
 2008 Nintendo RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

Wii Graphics Primer

Version 1.0.0

The content of this document is highly confidential

and should be handled accordingly.

Wii Graphics Primer

RVL-06-0301-001-A 2  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

Wii Graphics Primer

 2008 Nintendo 3 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

Contents

1 Introduction ...9

1.1 Overview ...9

1.2 Document Structure ..9

2 Special Features of Wii Graphics..12

2.1 Introduction to Wii Graphics Concepts ...12

2.2 Main Features of Wii Graphics ...12

2.3 Unsupported Graphics Features...13

3 Graphics Creation Process Flow ..14

3.1 Function of the Graphics Processor Unit (GPU)...14

3.2 Vertex Data and Coordinate Conversion ..15

3.2.1 Vertex Data..15

3.2.2 Conversion of Vertex Position Coordinates...16

3.2.3 Primitives Types ..17

3.2.4 Front Surface of Polygon...17

3.3 Shading ...19

3.3.1 Rasterized Color..19

3.3.2 Lights ...20

3.4 TEV (Texture Environment Unit) ...22

3.4.1 What is the TEV? ..22

3.4.2 Registers that Can be Used with TEV Stage Computations ...24

3.4.3 TEV Stage Computations ..26

3.4.4 Swap Table ..30

3.4.5 Fog ..32

3.5 PE (Pixel Engine)..33

3.5.1 What is the PE?...33

3.5.2 Z Comparison..33

3.5.3 Blending...34

3.5.4 Dithering ..35

3.6 Video Output ...36

3.6.1 Frame Buffer..36

3.6.2 Antialiasing ..39

3.6.3 Gamma Correction ..40

3.6.4 Deflicker...40

3.6.5 Converting From RGB to YUV ..40

4 Examples of TEV Settings ..41

4.1 Modulation ..41

4.1.1 Features of Modulation..41

Wii Graphics Primer

RVL-06-0301-001-A 4  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.1.2 What is Modulation? ... 42

4.2 Blending Using Two Textures ... 43

4.2.1 Addition ... 44

4.2.2 Subtraction.. 46

4.2.3 Multiplication ... 48

4.2.4 Addition and Multiplication Combined... 50

4.2.5 Decal ... 52

4.2.6 Decal (Applied) ... 54

4.2.7 Proportional Blending.. 56

4.3 Two-Color Interpolation .. 58

4.3.1 How Two-Color Interpolation Works ... 58

4.3.2 Stage Settings for Two-Color Interpolation ... 59

5 Textures .. 60

5.1 Texture Size.. 60

5.2 Texture Formats.. 61

5.2.1 Opaque, Translucent, and Outline .. 61

5.2.2 Types of Texture Formats ... 62

5.2.3 Optimal Texture Format .. 64

5.2.4 Intensity... 65

5.2.5 Intensity Alpha... 66

5.2.6 RGB .. 66

5.2.7 RGBA.. 67

5.2.8 Compressed Texture... 68

5.2.9 Color Index Texture... 71

5.2.10 Tiles... 74

5.3 Repeat Pasting of a Texture ... 75

5.3.1 Clamp, Repeat, and Mirror ... 75

5.3.2 Restrictions for Specifying Repeat and Mirror .. 75

5.4 Mipmap... 76

5.4.1 Mipmaps.. 76

5.4.2 LOD Bias... 77

5.5 Texture Filters ... 78

5.6 Texture Mapping ... 80

5.6.1 Texture Coordinate Space and Texture Coordinates .. 80

5.6.2 Converting and Mapping Texture Coordinates ... 81

5.7 Mapping Multiple-Layered Textures (Multi-Texturing) .. 85

5.8 Indirect Textures ... 86

5.8.1 What is an Indirect Texture? ... 86

6 Overview of Wii Graphics Hardware .. 88

6.1 Hardware Configuration.. 88

Wii Graphics Primer

 2008 Nintendo 5 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

6.1.1 Broadway ..88

6.1.2 Hollywood..89

6.1.3 External Main Memory (MEM2) ..89

6.1.4 Graphics Memory ..89

6.2 Performance ...89

6.2.1 Processes that Have the Most Impact on Performance..89

6.2.2 Processes that Do Not Impact Performance...89

Figures

Figure 1-1 Screen Display, Example 1 ...10

Figure 1-2 Screen Display, Example 2 ...11

Figure 3-1 GPU Process Flow ..14

Figure 3-2 Data that Can be Held by One Vertex ...15

Figure 3-3 Coordinate Conversion of Vertex Position Coordinates (For Programmers)16

Figure 3-4 Primitive Types ..17

Figure 3-5 Polygon Surfaces ..17

Figure 3-6 Association of Lights and Color Channels...19

Figure 3-7 Types of Light ..20

Figure 3-8 Formulas for Calculating Light (For Programmers)...21

Figure 3-9 TEV Block Diagram ...22

Figure 3-10 Example of Output when Combining Texture with Rasterized Color23

Figure 3-11 Positioning Color Registers ...24

Figure 3-12 Features and Uses of Color Registers ..24

Figure 3-13 Positioning of Constant Registers ...25

Figure 3-14 Features and Uses of Constant Registers ..25

Figure 3-15 Color and Alpha Stages...26

Figure 3-16 TEV Computation Expression ...26

Figure 3-17 Compare Mode..27

Figure 3-18 Color Stage and Input Sources ...27

Figure 3-19 Example of Stage Settings for Applying Shadows to Textures..28

Figure 3-20 Alpha Stage and Input Sources ...28

Figure 3-21 Output of the Stage Computation Result...29

Figure 3-22 The Swap Feature...31

Figure 3-23 Fog Function Graph ..32

Figure 3-24 Correction of Fog Range ...32

Figure 3-25 Examples of Z Comparison ...34

Figure 3-26 Expression for Blending ..34

Figure 3-27 Dithering ..35

Figure 3-28 Scaling Frame Buffer...36

Figure 3-29 Interlace Mode...37

Wii Graphics Primer

RVL-06-0301-001-A 6  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

Figure 3-30 Interlace (Field Rendering) Mode ... 38

Figure 3-31 Noninterlace Mode.. 38

Figure 3-32 Progressive Mode ... 39

Figure 3-33 Antialias... 39

Figure 3-34 Gamma Correction.. 40

Figure 4-1 Modulated Images .. 41

Figure 4-2 Blending of Two Textures.. 43

Figure 4-3 Example of Texture Addition ... 44

Figure 4-4 Example of Stage Settings for Addition... 45

Figure 4-5 Example of Subtraction... 46

Figure 4-6 Example of Stage Settings for Subtraction ... 47

Figure 4-7 Example of Texture Multiplication ... 48

Figure 4-8 Example of Stage Settings for Multiplication... 49

Figure 4-9 Example of Addition and Multiplication Combined.. 50

Figure 4-10 Example of Stage Settings for Addition and Multiplication Combined 51

Figure 4-11 Example of Decal .. 52

Figure 4-12 Example of Stage Settings for Decal .. 53

Figure 4-13 Example of Decal (Advanced) .. 54

Figure 4-14 Example of Stage Settings for Decal (Applied)... 55

Figure 4-15 Example of Proportional Blending .. 56

Figure 4-16 Example of Stage Settings for Proportional Blending... 57

Figure 4-17 Example of Two-Color Interpolation.. 58

Figure 4-18 Example of Stage Settings for Two-Color Interpolation .. 59

Figure 5-1 Texel.. 60

Figure 5-2 Minimum and Maximum Sizes of Textures ... 60

Figure 5-3 Opaque, Outline, and Translucent Textures ... 61

Figure 5-4 Comparison of Texture Format and Texture Size (256x256 Texture) 63

Figure 5-5 Optimal Texture Formats... 64

Figure 5-6 Graphic Suited For the Compressed Texture Format ... 68

Figure 5-7 Graphic Not Suited For Compressed Texture Format .. 69

Figure 5-8 Compressed Texture (Generating Two Interpolation Colors) ... 69

Figure 5-9 Compressed Texture (Using Outline).. 70

Figure 5-10 Color Index.. 71

Figure 5-11 Switching Color Palettes ... 71

Figure 5-12 Texture Format and Tiles .. 74

Figure 5-13 Tiling Method... 75

Figure 5-14 Mipmapping Used to Erase Moiré Patterns .. 76

Figure 5-15 Illustration of Mipmap Texture ... 76

Figure 5-16 Using LOD Bias to Adjust the Mipmap Level Boundaries... 77

Figure 5-17 Point Sampling and Bilinear Filtering.. 78

Figure 5-18 Texture Coordinate Space... 80

Figure 5-19 Using Texture Coordinates for Mapping ... 80

Wii Graphics Primer

 2008 Nintendo 7 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

Figure 5-20 Converting Texture Coordinates..81

Figure 5-21 Using Texture Matrices to Rotate and Scale a Texture ...81

Figure 5-22 Illustration of Environment Mapping..82

Figure 5-23 Example of Projection Mapping ..82

Figure 5-24 Toon Shading...83

Figure 5-25 Toon Shading, Mechanism 1...83

Figure 5-26 Toon Shading, Mechanism 2 ...84

Figure 5-27 Mapping of Multiple, Layered Textures ...85
Figure 5-28 Mapping with Different UV for Each Texture ...86

Figure 5-29 Example of Displaying with Indirect Texture..86

Figure 6-1 Block Diagram of Wii's Graphics Hardware ..88

Tables

Table 3-1 Data that Can be Held by One Vertex ..15

Table 3-2 Types of Fog Function ..32

Table 3-3 Types of Z Comparison Expressions ..33

Table 3-4 Examples of Blending Coefficients ...34

Table 3-5 Pixel Formats of the EFB ..36

Table 5-1 Comparison of Texture Formats..62

Table 5-2 Intensity Format Textures..65

Table 5-3 Intensity Alpha Format Textures..66

Table 5-4 RGB Format Textures ...66

Table 5-5 RGBA Format Textures ...67

Table 5-6 Compressed Texture Format Textures..68

Table 5-7 Color Index Format Textures...73

Table 5-8 Texture Filter Modes..79

Wii Graphics Primer

RVL-06-0301-001-A 8  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

Revision History

Version Revision Date Description

1.0.0 2007/11/16 Initial version.

Wii Graphics Primer

 2008 Nintendo 9 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

1 Introduction

1.1 Overview
This document introduces the main features of Wii graphics to developers and designers of Wii

software.

To make information readily accessible to more readers, we have omitted the descriptions of some

features. For a more detailed explanation, see the Graphics Library and other documentation included

in the Revolution SDK.

