\n", err);

MEMFreeToAllocator(allocator, info);

return -1;

}

// Go to next if friend information does not have an established friend

// relationship.

if (info->attr.status != NWC24_FI_STAT_ESTABLISHED) continue;

// Go to next if the friend information does not have a registered Wii

// number or e-mail address.

if ((info->attr.type != NWC24_FI_TYPE_WII)

&& (info->attr.type != NWC24_FI_TYPE_PUBLIC)) continue;

// Skip until the “start”-numbered item is obtained.

numEstInfos++;

if (numEstInfos <= start) continue;

// Copy friend information to the list.

memcpy(&(list[numReturns]), info, sizeof(NWC24FriendInfo));

numReturns++;

// Finish obtaining if the list is full.

if (numReturns >= listSize) break;

}

}

MEMFreeToAllocator(allocator, info);

return numReturns;

}

The friend information registered in the Wii console’s friend roster does not necessarily exist from the

0th index. This sample searches for friend information from the beginning of the list each time.

Before actually obtaining friend information, confirm with the NWC24IsFriendInfoThere function

whether friend information is registered in the specified index. If 0 is returned, no friend information is

registered. If 1 is returned, information is registered. A negative value is returned when an error is

generated.

Whether a friend relationship has been established can be confirmed with the value of the

NWC24FriendInfo.attr.status member. As a rule, send messages only to Wii Friends with whom a

friend relationship has been established.

Whether the address in the friend information is registered as a Wii number or registered as an e-mail

address can be confirmed by the value of the NWC24FriendInfo.attr.type member. In particular,

because messages to Wii Message Boards can only be sent to Wii Friends who have a registered Wii

number, confirm this member value when obtaining friend information to select a send destination.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 57 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

7.1.3 Searching for Friend Information

By using the following functions, the index where a given friend’s information is stored can be

obtained from their Wii number or e-mail address. For details, see the NWC24 library in the

Revolution SDK Extensions Function Reference Manual.

Code 7-2 Functions to Search for Friend Information
NWC24Err NWC24SearchFriendInfoById(NWC24UserId id, u32* index);

NWC24Err NWC24SearchFriendInfoByAddr(

const NWC24FriendAddr* addr, u32* index);

7.1.4 Number of Friend Information Items

Use the following functions to obtain the number of friend information items that can be registered in

the friend roster (NWC24GetNumFriendInfos function), the number of friend information items

registered (NWC24GetNumRegFriendInfos function), or the number of friend information items that are

registered and have established friend relationships (NWC24GetNumEstFriendInfos function). For

details, see the NWC24 library in the Revolution SDK Extensions Function Reference Manual.

Code 7-3 Functions to Obtain the Number of Friend Information Items
NWC24Err NWC24GetNumFriendInfos(u32* num);

NWC24Err NWC24GetNumRegFriendInfos(u32* num);

NWC24Err NWC24GetNumEstFriendInfos(u32* num);

7.2 Registering to the Friend Roster

Although the NWC24 Friend Roster API provides functions related to registering and deleting friend

information to and from the friend roster, do not implement them in production applications unless

there is a special reason.

7.3 Nickname Display

The nickname in the friend information (the NWC24FriendInfo.attr.name member) is input from the

address book by the user, so the character set for display is the same character set that can be used

for input to the address book.

See “List of Characters That Can Be Input in the Address Book” in the NWC24 library in the

Revolution SDK Extensions Function Reference Manual for the list of characters that can be entered

in the address book.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 58  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

8 Scheduler Operation
Even if an application is running, Wii consoles that have WiiConnect24 communication ON will

automatically process communications—send and receive messages and download data—as needed

in the background.

The fundamental concept of WiiConnect24 is that communications are performed periodically even

while applications are running. Consequently, this periodic network processing is enabled (the

scheduler is running) by default for applications that use the network.

8.1 Effect of Running the Scheduler

Although the scheduler starts each of the communication processes infrequently (about once every

several minutes), applications may be affected in the following ways.

• Loss of performance in high performance-demanding applications

• Worsening of network communication response

• Delay in accessing Wii console NAND memory

For cases where the above influences are expected, the automatic processes can be temporarily

stopped by using the scheduler operation API.