This document also includes supplementary information for NintendoWare for

Revolution (henceforth referred to as NintendoWare), which is the integrated development

environment for Wii. Information specific to NintendoWare is enclosed in a frame and labeled

with the NW4R logo.

1.2 Document Structure
This document is divided into four topics.

• Special Features of Wii Graphics

• Graphics Creation Process Flow

• Examples of TEV Settings

• Textures

In the first half of the document, the basic mechanism for displaying Wii 3D graphics is explained. The

second half of the document provides specific examples of material settings and information on

textures.

The chapters in this document can be read in any order.

Wii Graphics Primer

RVL-06-0301-001-A
Released: February 15

Figure 1-1 shows Wii software reference images. This document does not discuss the settings and

data used in games.

Figure 1-1 Screen Display, Example 1

To perform shading, Wii uses
up to 8 lights simultaneously.

For details on shading, see

section 3.3 Shading.

M

ras

re

(T
any materials can be represented using

terized colors and textures, and the color

gisters. For details, see section 3.4 TEV

exture Environment Unit) and Chapter 4

Examples of TEV Settings.
10  2008 Nintendo
, 2008 CONFIDENTIAL

Wii Graphics Primer

 2008 Nintendo 11 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

Figure 1-2 shows Wii software reference images. This document does not discuss the settings and

data used in games.

Figure 1-2 Screen Display, Example 2

Up to eight 1024 x 1024 textures can

be blended for display. For details,

see Chapter 5 Textures.

Eleven different texture formats are available.

For details, see sections 5.2.2 Types of Texture

Formats and 5.2.3 Optimal Texture Format.
Texture size can be controlled

using compressed textures.

For details, see section 5.2.8

Compressed Texture.

Indirect textures can be used to depict

effects such as distortion on the water

surface. For details, see section 5.8

Indirect Textures.

Wii Graphics Primer

RVL-06-0301-001-A 12  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

2 Special Features of Wii Graphics
This chapter summarizes the main features of Wii 3D graphics. More detailed information is provided in

subsequent chapters.

2.1 Introduction to Wii Graphics Concepts
Wii inherits the graphics features of Nintendo GameCubeTM and is designed to deliver stable

performance at all times. The processing burden increases with the number of lights or TEV stages

used simultaneously. Conversely, processing decreases as this number decreases.

2.2 Main Features of Wii Graphics
Wii has a 3D graphics engine for rendering polygons that includes the following features.

Vertex Data (see section 3.2.1 Vertex Data)

• Supports user defined vertex data format

• Supports changing the matrix used for each set of vertex position coordinates

• Supports setting up to eight UV coordinates for each vertex

Shading (see sections 3.3.2 Lights and 3.4 TEV (Texture Environment Unit)

• Supports use of up to eight lights simultaneously

• Supports use of light to express a point light source, parallel light source, or spotlight

• Supports light calculations for vertex color

• Supports expression of a variety of material effects using TEV formulas

• Supports use of four color registers and four constant registers

• Supports fog processing

Pixel Processing (see section 3.6 Video Output)

• Supports frame buffer sizes up to 640 (width) x 480 (height) (NTSC format)

• Supports antialiasing, deflicker, and gamma correction to the entire screen

• Can freely set alpha-compare, Z buffer, and blending processes

Wii Graphics Primer

 2008 Nintendo 13 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

Textures (see section 5 Textures)

• Can select from 11 texture formats

• Supports high-quality compressed texture formats

• Supports use of textures with resolutions of up to 1024 (width) x 1024 (height)

• Supports layering of up to eight textures for display

• Supports selection from three methods of tiling (clamp, repeat, and mirror)

• Supports use of filter features such as point sampling and bilinear filtering

• Supports use of mipmap features with up to 11 levels

• Supports use of swap features to control texture’s RGBA components

• Supports use of indirect features to distort textures for display

• In addition to UV mapping, supports other mapping with textures, including environmental and

projection mapping

2.3 Unsupported Graphics Features

Wii does not support the following features and graphic representations.

Shading

• Programmable shaders

� Vertex, pixel, and programmable shaders are not supported. TEV stage computation

formulas must be used, instead

• Normal mapping

Indirect textures can be used to express normal mapping in object space with

NintendoWare. But NintendoWare does not support normal mapping to envelope models.

Wii Graphics Primer

RVL-06-0301-001-A 14  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

3 Graphics Creation Process Flow

3.1 Function of the Graphics Processor Unit (GPU)
Figure 3-1 illustrates the process flow in the GPU.

Figure 3-1 GPU Process Flow

Conversion Processor

・ Converts vertex coordinates (see section 3.2)

・ Converts and generates texture coordinates (see section 5.6)

・ Calculates lights (see section 3.3)

Texture Processor

・ Generates texture colors

・ Filtering

Texture Environment Processor (TEV) (see section 3.4)

・ Combines rasterized color and texture color

・ Fog

Texture Memory

(In memory used by graphics)

Command Processor

(Interprets graphics commands)

Main Memory

Graphics Commands Texture DataDisplay List Vertex Data Matrix Data

Matrix

Memory

See section 3.6

Pixel Engine (PE) (see section 3.5)

・ Z-comparison (can also be performed before the texture processor)

・ Blend

・ Antialiasing

Frame Buffer (EFB) (in memory used by graphics)

External Frame Buffer (XFB) or Texture (in main memory)

Wii Graphics Primer

 2008 Nintendo 15 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

3.2 Vertex Data and Coordinate Conversion

3.2.1 Vertex Data

3.2.1.1 Vertex Data Format

Each vertex of a polygon rendered on Wii can hold the data shown in Figure 3-2 and Table 3-1.

Figure 3-2 Data that Can be Held by One Vertex

- Position coordinates (x, y, z)
- Normal (nx, ny, nz)
- Vertex color 0, 1 (r, g, b, a)
- Texture coordinates 0 - 7 (s, t)

Table 3-1 Data that Can be Held by One Vertex

Vertex Data Data Format Condition

Position coordinates Fixed-point (8 bits, 16 bits) or floating-point (32 bits) Required

Normal Fixed-point (8 bits, 16 bits) or floating-point (32 bits) Optional

Vertex color 0, 1
Select from RGB565 (16 bits), RGB8 (24bits), RGBX8 (32 bits),

RGBA4 (16 bits), RGBA6 (24 bits), and RGBA8 (32 bits)
Optional

Texture coordinates 0 - 7 Fixed-point (8 bits, 16 bits) or floating-point (32 bits) Optional

Of the vertex data, the elements required for polygon rendering are the matrix for coordinate

conversion, and position coordinates. When the coordinate and normal conversion matrices are the

same for every vertex of the displayed shape, they do not need to be specified for each vertex. Use of

the other vertex data elements is optional.

For each vertex element, a number of data formats can be selected. Fixed-point 16-bit format is half

the size of the floating-point format and 8-bit fixed point is one quarter of that size. The precision of

coordinates may suffer with fixed-point format, but storing data in this format makes for more efficient

use of memory. When fixed-point data is sent to the GPU, it is converted automatically to floating-point

format for processing; there is no cost for this conversion process.

Indices for the matrices used for coordinate, normal, and texture coordinate conversions can also be

specified in each vertex.

Wii supports two vertex colors for each vertex, but NintendoWare only supports one

vertex color for each vertex.

Wii Graphics Primer

RVL-06-0301-001-A 16  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

3.2.2 Conversion of Vertex Position Coordinates

The vertex position coordinates sent to the GPU are model (object) coordinates. As shown in Figure

3-3, model coordinates are converted to visual space coordinates by the modelview matrix, while the

visual space coordinates are converted to screen coordinates by the projection matrix and viewport

transformation.

Figure 3-3 Coordinate Conversion of Vertex Position Coordinates (For Programmers)

Generally, up to 10 matrices for coordinate conversion can be loaded into the GPU’s matrix memory. If

a coordinate conversion matrix is specified for every vertex in an envelope model and if there are 11 or

more matrices, the primitive types have to be partitioned and then rendered.

X

Y

Z

Model (object) Coordinates

The model's reference point is the origin.

Visual Space Coordinates

To derive world coordinates, scaling, rotation and

translation are applied to the model coordinates.

World coordinates are then converted to visual space

coordinates (named so because the viewpoint

defines the origin).

X

Y

Screen Coordinates

The upper-left corner of the screen is the origin. The

back of the screen is the +Z direction.

If the projection matrix is a perspective projection, the

image shrinks as the distance from the viewpoint

increases.

Matrix for coordinate conversion (modelview matrix)

Projection matrix, viewpoint transformation

X

Y

Z

Wii Graphics Primer

 2008 Nintendo 17 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

3.2.3 Primitives Types

Wii can display points, lines, and polygons.

Figure 3-4 Primitive Types

Polygons can be rendered with triangles, triangle fans, triangle strips (see Figure 3-4), and other

methods.

Compared to triangles, where one triangular polygon is drawn for every three vertices, triangle fans

and triangle strips draw a series of triangular polygons. Reducing the number of process vertices that

use triangle fans or triangle strips will reduce the GPU load and data size.

3.2.4 Front Surface of Polygon

As shown in Figure 3-5, on Wii the plane that defines clockwise-aligned vertex data is the front surface

of the polygon.

Figure 3-5 Polygon Surfaces

0

1

2

3

Points

12

3

Lines

0

0

1
2

3

4

5
Triangles

2

0

1

3

4

Triangle Fan

0

1

2

3

4

5

6

7

Triangle Strip

Wii Graphics Primer

RVL-06-0301-001-A 18  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

When rendering a polygon, display surfaces can be selected in any of the following combinations.

• Show only the front surface

• Show only the back surface

• Show both surfaces

• Show neither surface

When drawing a closed shape where the back surface of the polygon is not displayed, the

unnecessary rendering of the back surface can be eliminated by displaying only the front surface.

Wii Graphics Primer

 2008 Nintendo 19 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

3.3 Shading

3.3.1 Rasterized Color

Wii can use up to eight physical lights. The results of light calculations are stored in as many as four

"color channels" and can be used by the TEV as "rasterized colors."

As shown in Figure 3-6, the four color channels are COLOR0, ALPHA0, COLOR1, and ALPHA1.

COLOR0 and COLOR1 hold the RGB components, while ALPHA0 and ALPHA1 hold only the alpha

component. With the TEV, either COLOR0A0 (color channel 0, combination of COLOR0 and ALPHA0)

or COLOR1A1 (color channel 1, combination of COLOR1 and ALPHA1) can be selected for each

stage. For each color channel, the light to be used (light mask), whether to use the material color

(alpha) or vertex color (alpha), and the lighting's attenuation function can all be specified.

Figure 3-6 Association of Lights and Color Channels

Wii supports use of different physical lights for diffuse lighting and specular lighting. A total of up to

eight diffuse lights and specular lights can be used at a time. Two color channels are used with

specular light, (one for diffuse and one for specular lighting), it is necessary to set a separated light

mask for each channel.

NintendoWare uses color channel 0 for diffuse lighting and color channel 1 for specular

lighting.

Light 2

Light 7

COLOR0

ALPHA0

COLOR1

ALPHA1

Color Channel

COLOR0A0

COLOR1A1

Associated by Light Masks Rasterized Color

Light 0

Light 1

javascript:goWordLink(%22function%22)
javascript:goWordLink(%22attenuation%22)

Wii Graphics Primer

RVL-06-0301-001-A 20  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

3.3.2 Lights

The following attributes can be set for each light.

• Light color (alpha)

• Light position

• Light direction

• Attenuation coefficient based on distance from light to vertex

• Attenuation coefficient based on direction of light and directional angle from light to vertex

By adjusting the coefficients for distance attenuation and angular attenuation different sources of light

can be created, including parallel light sources, point light sources, and spotlights (see Figure 3-7 and

Figure 3-8). (A parallel light source approximates a point light source when positioned far away from an

object with no attenuation.)

Figure 3-7 Types of Light

Parallel Light

Source

Point Light

Source

Spotlight

Wii Graphics Primer

 2008 Nintendo 21 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

Figure 3-8 Formulas for Calculating Light (For Programmers)

Rasterized Color = Material x LightFunc

Material = Material Source =

LightFunc =

Material Color Register

1.0 (No Light Calculation)

Vertex Color

Clamp [Ambient + ∑ (LightMask(i) * Attn(i) * DiffuseAttn(i) * Color(i))]
i = 0

7

Ambient = Ambient Source =
Ambient Color Register

Vertex Color

LightMask(i) = Light mask (1 if light i enabled; 0 if disabled）

Attn (i) = Distance attenuation and angular attenuation (or specular attenuation)

DiffuseAttn (i) = Diffuse attenuation

(Calculated from scalar product of normal and vector from vertex to light i)

Color (i) = The light color (alpha) of light i

Wii Graphics Primer

RVL-06-0301-001-A 22  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

3.4 TEV (Texture Environment Unit)

3.4.1 What is the TEV?

The TEV is the mechanism that performs rendering by using input sources (rasterized color, texture

color, color registers, and so on) and ultimately determines the final pixel color. Many material effects

can be attained with the TEV, by mixing rasterized color and texture color, blending a number of

textures, and applying color to polygons using the color registers.

The TEV can perform the computational expression described in Figure 3-9 from one to sixteen times.

A single execution of the calculation is called a stage. The first stage is called "stage 0" and

computations can be performed up to stage 15. For each stage of computation, four inputs (A, B, C,

and D) are selected from the various input sources.

Figure 3-9 TEV Block Diagram

Input

A

B

C

D

Output

Color register 0

Color register 1

Color register 2

Color register 3

Constant registers 0-3

Color registers 0-3

Rasterized color (max. 2）

Texture color (max. 8)

Constant
Final

Output

This process can be repeated up to 16 times.

TEV Stage

Computation

Texture coordinate (max. 8)

Wii Graphics Primer

 2008 Nintendo 23 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

For example, the process is performed in one stage when a texture is mixed with a rasterized color, as

shown in Figure 3-10.

Figure 3-10 Example of Output when Combining Texture with Rasterized Color

Only one texture can be input for a given stage. So at least two stages are needed to combine two

textures.

Input

A

B

C

D

Output

Color register 0

Color register 1

Color register 2

Color register 3

Constant registers 0-3

Color registers 0-3

Rasterized color

Texture color

0.0

Texture coordinates 0

X =

Rasterized Color Texture Color Output Result

TEV Stage

Computation

Final

Output

Wii Graphics Primer

RVL-06-030
Released: F

3.4.2 Registers that Can be Used with TEV Stage Computations

Before explaining the TEV stage computation, the registers used in the computations must be

described.

Four color registers and four constant registers can be shared for computations in all 16 TEV stages.

The features of each register are described below.

3.4.2.1 Color Registers

For color registers to serve as input sources for stage computations, their colors or values can be set

(see Figure 3-11). Color registers can also be used as destinations that store the results of the stage

computations.

Figure 3-11 Positioning Color Registers

Each color register comprises four RGBA color components (red, green, blue, alpha), and each of

these components can be set to an integer value between -1024 and 1023 (see Figure 3-12). In terms

of the standard interpretation of color components (which range from 0.0 to 1.0), "0" corresponds to 0.0

and "255" to 1.0. If the result of the stage computation is smaller than 0 or larger than 255, it can still be

stored in the color registers.

Figure 3-12 Features and Uses of Color Registers

Input

A

B

C

D

Output

Color register 0

Color register 1

Color register 2

Color register 3

Constant registers 0-3

Color registers 0-3

Rasterized color (max. 2）

Texture color (max. 8)

Constant

Final

Output

Texture coordinates (max. 8)

This process can be repeated up to 16 times.

TEV Stage

Computation

• Each RGBA component is stored as an integer value
between -1024 and 1023

• Multiple registers can be used simultaneously in one stage
• Results of stage computation are invariably stored in one of

the color registers
• Results of stage computation can be used in subsequent

stages
• For the final stage, output must be to color register 3

Color register 2

Color register 1

Co

Color register 0
lor register 3
1-001-A 24  2008 Nintendo
ebruary 15, 2008 CONFIDENTIAL

Wii Graphics Primer

 2008 Nintendo 25 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

3.4.2.2 Constant Registers

To use constant registers with stage computations, set their colors or values (see Figure 3-13).

Figure 3-13 Positioning of Constant Registers

Similar to the color registers, each constant register comprises four RGBA color components (see

Figure 3-14). However, each component can be set to integer values between 0 and 255. In terms of

the standard interpretation of color components (which range from 0.0 to 1.0), “0” corresponds to 0.0

and “255” to 1.0.

Figure 3-14 Features and Uses of Constant Registers

Input

A

B

C

D

Output

Color register 0

Color register 1

Color register 2

Color register 3

Constant registers 0-3

Color registers 0-3

Rasterized color (max. 2）

Texture color (max. 8)

Constant

Final

Output

Texture coordinates (max. 8)

This process can be repeated up to 16 times.

TEV Stage

Computation

Constant register 0

Constant register 1

Constant register 2

Constant register 3

• Each RGBA component is stored as an integer value between 0 and 255

• Only one of these registers can be used in each stage

Wii Graphics Primer

RVL-06-0301-001-A 26  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

3.4.3 TEV Stage Computations

3.4.3.1 Color Stage and Alpha Stage

As shown in Figure 3-15, each stage of TEV computation consists of two components, computation of

color (the color stage) and computation of alpha (the alpha stage). Each component stage is

independent and can be configured separately. In addition, either TEV computation expression or

compare mode can be selected for computation in every stage.

Figure 3-15 Color and Alpha Stages

The same number of stages is set for color stage and alpha stage. Therefore, three alpha stages (not

one) must be used with three color stages.

3.4.3.2 TEV Computation Expression

When choosing a TEV computation expression for stage computation, use the expression shown in

Figure 3-16.

Figure 3-16 TEV Computation Expression

D
+

–
C A C B

–0.5
+0.0
+0.5

0.5
1.0
2.0
4.0

{ () x }x[+1 –

(1)

(2)
(3)

Scale
Bias

] x

Select one input source for each of A, B, C, and D. Note that the color stages and alpha stages take

different kinds of input sources. (For a more detailed explanation, see Chapter 4 Examples of TEV

Settings.)

For term (1) of the expression, use either plus (+) or minus (−) to add to or subtract from (D). For term

(2), select one of the values -0.5, +0.0, or +0.5 to increase or decrease the overall brightness of color

stage or the transparency of alpha stage. For term (3), select one of the values 0.5, 1.0, 2.0, or 4.0. A

setting of 0.5 will halve the brightness or transparency obtained from the prior computation, while a

setting of 2.0 will double it.

TEV Stage

Computation

Color Stage Computation: TEV Computation Expression or Compare Mode

Alpha Stage Computation: TEV Computation Expression or Compare Mode

Wii Graphics Primer

 2008 Nintendo 27 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

3.4.3.3 Compare Mode

To calculate pixel color, the TEV computation expression uses the input sources A, B, C, and D. As an

alternative to the expression, perform output processing after the conditional expressions shown in

Figure 3-17. In this compare mode, conditional branching can be performed using A, B, C, and D.

Figure 3-17 Compare Mode

3.4.3.4 Color Stage

For the color stage, any one of the input sources listed in Figure 3-18 can be set for each, A, B, C and D.

Figure 3-18 Color Stage and Input Sources

If A = B, then output D + C, otherwise output D

If A > B, then output D + C, otherwise output D

or

• Rasterized color (RGB)

• Rasterized alpha

• Texture color (RGB)

• Texture alpha

• Color (RGB) of color register 0

• Alpha of color register 0

• Color (RGB) of color register 1

• Alpha of color register 1

• Color (RGB) of color register 2

• Alpha of color register 2

• Color (RGB) of color register 3

• Alpha of color register 3

• Constant (1.0, 0.5 or 0.0)

• Value specified by constant register

� One of the constant registers (0, 1, 2, or 3)
� One of the register components (RGB, R, G, B, or A)

A

B

C

D

TEV Stage

Computation

Wii Graphics Primer

RVL-06-0301-001-A 28  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

To use a constant register as an input source, specify the constant register (between 0 and 3) and the

RGBA component (R, G, B, or A). For example, to paste a texture on a shaded polygon, the rasterized

color is set in C and the texture color is set in B. Then they are multiplied in the TEV computation

expression, as shown in Figure 3-19.

Figure 3-19 Example of Stage Settings for Applying Shadows to Textures

For detailed examples of TEV stage settings, see Chapter 4 Examples of TEV Settings.

3.4.3.5 Alpha Stage

For the alpha stage, any one of the input sources shown in Figure 3-20 can be set for each of A, B, C,

and D.

Figure 3-20 Alpha Stage and Input Sources

To use a constant register as an input source, specify the constant register (between 0 and 3) and the

component (R, G, B, or A). For detailed examples of TEV stage settings, see section 4 Examples of

TEV Settings.