The API that performs the stop and restart processing for the automatic processes can be called at

any time in relation to the application. For example, the automatic processes can be stopped before

loading a large amount of data from Wii console NAND memory and then restarted after the load has

completed. However, if an attempt to stop an automatic process is made while it is running, a short

time is required before it stops.

8.2 Scheduler Operation API

The scheduler operation API provides the following functions.

Code 8-1 Functions to Operate the Scheduler
s32 NWC24SuspendScheduler(void);

s32 NWC24TrySuspendScheduler(void);

s32 NWC24ResumeScheduler(void);

Both the NWC24SuspendScheduler and NWC24TrySuspendScheduler functions temporarily stop the

scheduler. The difference between the functions is that the former blocks processes until the

scheduler stops, and the latter does not block processes.

The NWC24ResumeScheduler function restarts scheduler processes that have been temporarily

stopped.

These functions also have an internal counter that allows nested calls to be made from one function

to another. For example, if this feature is used and the NWC24SuspendScheduler function is called

WiiConnect24 Programming Manual

 2007-2009 Nintendo 59 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

twice while the scheduler is running, the NWC24ResumeScheduler function must be called twice for the

scheduler to begin processing again.

For details on each function, see the NWC24 library in the Revolution SDK Extensions Function

Reference Manual.

8.2.1 Relation to the NWC24 Library

The scheduler operation API can be called at any time by the application regardless of the open/close

status of the NWC24 library. However, while the NWC24 library is open, the scheduler is always in a

stopped state.

If scheduler operation functions are called while the NWC24 library is open, the scheduler’s behavior

will be affected by these functions only after the NWC24 library is closed.

8.2.2 Scheduler Initial State

Applications that incorporate the NWC24 library (that are linked with nwc24[D].a) have the scheduler

in operational status at startup by default.

Applications that do not incorporate the NWC24 library have the scheduler in a paused state by

default.

8.3 Scheduler Operational Conditions

The following two automatic processes are performed by the WiiConnect24 scheduler

• Send/receive message process

• Download process

These processes are started at fixed intervals on Wii consoles for which the Wii Network Service

User's Agreement has been completed and the WiiConnect24 setting is ON. However, if

sending/receiving messages has been prohibited by the user with the Parental Controls feature

settings, the message send/receive process is not started.

Use the NWC24Check function to make the determination of whether the conditions for these

processes to operate have been met.

8.3.1 Start Timing for the Send/Receive Message Process

The interval for starting the message send/receive process is set to one minute by default. In other

words, one minute after the application starts up, the first message send/receive process starts. If

communication with the server completes here with no problem, the startup interval is reset to the

value specified by the server (normally, this is 10 minutes, but it may be changed depending on the

situation). Thereafter, the message send/receive process starts at that reset interval.

If communication with the server fails, the startup interval is lengthened by one minute for each failure.

In other words, if communication does not succeed even once after the application starts up, the

interval between attempts is increased incrementally to 1, 2, 3, 4, ... (maximum of 10) minutes.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 60  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

8.3.2 Start Timing for the Download Process

The interval for starting the download process is set to two minutes by default. In other words, two

minutes after the application starts up, the first download process starts.

The download process first determines whether there is a download task that has reached its time to

be executed by checking the download task list. If there is a download task that should be executed,

that task is processed immediately. If no such task exists, the startup interval is set to 11 minutes and

the process terminates.

When several tasks have reached the time to be executed at the same time, the task with the highest

priority is executed immediately, the interval is set to two minutes, and then the process is terminated.

In other words, the remaining tasks are executed every two minutes.

8.3.3 Startup Timing After Resuming the Scheduler

If the scheduler is in a stopped state when the startup time arrives, that startup is skipped. The next

startup time will occur either when the startup interval has passed (this interval begins once the

startup time was missed) or the moment that the scheduler is resumed.

Note: Processing will start immediately after the scheduler is resumed only with the firmware

included in version 3.0 or later of the Revolution SDK.

8.4 Stopping the Scheduler

The scheduler cannot be stopped immediately while it is running (while the NWC24 firmware is in the

middle of performing network communications). The application must wait until network processing

has completed to stop the scheduler.

However, it is impossible to estimate how long of a wait is necessary. The reason is that these kinds

of network processing depend on the network environment and the size of both the messages and

the downloads being processed. However, it is extremely rare for 10 seconds or more to pass on a

typical broadband connection.

If the scheduler takes some time to stop, the application’s response will strongly depend on the

application’s specifications.