D C A C B{ () x }x[+1 –] x 1.0+ 0.0+

0.0
Rasterized

Color
Texture

Color

Rasterized Color x Texture Color

• Rasterized alpha

• Texture alpha

• Alpha of color register 0

• Alpha of color register 1

• Alpha of color register 2

• Alpha of color register 3

• 0.0

• Value specified by constant register

� One of the constant registers (0, 1, 2, or 3)
� One of the constant register components (R, G, B, or A)

A

B

C

D

TEV Stage

Computation

Wii Graphics Primer

 2008 Nintendo 29 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

3.4.3.6 Outputting the Results of Stage Computation

As shown in Figure 3-21, the result of each stage computation for color stages must be output to the

RGB of one color register (0 through 3). The result of each stage computation for alpha stages must be

output to the alpha of one color register (0 through 3).

If multiple stages are used, the results of intermediate stage computations are temporarily held in a

color register and can be used in subsequent stages.

Regardless of the number of stages used, the final stage must be output to color register 3.

Figure 3-21 Output of the Stage Computation Result

Output

Color register 0

Color register 1

Color register 2

Color register 3

TEV Stage

Computation

Final Output

Can be used as an input source for subsequent stages

Wii Graphics Primer

RVL-06-0301-001-A 30  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

3.4.4 Swap Table

The swap feature (see Figure 3-22) allows the interpretation of the RGBA components to be changed

before using rasterized colors and texture colors as input sources for various TEV stages. With the

swap table, four swap change patterns can be simultaneously registered per process, for a series of

TEV settings.

Normally a swap table for which the RGBA components are not altered would be used. However, by

switching the referenced swap tables or by changing the swap table settings, effects such as showing

one texture in a different color can be created. Because the swap feature is always executed, changing

the settings does not change the processing load.

Wii Graphics Primer

 2008 Nintendo 31 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

Figure 3-22 The Swap Feature

R

G

B

A

R

G

B

A

R

G

B

A

Swap Table

R

G

B

A

R

G

B

A

R

G

B

A

Swap Table

Green and blue components are swapped.
Blue parts of the texture become green.

R

G

B

A

G

A

Swap Table

Green component is also used for red and blue
components. The texture is shown in grayscale.

Texture color is used as is.

G

G

G

A

G

G

Wii Graphics Primer

RVL-06-0
Released

3.4.5 Fog

Fog color can be blended with the pixel color that is output from the final active TEV stage. The amount

of blending with the fog color is determined by the fog function, which is used for the viewpoint-to-pixel

distance. Table 3-2 lists the types of fog functions, while Figure 3-23 shows the fog function graph.

Table 3-2 Types of Fog Function

Type How Fog is Applied

Linear Applied evenly toward the rear.

Exponential Applied abruptly up front.

Exponential squared Applied up front.

Reverse exponential Applied abruptly in rear, not up front.

Reverse exponential squared Applied in rear, not up front.

Figure 3-23 Fog Function Graph

To

co

Thick Fog
Linear

Exponential

Exponential squared

Reverse exponentialFo
g Density
301-001-A 32  2008 Nintendo
: February 15, 2008 CONFIDENTIAL

increase the fog density at screen edges, enable correction of the fog range (see Figure 3-24). This

rrection is only possible in the x-direction of the screen. The fog in the y-direction is not corrected.

Figure 3-24 Correction of Fog Range

Distance from Viewpoint
Fog Start Fog End

Thin Fog

Reverse exponential
squared

No Correction Correction

X

Locations of equal fog

density

Z

Wii Graphics Primer

 2008 Nintendo 33 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

3.5 PE (Pixel Engine)

3.5.1 What is the PE?

Z-comparisons, blending, and dithering are the final steps performed in the pixel pipeline for output to

the frame buffer. These processes are collectively called the Pixel Engine (PE).

In the Z comparison process, Z values are compared to determine if the pixel scheduled for writing to

the frame buffer should be rasterized. In the blending process, the rasterized pixel color is blended with

the color that is in the frame buffer. Dithering is performed as the final process.

This section describes each of these three processes.

3.5.2 Z Comparison

To perform a conditional write to the frame buffer, compare the Z value of the pixel to be written to the

frame buffer with the Z value of the pixel already in the buffer (the Z buffer’s Z value) see Table 3-3.

Table 3-3 Types of Z Comparison Expressions

Comparison
Expression Types

Description

NEVER Never write.

LESS Write if new pixel's Z value < the Z buffer's Z value.

LEQUAL Write if new pixel's Z value ≤ the Z buffer's Z value.

EQUAL Write if new pixel's Z value = the Z buffer's Z value.

NEQUAL Write if new pixel's Z value ≠ the Z buffer's Z value.

GEQUALL Write if new pixel's Z value ≥ the Z buffer's Z value.

GREATER Write if new pixel's Z value > the Z buffer's Z value.

ALWAYS Always write.

Normally, a new pixel is written to the frame buffer if it is closer to the viewpoint (that is, if it has a

smaller Z value), and LEQUAL is used. Use the EQUAL expression to write only the overlapping parts

of polygons. Note that due to the Z buffer’s precision and the distance from the viewpoint, errors my

cause flicker.

Wii Graphics Primer

RVL-06-0301-001-A 34  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

Figure 3-25 shows the result of Z comparison for a circular polygon drawn in the same place after a

square polygon.

Figure 3-25 Examples of Z Comparison

Z comparison can be done before or after texture processing. Better performance is obtained by

performing the Z comparison first, since the texture processing is not performed on the pixels that are

not displayed. However, when using alpha-comparison, texture processing must precede Z comparison.

3.5.3 Blending

To blend the color of a pixel that is to be written to the frame buffer with the frame buffer color, use the

expression in Figure 3-26.

Figure 3-26 Expression for Blending

Adjustment of the input and output coefficients (see Table 3-4) allows calculations such as mixing

(translucence), adding, and multiplying to be performed.

Table 3-4 Examples of Blending Coefficients

Operation Input Coefficient Output Coefficient

Mix (translucent) Alpha of new pixel 1 (Alpha of new pixel)

Add Alpha of new pixel 1

Multiply Color of frame buffer 0

In addition to blending, the new pixel's color can be subtracted from the frame buffer's color, and logical

operations such as AND and OR can be performed between a new pixel’s color and frame buffer’s

color. If the frame buffer supports alpha, the same (blending, subtraction, and logical) processes can

be performed on alpha values.

Output Color
New

Pixel Color
Input

Coefficient
Frame Buffer

Color
Output

Coefficient= x + x

LEQUAL EQUAL NEQUAL

Wii Graphics Primer

 2008 Nintendo 35 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

3.5.4 Dithering

If the frame buffer's pixel format is RGB565 or RGBA6, pixels can be dithered after blending. As

illustrated in Figure 3-27, dithering creates a smoother transition of coloring, reducing the presence of

boundaries between levels.

Figure 3-27 Dithering

Without Dithering

With Dithering

Wii Graphics Primer

RVL-06-0301-001-A 36  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

3.6 Video Output

3.6.1 Frame Buffer

The frame buffer in graphics memory (the Embedded Frame Buffer, or EFB) is first copied to the

external frame buffer in main memory (the eXternal Frame Buffer, or XFB) and then sent to the video

interface. During EFB-to-XFB copying, antialias filtering, deflicker filtering, gamma correction, RGB-to-

YUV conversion, and Y-scaling are performed.

Table 3-5 shows the pixel formats that can be used by the EFB.

Table 3-5 Pixel Formats of the EFB

Pixel Format Number of RGB (A) Bits Number of Z Bits Antialiasing

RGB8_Z24 8 bits for each RGB 24 bits Not possible

RGBA6_Z24 6 bits for each RGBA 24 bits Not possible

RGB565_Z16 R - 5 bits, G - 6 bits, B - 5 bits 16 bits Possible

The maximum resolution for the EFB is 640 × 528 without antialiasing and 640 × 264 with antialiasing.

The maximum screen space on the TV screen is 720 × 480 for NTSC or MPAL, and 720 × 574 for PAL.

To display to a screen space that is larger than the maximum EFB resolution or to change the aspect

ratio (for example, to fit a widescreen TV), use Y-scaling for the vertical direction when copying data

from the EFB to the XFB and X-scaling for horizontal direction when outputting from the XFB to video

(see Figure 3-28). To increase vertical resolution, the EFB can also be rendered in several steps and

copied to an XFB that is larger than the EFB.

Figure 3-28 Scaling Frame Buffer

Y-scaling X-scaling

EFB XFB TV screen

Specify location on the screen.

Wii Graphics Primer

 2008 Nintendo 37 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

For each TV format (NTSC, MPAL, or PAL), select one of the following rendering modes.

• Interlace

• Interlace (field rendering)

• Noninterlace (not recommended)

• Progressive

In interlace mode (see Figure 3-29), a scan is done twice for each screen display (once for odd-

numbered fields and once for even-numbered fields). All fields are rendered, then each subsequent

frame is displayed by alternately scanning the odd and even fields.

Figure 3-29 Interlace Mode

EFB

XFB

Even Fields

Odd Fields

Copy Display
TV Screen

TV Screen

Wii Graphics Primer

RVL-06-0301-001-A 38  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

In interlace (field rendering) mode (see Figure 3-30), each frame is displayed by alternately rendering

odd and even fields. Compared to the regular interlace mode, the EFB is only half the size, and the

processing load is lighter. However, if a process is dropped, the screen from the previous frame will

appear and one scan line of jitter will be visible on the screen.

Figure 3-30 Interlace (Field Rendering) Mode

In noninterlace mode (see Figure 3-31), the even fields are displayed in each frame only after these

fields are rendered. Compared to the regular interlace mode, the EFB is only half the size and the

processing load is lighter. However the vertical resolution is also reduced by half.

Figure 3-31 Noninterlace Mode

EFB

XFB
Copy Display

TV Screen

EFB

EFB

XFB

XFB

TV Screen

TV Screen
Display

Display

Even Fields

Odd Fields

Wii Graphics Primer

 2008 Nintendo 39 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

In progressive mode (see Figure 3-32), all fields are displayed in each frame after they are rendered.

This mode provides high picture quality and has none of the flicker of the interlace modes, but it can

only display on a television that supports progressive mode.

Figure 3-32 Progressive Mode

EFB

Copy

XFB

Display

TV Screen

3.6.2 Antialiasing

Antialiasing is a feature that smoothes the edges of rendered polygons and lines by mixing the colors

of the pixels above and below each boundary pixel, thus reducing aliasing artifacts (jaggies).

Antialiasing can only be used when the frame buffer format is RGB565_Z16 and the resolution is 640 x

264 or lower. To apply antialiasing to an image of 640 x 480 resolution, perform the same rendering

process twice (render the upper and lower halves separately) then combine them. Figure 3-33 is only a

conceptual diagram for antialiasing; the actual display may vary.

Figure 3-33 Antialias

Frame Buffer

Polygon Boundary

Antialias OFF Antialias ON

Wii Graphics Primer

RVL-06-0301-001-A 40  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

3.6.3 Gamma Correction

Select 1.0, 1.7, or 2.2 for the gamma correction value. The picture being rendered in the frame buffer is

not changed. However, when the picture is output to video, the overall screen will appear lighter with a

larger gamma correction value. Figure 3-34 only shows gamma correction; the actual display may vary.

Figure 3-34 Gamma Correction

3.6.4 Deflicker

The deflicker filter is a feature for reducing flicker when interlace mode is used. The deflicker filter

operates on the entire screen.

3.6.5 Converting From RGB to YUV

When data is copied from the EFB to the XFB, the pixel format is converted from RGB to YUV. This

conversion process reduces the data volume to two-thirds of its original size, allowing space to be

saved in the XFB.

The YUV format expresses colors by their brightness (Y), blue color component (U), and red color

component (V). The human eye has a relatively low sensitivity to colors, so a small number of bits can

be allocated for the U and V values.

Gamma = 1.0 Gamma = 1.7 Gamma = 2.2

Wii Graphics Primer

 2008 Nintendo 41 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4 Examples of TEV Settings
Using the TEV, Wii can express a variety of materials. In this chapter, different examples of TEV

settings are used to demonstrate how to express basic materials.

• 4.1 Modulation

• 4.2 Blending Using Two Textures

� 4.2.1 Addition

� 4.2.2 Subtraction

� 4.2.3 Multiplication

� 4.2.4 Addition and Multiplication Combined

� 4.2.5 Decal

� 4.2.6 Decal (Applied)

� 4.2.7 Proportional Blending

• 4.3 Two-Color Interpolation

4.1 Modulation

4.1.1 Features of Modulation

The brightness of the TEV computation expression output result can be halved (darkened), doubled, or

quadrupled as shown in Figure 4-1.

Figure 4-1 Modulated Images

x 0.5

CopyCopy

Output Result

Original TV Screen

x 2.0

Wii Graphics Primer

RVL-06-0301-001-A 42  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.1.2 What is Modulation?

Modulation uses the scale value located on the far right of the TEV computation expression. Scale is

specified by 0.5, 1.0, 2.0, or 4.0. Normally, 1.0 is used.

Result = [D + { (1 - C) x A + C x B } +0.0] x Scale

Wii Graphics Primer

 2008 Nintendo 43 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.2 Blending Using Two Textures
Various blending effects can be expressed by pasting two layered textures. The basic blending effects

and their configuration are explained separately (see references listed in Figure 4-2). The grid pattern

visible in the output result of Figure 4-2 indicates transparency due to alpha.

Figure 4-2 Blending of Two Textures

Proportional Blending

Addition

Texture 1 Texture 2

Subtraction

Section 4.2.1

Section 4.2.4

Output Result

Section 4.2.2

Decal

Sections 4.2.5 and 4.2.6 Section 4.2.7

Multiplication

Section 4.2.3

RGB Alpha RGB Alpha

Addition and Multiplication

Combined

Wii Graphics Primer

RVL-06-0301-001-A 44  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.2.1 Addition

This method adds one texture to another, brightening the added portions of the two textures (see

Figure 4-3). Addition can also be used for effects such as light and white fadeout.

Figure 4-3 Example of Texture Addition

4.2.1.1 How Addition Works

In the TEV computation expression, where 0.0 is specified for B and C, D + A is used:

Result = [D + { (1 - C) x A + C x B } +0.0] x 1.0

= [D + { (1 – 0.0) x A + 0.0 x 0.0 } +0.0] x 1.0

= D + A

Texture 1

Texture 2

RGB Alpha

RGB Alpha

Output

Wii Graphics Primer

 2008 Nintendo 45 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.2.1.2 Stage Settings for Adding Textures

Addition of two textures requires the use of two stages of the TEV. In stage 0 (see Figure 4-4), the

texture color and alpha are output unmodified to color register 3 by both the color and alpha stages.

Next, D + A from stage 1 is used to add the second texture to the result of the previous stage.

In Figure 4-4, TEX C refers to the texture's RGB components and TEX A to its alpha component.

CREG*C refers to the color register's RGB components, and CREG* A to its alpha component.

Figure 4-4 Example of Stage Settings for Addition

Color Stage

CREG3 C CREG3 A

CREG3 C CREG3 AFinal Output

Stage 0

A

Stage 1

“TEX C“
A

“TEX A“

D + A A
“CREG3 C” + “TEX C“ “CREG3 A“

Alpha Stage

Wii Graphics Primer

RVL-06-0301-001-A 46  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.2.2 Subtraction

This method subtracts one texture from another, making the subtracted portions darker (see Figure

4-5). Subtraction can also be used for the effects such as fadeout.

Figure 4-5 Example of Subtraction

4.2.2.1 How Subtraction Works

In the TEV computation expression, where 0.0 is specified for B and C, D − A is used:

Result = [D － { (1 - C) x A + C x B } +0.0] x 1.0

= [D － { (1 – 0.0) x A + 0.0 x 0.0 } +0.0] x 1.0

= D － A

Texture 1

Texture 2

RGB Alpha

RGB Alpha

Output

Wii Graphics Primer

 2008 Nintendo 47 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.2.2.2 Stage Settings for Subtraction

Subtraction of two textures requires the use of two stages of the TEV. In stage 0 (see Figure 4-6), the

texture color and alpha are output unmodified to color register 3 by both the color and alpha stages.

Next, D − A from stage 1 is used to subtract the second texture from the result of the previous stage.

Figure 4-6 Example of Stage Settings for Subtraction

Color Stage

CREG3 C CREG3 A

CREG3 C CREG3 AFinal Output

A

Stage 1

“TEX C“
A

“TEX A“

D - A A
“CREG3 C” － “TEX C“ “CREG3 A“

Alpha StageStage 0

Wii Graphics Primer

RVL-06-0301-001-A 48  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.2.3 Multiplication

This method multiplies two textures to produce a darker texture, as illustrated in Figure 4-7.

Figure 4-7 Example of Texture Multiplication

4.2.3.1 How Multiplication Works

In the TEV computation expression, where 0.0 is specified for A and D, C × B is used:

Result = [D + { (1 - C) x A + C x B } +0.0] x 1.0

= [0.0 + { (1 – C) x 0.0 + C x B } +0.0] x 1.0

= C x B.

Texture 1

Texture 2

RGB Alpha

RGB Alpha

Output

Wii Graphics Primer

 2008 Nintendo 49 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.2.3.2 Stage Settings for Multiplication

Multiplication of two textures requires the use of two stages of TEV. In stage 0 (see Figure 4-8), the

texture color and alpha are output unmodified to color register 3 by both the color and alpha stages.

Next, C × B from stage 1 is used to multiply the second texture and the result of the previous stage.

Figure 4-8 Example of Stage Settings for Multiplication

Color Stage

CREG3 C CREG3 A

CREG3 C CREG3 AFinal Output

Stage 0

A

Stage 1

“TEX C“
A

“TEX A“

C x B A
“CREG3 C” x “TEX C“ “CREG3 A“

Alpha Stage

Wii Graphics Primer

RVL-06-0301-001-A 50  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.2.4 Addition and Multiplication Combined

Combining addition and multiplication allows expression of effects where only the parts that have a

semi-translucent or opaque alpha component are added, as illustrated in Figure 4-9.

Figure 4-9 Example of Addition and Multiplication Combined

4.2.4.1 How Addition and Multiplication Combined Works

In the example for adding textures, D + A was used to add two textures. For addition and multiplication

combined, replace A with C × B to multiply the texture color and texture alpha of the second texture,

then add the result to that of the previous stage. In other words, only the semi-translucent and opaque

portions of the second texture are added. In the TEV computation expression shown directly below, 0.0

is specified for A.

Result = [D + { (1 - C) x A + C x B } +0.0] x 1.0

= [D + { (1 – C) x 0.0 + C x B } +0.0] x 1.0

= D + C x B

Texture 1

Texture 2

RGB Alpha

RGB Alpha

Output

Wii Graphics Primer

 2008 Nintendo 51 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.2.4.2 TEV Settings for Addition and Multiplication Combined

The methods of addition and multiplication combined, and addition of textures with alpha components

require the use of two stages of TEV. In stage 0 (see Figure 4-10), the texture color and alpha are

output unmodified to color register 3 by both the color and alpha stages. Next, D + C × B from stage 1

is used to add the second texture to the result of the previous stage.

Figure 4-10 Example of Stage Settings for Addition and Multiplication Combined

Color Stage

CREG3 C CREG3 A

CREG3 C CREG3 AFinal Output

Stage 0

Stage 1

A A
“TEX C“ “TEX A“

D + C x B
“CREG3 C” + “TEX A“ x “TEX C”

A
“CREG3 A“

Alpha Stage

Wii Graphics Primer

RVL-06-0301-001-A 52  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.2.5 Decal

This method pastes a texture that has both transparent and opaque texels over another texture. Unlike

the addition and multiplication methods (see Figure 4-11), the brightness and coloring of the displayed

textures do not change.

Figure 4-11 Example of Decal

4.2.5.1 How Decal Works

In the TEV computation expression, where 0.0 is specified for D, decal uses the (1 −C) × A + C × B

part to combine two textures.

Result = [D + { (1 - C) x A + C x B } +0.0] x 1.0

= [0.0 + { (1 – C) x A + C x B } +0.0] x 1.0

= (1 – C) x A + C x B

Although this expression may look complicated, notice that (1 −C) and C represent proportions. The

larger the value of C, the greater the relative weight of B. Conversely, the smaller the value of C, the

greater the relative weight of A. When C equals 0, the output is A. When C equals 1, the output is B.

Decal uses the texture's alpha component for C. The effect is similar to masking.