For example, if the scheduler is being stopped so the library can be opened for implicit use by the

user, this whole operation can be omitted if the scheduler could not be stopped after waiting for a

fixed period of time. On the other hand, if it is not possible to stop the scheduler within a fixed period

of time for explicit use, it is polite to display a message prompting the user to retry the operation later.

Sometimes, it might be desirable to stop the scheduler to avoid affecting communication when the

RVL DWC library is used to start peer-to-peer communications. In this case, peer-to-peer

communication volume will dictate if communications should not be started until the scheduler has

finished stopping or if communications should go ahead and be started while the scheduler is being

stopped asynchronously in the background. Normally, the NWC24 firmware’s communication

processing has an extremely small effect on an application's peer-to-peer communication.

WiiConnect24 Programming Manual

 2007-2009 Nintendo 61 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

9 Miscellaneous Information

9.1 Operational Environment on the Production Version

Some Wii consoles cannot use communication features when shipped.

For WiiConnect24 to operate, an environment with Wii Menu version 2.0 or later is required to be

installed. Wii consoles that have successfully connected to the network are guaranteed to have

version 2.0 or later because the Wii console update is automatically performed after the first

successful test connection.

If the Wii Menu is version 2.0 or later, the version information is displayed at the upper right of the Wii

System Settings screen. If nothing is displayed, the Wii Menu is a version older than 2.0.

9.2 Behavior Over a Broadband Connection

WiiConnect24-compatible game software assumes its connection to the Internet is a broadband

connection (ADSL, FTTH, or cable).

It is okay if WiiConnect24 features cannot operate over narrowband connections, such as through

modems.

9.3 NWC24API Errors

There are occasions when "File corrupted" or "Other fatal error" is returned when calling a NWC24

library function. In these cases, please display the error message specified in the guidelines.

9.4 Messages to Users with Whom a Friend Relationship Is Not
Established

As a rule, do not set as the message destination any address that is not an address of a Wii Friend

with whom a friend relationship is established and is registered in the Wii console’s friend roster.

9.5 Application-Specific Wii Message Names

It is okay for application-specific Wii messages to be given a different name, such as "Letters."

However, avoid using several different names such as "Letters," "Mail," and so on, to avoid confusing

the user about what is being specified.

9.6 Specifications Related to the Destination Region

WiiConnect24 specifications allow for communications regardless of the destination region of the

game software.

For example, in cases where you want to limit communication partners to those in the same market,

WiiConnect24 Programming Manual

RVL-06-0271-001-D 62  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

the determination of how to handle any given Wii message and the filtering of Wii messages must be

performed independently by the application. You may do this to accomplish goals such as the

following:

• Communicate with users using only the same language

• Limit the character sets to be prepared to the minimum required level

• Limit communication partners to a specific physical area

There are a number of ways to filter messages. One possibility is to take the sender’s game code

from the sender’s application ID, which is included in a Wii message’s object information, and

determine the destination region from that game code. Another possibility is to attach data to Wii

messages that includes the sender’s region information so that this information can be obtained from

the attached data when it is received.

9.7 Communication Between Different Applications

Communication between different applications can be determined by each application involved.

However, please contact support@noa.com with the details of the planned approach prior to

development.

mailto:support@noa.com

WiiConnect24 Programming Manual

 2007-2009 Nintendo 63 RVL-06-0271-001-D
CONFIDENTIAL Released: February 16, 2009

All company and product names contained in this document are the trademarks or registered trademarks of their respective companies.

WiiConnect24 Programming Manual

RVL-06-0271-001-D 64  2007-2009 Nintendo
Released: February 16, 2009 CONFIDENTIAL

© 2007-2009 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed, or loaned in whole or in part without

the prior approval of Nintendo.