Texture 1

Texture 2

RGB Alpha

RGB Alpha

Output

Wii Graphics Primer

 2008 Nintendo 53 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.2.5.2 Stage Settings for Decal

Using decal to paste one texture onto another requires the use of two stages of the TEV. In stage 0

(see Figure 4-12), the texture color and alpha are output unmodified to color register 3 by both the

color and alpha stages. Next, in stage 1, the second texture’s alpha component is assigned to C and (1

− C) × A + C × B is used to combine the two textures. When this is done, the first texture shows where

the alpha component is transparent, and the second texture shows where the alpha component is

opaque.

Figure 4-12 Example of Stage Settings for Decal

Color Stage

CREG3 C CREG3 A

CREG3 C CREG3 A

A A
“TEX C“ “TEX A“

(1 – C) x A + C x B
（1 – “TEX A”） x “CREG3 C” + “TEX A” x “TEX C”

A
“CREG3 A“

Alpha Stage

Final Output

Stage 0

Stage 1

Wii Graphics Primer

RVL-06-0301-001-A 54  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.2.6 Decal (Applied)

This method allows applied settings to be configured for the decal method. With these settings (see

Figure 4-13), the second texture gradually appears after the first texture is pasted.

Figure 4-13 Example of Decal (Advanced)

4.2.6.1 How Decal (Advanced) Works

As with the standard decal method, in the TEV computation expression (where 0.0 is specified for D),

the two textures are combined using (1 − C) × A + C × B.

Result = [D + { (1 - C) x A + C x B } +0.0] x 1.0

= [0.0 + { (1 – C) x A + C x B } +0.0] x 1.0

= (1 – C) x A + C x B

In decal (applied), the order of textures is the reverse of the standard decal’s order. The alpha

component of the upper-layer texture is multiplied by the value of the constant register. The result is

used as the mask.

Texture 1

Texture 2

RGB Alpha

RGB Alpha

Output

Varies depending on

the value in the register

Wii Graphics Primer

 2008 Nintendo 55 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.2.6.2 Stage Settings for Decal (Applied)

Using decal (applied) requires the use of two stages of the TEV. In stage 0 (see Figure 4-14), the

texture alpha and constant registers are multiplied by the alpha stage and output to color register 3.

The texture color is output unmodified to color register 3 by the color stage.

In the color stage of stage 1, the two textures are combined. For the blending ratio, the alpha

component from color register 3 of the previous stage is used.

Figure 4-14 Example of Stage Settings for Decal (Applied)

When the value of the constant register is 255, the value for C entered in the color stage of stage 1

(henceforth referred to as ST1_C) functions like a mask for decal display.

When the value of the constant register is 128, ST1_C is half as bright as when the value is 255.

Consequently, the first texture is faintly blended.

When the value of the constant register is 0, ST1_C is completely black. Only the second texture is

displayed.

Color Stage

CREG3 C CREG3 A

CREG3 C CREG3 A

A
“TEX C”

(1 – C) x A + C x B
（1 – “CREG3 A”） x “TEX C” + “CREG3 A” x “CREG3 C”

A
“TEX A“

Alpha Stage

Final Output

Stage 0

Stage 1

C x B
“TEX A” x “KONST”

ST1_C

Wii Graphics Primer

RVL-06-0301-001-A 56  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.2.7 Proportional Blending

This method blends two textures according to a specified ratio. Although in Figure 4-15 this ratio is

50% – 50%, it can be adjusted to allow for a smooth change of one texture into another. The grid

pattern visible in the output indicates the transparency due to alpha.

Figure 4-15 Example of Proportional Blending

4.2.7.1 How Proportional Blending Works

In the TEV computation expression below, where 0.0 is specified for B while C is used for the blending

ratio, the two textures are combined using D + (1 - C) × A. For C, use the components of the color

register or the constant register.

Result = [D + { (1 - C) x A + C x B } +0.0] x 1.0

= [D + { (1 – C) x A + C x 0.0 } +0.0] x 1.0

= D + (1 – C) x A

In the previous stage, the first texture was multiplied by the same ratio. The larger the value of C, the

greater the relative weighting of the first texture. Conversely, the smaller the value of C, the greater the

relative weighting of the second texture.

Texture 1

Texture 2

RGB Alpha

RGB Alpha

Output

Wii Graphics Primer

 2008 Nintendo 57 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.2.7.2 Stage Settings for Proportional Blending

In Figure 4-16, the A component of constant register 3 is used and the value is set to 128. In stage 0,

the first texture is multiplied by the ratio set in the constant register in both the color and alpha stages.

Next, in stage 1, the second texture is multiplied by the remaining ratio (1 − C) and the result is then

multiplied by the result of the previous stage.

Although the example in Figure 4-16 uses the A component of constant register 3, other registers and

components can be used to achieve the same effect. In this figure, “KONST” refers to constant register.

Figure 4-16 Example of Stage Settings for Proportional Blending

Color Stage

CREG3 C

CREG3 CFinal Output

Stage 0

Stage 1

C x B
“KONST” x “TEX C“

D + (1 – C) x A
“CREG3 C” + （1 – “KONST”） x “TEX C”

Alpha Stage

CREG3 A

CREG3 A

C x B
“KONST” x “TEX A“

“CREG3 A” + （1 – “KONST”） x “TEX A”

D + (1 – C) x A

Wii Graphics Primer

RVL-06-0301-001-A 58  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

4.3 Two-Color Interpolation
Two-color interpolation is one of the basic ways the TEV is used. As shown in Figure 4-17, for

grayscale rasterized color and texture color, one color is specified for the bright portions and another

for the dark portions. Color is then applied by interpolating these two colors. Two-color interpolation

can be used to render sky and ocean scenes.

Figure 4-17 Example of Two-Color Interpolation

4.3.1 How Two-Color Interpolation Works

In the TEV computation expression, where 0.0 is specified for D, two-color interpolation uses (1 − C) ×
A + C × B to combine two colors.

Result = [D + { (1 - C) x A + C x B } +0.0] x 1.0

= [0.0 + { (1 – C) x A + C x B } +0.0] x 1.0

= (1 – C) x A + C x B

Normally, a color register is specified for A and B, and a grayscale texture color or rasterized color is

specified for C. When this is done, portions of C that are lighter (white) are colored with B, and portions

of C that are darker (black) are colored with A. As a result, the grayscale shading acquires two colors,

A and B.

Color 1

Color 2

Texture

Color 1

Output Result
Color 2

and

and

Wii Graphics Primer

 2008 Nintendo 59 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

4.3.2 Stage Settings for Two-Color Interpolation

Two-color interpolation requires the use of only one stage of the TEV. As illustrated in Figure 4-18, two-

color registers (0 and 1) are used to color a grayscale texture. “1 − C” is the same as C with the light

and dark areas reversed.

Figure 4-18 Example of Stage Settings for Two-Color Interpolation

CREG3 C CREG3 AFinal Output

Stage0

(1 – C) x A + C x B
（1 – “TEX C”） x “CREG0 C” + “TEX C” x “CREG1 C”

A
“TEX A“

Wii Graphics Primer

RVL-06-0301-001-A 60  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5 Textures
Wii has powerful texture mapping features, including compressed texture, color index texture, texture

filter, multi-texture, indirect texture, and mipmap texture. This chapter describes textures.

5.1 Texture Size
While individual picture elements that comprise the frame buffer are called pixels, individual picture

elements that comprise the texture image are called texels.

Figure 5-1 Texel

Wii can use textures that range in size from 1 to 1024 texels in width and height (see Figure 5-2). The

width and height do not have to be equal, and rectangular textures can also be used.

To use a texture whose resolution exceeds 1024 texels, divide the texture and polygons into a number

of parts. To use repeat, mirror, or mipmap, both width and height values must equal a power of 2.

Figure 5-2 Minimum and Maximum Sizes of Textures

1

1

1024

1024Minimum Size

Maximum Size

Texel

Texture

Wii Graphics Primer

 2008 Nintendo 61 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.2 Texture Formats

5.2.1 Opaque, Translucent, and Outline

The alpha component of the texture image dictates which texture formats can be used.

In this document, the states of the alpha component are differentiated by using three texture names.

As shown in Figure 5-3, a texture is said to be opaque if all texels in the texture image are opaque (α =

255), outline if some texels are opaque and others are transparent (α = 0), and translucent if any

texel is translucent (1 ≤ α ≤ 254).

Figure 5-3 Opaque, Outline, and Translucent Textures

Opaque Texture
All texels are opaque

Includes transparent
or translucent texels

Outline Texture

Translucent Texture

Opaque or transparent

Includes translucent texels

Image of Alpha Component

Wii Graphics Primer

RVL-06-0301-001-A 62  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.2.2 Types of Texture Formats

Table 5-1 shows the eleven texture formats that can be used with Wii.

Table 5-1 Comparison of Texture Formats

Note 1: Tiles are explained later in this document. See section 5.2.10 Tiles.

Note 2: For color index, expression of translucence depends on the palettes being used.

Format (Abbreviation)
Bits Per

Texel
Expression
of Outlines

Translucence
Tile

(see note 1)

Intensity 4-bits (I4) 4 bits Y Y (16 levels) 8x8

Intensity 8-bits (I8) 8 bits Y Y (256 levels) 8x4

Intensity+Alpha 8-bits (IA4) 8 bits Y Y (16 levels) 8x4

Intensity+Alpha 16-bits (IA8) 16 bits Y Y (256 levels) 4x4

RGB565 16 bits N N 4x4

RGB5A3 16 bits Y Y (8 levels) 4x4

RGBA8 32 bits Y Y (256 levels) 4x4

Compressed Texture (CMPR) 4 bits Y N 8x8

Color Index 4-bits (C4) 4 bits Y ∆ (Note 2) 8x8

Color Index 8-bits (C8) 8 bits Y ∆ (Note 2) 8x4

Color Index 14-bits (C14) 16 bits Y ∆ (Note 2) 4x4

Wii Graphics Primer

 2008 Nintendo 63 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

The number of bits per texel is different for the different texture formats. If, for example, a 256 x 256

texture is stored in different data formats, the amount of space occupied in memory will differ, as shown

in Figure 5-4. Better use of memory can be made by choosing a format to match the texture picture.

Figure 5-4 Comparison of Texture Format and Texture Size (256x256 Texture)

Note: In addition to the data sizes shown in Figure 5-4, separate palette data are required for C4, C8,

and C14.

256 KB

128 KB

64 KB
32 KB

I4

C4

CMPR

I8

IA4

C8

IA8

C14

RGB565

RGB5A3

RGBA8

Wii Graphics Primer

RVL-06-0301-001-A 64  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.2.3 Optimal Texture Format

Figure 5-5 shows how to select the optimal format from the eleven texture formats, depending on the

status of RGB components and the alpha component of a texture.

Figure 5-5 Optimal Texture Formats

Palettes not used

Grayscale

No alpha

Alpha

I4

I8

IA4

IA8

C4

C8

C14

RGB565

RGB5A3

RGBA8

CMPR

Color

Palettes used

Data size

Picture quality

Opaque

RGB5A3

Translucent

Data size

Picture quality

Data size

Picture quality

Outline

Data size

Picture quality

CMPR

Data size

Picture quality

16 or fewer colors

17-256 colors

257-16384 colors

Wii Graphics Primer

 2008 Nintendo 65 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.2.4 Intensity

As shown in Table 5-2, I4 and I8 are grayscale formats that have only brightness. The texture itself

does not have an alpha component, but in the TEV stage settings it can be used as an alpha value.

Table 5-2 Intensity Format Textures

Format Image Description

I4
Intensity format where each texel is 4 bits.

Can be used to express a 16-level grayscale.

I8
Intensity format where each texel is 8 bits.

Can be used to express a 256-level grayscale.

Wii Graphics Primer

RVL-06-0301-001-A 66  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.2.5 Intensity Alpha

IA4 and IA8 are grayscale formats that have the brightness and alpha components.

Table 5-3 Intensity Alpha Format Textures

Format Image Description

IA4

Intensity format where each texel is 8 bits.

Can be used to express a 16-level grayscale and alpha.

Note: The grid pattern visible in the picture to the left indicates

translucence due to alpha.

IA8

Intensity format where each texel is 16 bits.

Can be used to express a 256-level grayscale and alpha.

Note: The grid pattern visible in the picture to the left indicates

translucence due to alpha.

5.2.6 RGB

RGB565 (see Table 5-4) is the format that has RGB components but no alpha component.

Table 5-4 RGB Format Textures

Format Image Description

RGB565

RGB format where each texel is 16 bits.

Includes:

• 5-bit red component (32 levels)

• 6-bit green component (64 levels)

• 5-bit blue component (32 levels)

Wii Graphics Primer

 2008 Nintendo 67 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.2.7 RGBA

RGB5A and RGBA8 are formats that have RGB components and an alpha component.

Table 5-5 RGBA Format Textures

Format Image Description

RGB5A3

In this RGBA format, each texel is 16 bits.

RGB5A3 allows the interpretation of individual texels as

translucent or opaque to be changed.

If the upper bit is 0, the texel is processed as translucent.

The red, green, and blue components are 4 bits each (16

levels) and the alpha component is 3 bits (8 levels).

If the upper bit is 1, the texel is processed as opaque. The

red, green, and blue components are 5 bits each (32 levels).

Note: The grid pattern visible in the picture to the left

indicates translucence due to alpha.

RGBA8

In this RGBA format, each texel is 32 bits.

Red, green, blue, and alpha components are 8 bits each

(256 levels).

RGBA8 gives the most attractive display of pictures that have

many colors, but the size of data is also the largest.

Note: The grid pattern visible in the picture to the left

indicates translucence due to alpha.

Wii Graphics Primer

RVL-06-0301-001-A 68  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.2.8 Compressed Texture

This texture format uses data compression.

Table 5-6 Compressed Texture Format Textures

Format Image Description

CMPR

Expresses a 4x4 block of 16 texels in 64 bits.

Lossy compression is used, so the picture is close to, but not

exactly the same as the original.

This format cannot express translucence but can express

outline (where alpha = 0).

Although this is a compression format, it does not place any

greater display processing load on the Wii than the other

texture formats.

Note: The grid pattern visible in the picture to the left

indicates translucence due to alpha.

Because compressed textures use the lossy compression method, the original picture may not be

faithfully reproduced. However, compressed textures reproduce high quality images for natural scenes

and images with smooth color gradations.

Generally, this format is optimal for high-resolution images, images that have no translucent texels, and

images where the texels have little individual significance.

Figure 5-6 shows the image and data size for a 64 x 64 texture in different texture formats.

Figure 5-6 Graphic Suited For the Compressed Texture Format

Because loss of detail becomes apparent, compressed textures are not suited for images where

neighboring texels often have different colors and the texels have a large individual significance.

RGB565 (32KB) C8 (16KB） Compressed Texture (8KB)

Wii Graphics Primer

 200
CONF

Figure 5-7 shows the image and data size for a 32 x 32 texture in different texture formats.

Figure 5-7 Graphic Not Suited For Compressed Texture Format

5.2.8.1 How Compressed Texture Works

Compressed texture uses S3TC compression technology.

Each 4 x 4 set of texels is treated as one block. The 4 x 4 set of 16 texels requires at most 16 colors,

but this is recreated using 4 colors. The data is stored for only two colors (not four). The other two

colors are created using interpolation. The resulting four colors are used to express the 16 texels.

Figure 5-8 and Figure 5-9 demonstrate how compressed texture works.

Figure 5-8 Compressed Texture (Generating Two Interpolation Colors)

RGB565 (16KB) Compressed Texture (4KB)C8 (8KB)

Color 00

Color 01

Color 10

Color 11

Stores 16 bits of color data.

Stores 16 bits of color data.

00 00 10 11

00 10 10 11

10 11 11 01

11 11 01 01

Generated by interpolating colors 00 and 01.

Data is not stored.
Specify color using 2 bits per texel.
8 Nintendo 69 RVL-06-0301-001-A
IDENTIAL Released: February 15, 2008

Because the color (RGB) data for two colors is stored using 16 bits per color and because each color

of the 16 texels is specified using 2 bits per texel, the 16 texels are expressed by 64 bits (16 x 2 + 2 x

16). This corresponds to 4 bits per texel.

Wii Graphics Primer

RVL-06-0301-001-A 70  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

The preceding explanation assumes that the two interpolated colors are newly generated from two

colors. But they can also be created using an intermediate between the two colors and the outline

(alpha = 0), as illustrated in Figure 5-9.

Figure 5-9 Compressed Texture (Using Outline)

The interpolation method used can be selected in each block and is determined by comparing Color 00

to Color 01 as simple 16-bit values. The interpolation method that does not use outline is selected If

Color 00 ≥ Color 01. The interpolation method that uses outline is selected If Color 00 < Color 01.

Because compressed textures use a lossy compression method, the extent of image detail loss is

determined when the compressed texture data is generated from the original image. Specifically, it

depends on the image type, the two colors stored for each block, and the interpolation method used for

each block.

Color 00

Color 11

Color 10

Color 01

Stores 16 bits of color data.

Stores 16 bits of color data.

Intermediate color between Color 00

and 01, has no data.

Specify color using 2 bits per texel.

Outline (alpha = 0), has no data.

00 00 10 01

00 10 10 01

10 01 01 11

01 01 11 11

Wii Graphics Primer

 2008 Nintendo 71 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.2.9 Color Index Texture

The color index texture formats (C4, C8, and C14) differ from other texture formats that store color

information for each texel. These formats store color information in palettes, and each texel stores an

index to the color palettes (see Figure 5-10).

Figure 5-10 Color Index

When using color indices as shown in Figure 5-11, not only is data size minimized, but texture colors

can also be changed simply by switching color palettes.

Figure 5-11 Switching Color Palettes

Color Palette A

Color Palette B
Color Index

+

+

Texture Graphic

Wii Graphics Primer

RVL-06-0301-001-A 72  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.2.9.1 Color Palettes

Choose one of the following three color palette formats.

• IA8

• RGB565

• RGB5A3

The color information for each texel is maintained the same way as the aforementioned texture formats.

All of these color palette formats maintain one color with 16 bits. There is no 32-bit palette format.

To display a grayscale texture pattern with the best picture quality, use I8 format. If the pattern is not a

grayscale and if it has transparent or translucent alpha values, the RGB5A3 format is most suitable. If

the image is completely opaque, use RGB565 format.

Wii Graphics Primer

 2008 Nintendo 73 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.2.9.2 Color Index Format

Table 5-7 Color Index Format Textures

Format Image Description

C4
4-bit color index texture.

Select colors from a 16-color palette.

C8
8-bit color index texture.

Select colors from a 256-color palette.

C14
14-bit color index texture.

Select colors from a 16,384-color palette.

NintendoWare does not support palettes of more than 256 colors.

Wii Graphics Primer

RVL-06-0301-001-A 74  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.2.10 Tiles

The tile is the smallest image unit for textures that can be used on Wii. To read textures, the GPU uses

the tile as its unit, and the width and height of texture data must be in multiples of a tile.

The tile’s size is 32 bytes, same as the size of the Wii's texture cache line. Because the per-texel data

size differs for each texture format, the number of texels that constitute a tile also varies by texture

format (see Figure 5-12).

Figure 5-12 Texture Format and Tiles

Note: In the 32-bit format, a tile is handled as a set of two 4x4 texels (AR, GB).

For example, if using I4 format (where one texel is 4 bits), texture data whose width and height are

both eight times the size of the texel data must be prepared.

If the texture’s width and height are not multiples of a tile, the texture’s right side and bottom have to be

padded with data so that the width and height become multiples of a tile.

If the width and height of a texture are not multiples of a tile, padding is performed

automatically by a plug-in so the texture is output as a multiple of a tile.

1 texel 4 bits

(I, C4, CMPR)

1 texel 8 bits

(I8, IA4, C8)

1 texel 16 bits

(IA8, C14,

RGB565, RGB5A3)

8x8 8x4 4x4 4x44x4

1 texel 32 bits
（RGBA8）

Wii Graphics Primer

 2008 Nintendo 75 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.3 Repeat Pasting of a Texture

5.3.1 Clamp, Repeat, and Mirror

Wii supports three methods for the repeat pasting of a texture (clamp, repeat and mirror). The three

methods can be specified independently in the horizontal and vertical directions.

• Clamp: Elongates the color at the texture’s edge

• Repeat: Simply repeats the texture

• Mirror: Inverts and repeats the texture

Given a quadrangular polygon, for example, the repetitive pasting of a texture once in every direction

(left, right, up, and down) would produce the tiling shown in Figure 5-13.

Figure 5-13 Tiling Method

5.3.2 Restrictions for Specifying Repeat and Mirror

To specify repeat or mirror, the texel size must be a power of 2 (that is, 4, 8, 16, 32, 64, 128, 256, 512,

or 1024), but the width and height do not need to be the same size. Rectangular sizes such as 16 x 8

and 128 x 8 can be used.