	1 Introduction
	1.1 Requirements
	1.2 RevoEX (Revolution SDK Extensions)
	1.2.1 Preparing the Development Environment
	1.2.2 Using the Wii Menu
	1.2.3 Configuration Procedures to Use the Communication Features
	1.2.4 Support Codes and Errors
	1.2.5 Cautions for Configuration Items That Limit Use of Communication Features

	2 Structure of the WiiConnect24 System
	2.1 NWC24 Firmware (Subsystems)
	2.2 NWC24 Library
	2.3 NWC24 and Wii Console NAND Memory
	2.3.1 NWC24 System Files
	2.3.2 NWC24 User Files

	2.4 Wii Menu and Wii Message Board

	3 NWC24 Library
	3.1 Notes for Designing Applications
	3.2 Opening and Closing the NWC24 Library
	3.2.1 Opening the NWC24 Library
	3.2.2 Closing the NWC24 Library

	3.3 Checking the NWC24 System’s Operational State

	4 Messages
	4.1 Initializing the Message API
	4.2 Creating Messages
	4.3 Obtaining the Message List
	4.4 Viewing Messages
	4.4.1 Obtaining the Sender
	4.4.2 Obtaining the Recipient
	4.4.3 Obtaining the Subject
	4.4.4 Obtaining the Creation Time and Date
	4.4.5 Obtaining the Body Text
	4.4.6 Obtaining the Attached Binary Data
	4.4.7 Obtaining Miscellaneous Information

	4.5 Deleting Messages
	4.6 Searching for Messages

	5 Downloading
	5.1 Splitting Usage with the RVL DWC(-DL) Library
	5.1.1 Content Size Restrictions
	5.1.2 Immediacy

	5.2 Terminology and Overview
	5.2.1 Download Task
	5.2.2 Download Task List
	5.2.3 Download Box
	5.2.4 Download Signature

	5.3 Download Task Configuration Items
	5.3.1 URL
	5.3.2 Update Verification Interval
	5.3.3 Priority
	5.3.4 Download Count
	5.3.5 File Name
	5.3.6 Server Side Update Interval
	5.3.7 Retry Margin
	5.3.8 Flag

	5.4 Configuration Items for Individual Applications
	5.4.1 Download Box
	5.4.2 Public Keys and Shared Keys

	5.5 Using the Download API
	5.5.1 Initializing the Download API
	5.5.2 Obtaining Tasks
	5.5.3 Creating New Tasks
	5.5.4 Updating the Remaining Download Count
	5.5.5 Registering Tasks
	5.5.6 Deleting Tasks
	5.5.7 Executing Downloads Immediately
	5.5.8 Getting the Errors Recorded for a Download Task

	5.6 Precautions When Designing Receivable Content
	5.6.1 How to Verify Content Updates from the Application
	5.6.2 Independence from the Timing at Which Data Is Obtained
	5.6.3 Preparing “Empty Content”

	5.7 Precautions During Development
	5.7.1 Changing the Development Environment
	5.7.2 Deleting Save Data

	6 Relationship Between the NWC24 API and the Wii Message Board
	6.1 Posting Messages from Applications to the Wii Message Board
	6.1.1 Message Format Requirements
	6.1.2 Cautions When Posting Messages
	6.1.3 Sending Application Data Simultaneously
	6.1.4 Detailed Control Features

	6.2 Timing When the Wii Message Board Processes Messages
	6.3 Letterhead Template
	6.3.1 Composition of Letterhead Data
	6.3.2 Thumbnail Image
	6.3.3 Images for Enlarged Display
	6.3.4 Restrictions on Images Used in Letterhead Data
	6.3.5 Creating Letterhead Data
	6.3.6 Attaching Letterhead Data

	7 Friend Roster
	7.1 Using the Friend Roster API
	7.1.1 Initializing the Friend Roster API
	7.1.2 Obtaining Friend Information
	7.1.3 Searching for Friend Information
	7.1.4 Number of Friend Information Items

	7.2 Registering to the Friend Roster
	7.3 Nickname Display

	8 Scheduler Operation
	8.1 Effect of Running the Scheduler
	8.2 Scheduler Operation API
	8.2.1 Relation to the NWC24 Library
	8.2.2 Scheduler Initial State

	8.3 Scheduler Operational Conditions
	8.3.1 Start Timing for the Send/Receive Message Process
	8.3.2 Start Timing for the Download Process
	8.3.3 Startup Timing After Resuming the Scheduler

	8.4 Stopping the Scheduler

	9 Miscellaneous Information
	9.1 Operational Environment on the Production Version
	9.2 Behavior Over a Broadband Connection
	9.3 NWC24API Errors
	9.4 Messages to Users with Whom a Friend Relationship Is Not Established
	9.5 Application-Specific Wii Message Names
	9.6 Specifications Related to the Destination Region
	9.7 Communication Between Different Applications