（-1.0, -1.0）

（2.0, 2.0）（-1.0, 2.0）

Clamped Vertically

and Horizontally

Repeated Vertically

and Horizontally

Mirrored Vertically

and Horizontally

（2.0, -1.0）

Mirrored Horizontally,

Clamped Vertically

Wii Graphics Primer

RVL-06-0301-001-A 76  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.4 Mipmap

5.4.1 Mipmaps

Use mipmaps if the individual texels of a texture mapped to a polygon are smaller than the pixels of the

frame buffer (in other words, if the texture is being rendered in a reduced size). As shown in Figure

5-14, mipmapping can reduce moiré patterns. When the polygons are situated far from the camera,

mipmapping lightens the load on the GPU.

Figure 5-14 Mipmapping Used to Erase Moiré Patterns

Wii allows up to 11 levels of mipmaps to be used with any of the texture formats. The largest image

portion is called level 0 and the surface area of each subsequent level is one-fourth the size of the

previous level, as illustrated in Figure 5-15.

Figure 5-15 Illustration of Mipmap Texture

Mipmaps do not require square shapes, but both width and height must be a power of 2 (that is, 4, 8,

16, 32, 64, 128, 256, 512, 1024).

Level 0

Level 1

Level 2

Without mipmapping With mipmapping

Wii Graphics Primer

 2008 Nintendo 77 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.4.2 LOD Bias

When using mipmaps, textures may become blurry if the texture LOD result is larger than expected

and small mipmaps are referenced. To adjust for this, Wii includes the LOD bias feature. Adding bias

to the LOD computation result alters the way mipmaps are applied. In Figure 5-16, the color is changed

at every LOD level, making the change at boundaries easier to recognize.

Figure 5-16 Using LOD Bias to Adjust the Mipmap Level Boundaries

LOD bias = -1

LOD bias = 0

LOD bias = 1

Wii Graphics Primer

RVL-06-0301-001-A 78  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.5 Texture Filters
Wii’s filter feature has two modes for mapping textures (point sampling and bilinear filtering).

When using point sampling, texels are referenced only when pixel colors are determined. Therefore,

the jaggedness at texel boundaries stands out (see Figure 5-17). When using bilinear filtering,

interpolation is performed when pixel colors are determined. Therefore, the texel boundaries look

smoother.

Figure 5-17 Point Sampling and Bilinear Filtering

When texture-mapped polygons are rendered in the frame buffer, individual texels of a texture may be

larger than those of the frame buffer. In this case, the texture is being enlarged for display.

Conversely, when a texture is rendered in the frame buffer in a form smaller than the actual number of

its texels, the texture is being reduced for display.

For both texture enlargement and reduction, Wii supports separate specification of either point

sampling or bilinear filtering as the filter mode. For texture reduction and mipmapping, a texture filter

can also be specified for blending the mipmap levels. Table 5-8 illustrates and summarizes the texture

filter modes.

Point Sampling Bilinear Filtering

Wii Graphics Primer

 2008 Nintendo 79 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

Table 5-8 Texture Filter Modes

Point Sampling Bilinear Filtering

Mipmap Not Used

Near Linear

Sharp shift between levels

Near_Mip_Near Linear_Mip_Near

Mipmap

Used

Smooth shift between

levels

Near_Mip_Linear Linear_Mip_Linear

Note: Specify a mode for enlarging and a mode for reducing the texture.

Enlarging the

Texture

- Near
- Linear

- Near
- Linear
- Near_Mip_Near
- Near_Mip_Linear
- Linear_Mip_Near
- Linear_Mip_Linear

Reducing the

Texture

Wii Graphics Primer

RVL-06-0301-001-A 80  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.6 Texture Mapping

5.6.1 Texture Coordinate Space and Texture Coordinates

When texture coordinates are used to map a texture on Wii, the origin is in the upper-left corner (see

Figure 5-18), the forward direction for the S-coordinates is to the right, and for the T-coordinates

downward from the origin.

With standard 3DCG tools, the origin (0.0, 0.0) is in the lower-left corner. The forward direction for the

U-coordinates is to the right, and for the V-coordinates upward from the origin. Keep in mind that in the

texture coordinate space of Wii, the origin position and the upward direction are interpreted differently.

Figure 5-18 Texture Coordinate Space

Regardless of the texture size, mapping fits the texture in the 0.0 – 1.0 range in both the S and T

directions. Figure 5-19 shows how the mapping looks when a texture that is long in the horizontal

direction is pasted to a square polygon with the ST texture coordinates in the 0.0 – 1.0 range, and

when it is pasted to another square polygon with the ST texture coordinates in the 0.0 – 0.5 range.

Figure 5-19 Using Texture Coordinates for Mapping

In the plug-in provided with NintendoWare, the texture coordinates are converted to

match the Wii's ST coordinates when the data is output.

（0.0, 0.0） S

T

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0) (1.0, 1.0)

and

and

(0.0, 0.0) (0.5, 0.0)

(0.0, 1.0) (0.5, 1.0)

Wii Graphics Primer

 2008 N
CONFIDE

5.6.2 Converting and Mapping Texture Coordinates

5.6.2.1 Converting Texture Coordinates

In addition to using texture coordinates for regular mapping, Wii also performs mapping using vertex

position coordinates and normals. This section explains the process of converting texture coordinates.

When texture mapping, vertex position coordinates, normals, texture coordinates, and rasterized colors

are used as the input sources for generating the final texture coordinates. As shown in Figure 5-20, the

texture coordinates that determine the ultimate position for mapping are determined by multiplying the

vertex data (the input source) by the texture coordinate conversion matrix (texture matrix).

Figure 5-20 Converting Texture Coordinates

5.6.2.2

A

If

te

fo

c

N

Input Source

One of the following:

• Position coordinates (x, y, z)

• Normals (nx, ny, nz)

• Texture coordinates (s, t)

• Rasterized color (r, g)

Multiplied by the

matrix computation
Final Texture Coordinates
Texture Matrix
intendo 81 RVL-06-0301-001-A
NTIAL Released: February 15, 2008

Texture Matrices

texture matrix of 2 x 4 or 3 x 4 can be used.

the input source is a set of texture coordinates, and a unit matrix is used as the texture matrix, the

xture coordinates themselves will be used for mapping. To set a translation, rotation, and scale matrix

r the texture matrix; translate, rotate, and scale the texture (see Figure 5-21). By animating matrix

omponents, the texture's translation, rotation, and scale can also be animated.

Figure 5-21 Using Texture Matrices to Rotate and Scale a Texture

ote: The center for Rotate and Scale can be adjusted with the Translate component of the texture

matrix.

Input Source

Texture Matrix

: Texture Coordinates

: Rotation Matrix

Input Source

Texture Matrix

: Texture Coordinates

: Scale Matrix

Wii Graphics Primer

RVL-06-0301-001-A 82  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

5.6.2.3 Environment Mapping

To make a model look as if the surroundings are being reflected in it, use its normal vectors (nx, ny, nz)

for mapping. To depict the texture of metal surfaces, use environment mapping (see Figure 5-22).

Figure 5-22 Illustration of Environment Mapping

5.6.2.4 Projection Mapping

Use the model's vertex position coordinates (x, y, z) for mapping that looks like a texture is being

projected from a specific place. To express filtered sunshine and shadows, use projection mapping.

Figure 5-23 Example of Projection Mapping

Wii Graphics Primer

 2008 Nintendo 83 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.6.2.5 Toon Shading

To depict cell animation, use toon shading.

Figure 5-24 Toon Shading

Toon texture is used when the texture coordinates are generated from rasterized color elements. Toon

shading refers to the mapping of a texture with the R-component (0 – 255) of the rasterized pixel color

for the s coordinates (0.0 – 1.0), and the G-component (0 – 255) for the t coordinates (0.0 – 1.0).

In Figure 5-25, a sphere has shadowing that changes from black (R=0, G=0) to green (R=0, G=255).

When the toon texture shown below is used for toon shading, the region between G=0 and G=255 is

mapped to the texture from upper-left (s=0.0, t=0.0) to lower-left (s=0.0, t=1.0).

Figure 5-25 Toon Shading, Mechanism 1

Output Result

Toon Texture

Shadow-Processed State

→ →

Shadow-Processed State Toon Texture Output Result

Wii Graphics Primer

RVL-06-0301-001-A 84  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

If, as shown in Figure 5-26, the sphere is shadowed from black (R=0, G=0) to white (R=255, G=255),

the region from (R=0, G=0) to (R=255, G=255) is mapped to the texture from upper-left (s=0.0, t=0.0)

to lower-right (s=1.0,t=1.0).

Figure 5-26 Toon Shading, Mechanism 2

Shadow-Processed State Toon Texture Output Result

Wii Graphics Primer

 2008 Nintendo 85 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

5.7 Mapping Multiple-Layered Textures (Multi-Texturing)
Up to eight textures can be layered on a polygon.

In Figure 5-27, two textures are simply blended. Other methods of layering textures include addition,

subtraction, multiplication, and decal. For details, see Chapter 4 Examples of TEV Settings.

Figure 5-27 Mapping of Multiple, Layered Textures

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0) (1.0, 1.0)

Texture Coordinates 0First Texture

Second Texture

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0) (1.0, 1.0)

Texture Coordinates 0

and

and Output Result

Wii Graphics Primer

RVL-06-0301-001-A 86  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

Each vertex can hold up to eight sets of texture coordinates, and different combinations of textures and

texture coordinates can be configured.

Figure 5-28 Mapping with Different UV for Each Texture

Texture matrices can also be manipulated on each texture and the mapping method can be changed.

5.8 Indirect Textures

5.8.1 What is an Indirect Texture?

To display normal textures that have been distorted, Wii uses the indirect feature of the hardware.

The texture on which the feature gets applied is the indirect texture (see Figure 5-29).

Figure 5-29 Example of Displaying with Indirect Texture

Indirect textures can also be used to depict shimmering water surfaces, mirages, and the effects that

are difficult to reproduce with mapping methods and texture matrices.

The indirect texture feature makes use of two textures, but the TEV can process this in one stage.

(0.0, 0.0) (1.0, 0.0)

(0.0, 1.0) (1.0, 1.0)

Texture Coordinate 0First Texture

Second Texture

(0.5, -0.2) (1.2, 0.5)

(-0.2, 0.5) (0.5, 1.2)

Texture Coordinate 1

and

and Output Result

and

Texture to Distort Indirect Texture Output

Wii Graphics Primer

 2008 Nintendo 87 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

There are no restrictions on texture format of indirect textures, but the format must have an active

alpha component. The standard method is to use IA8 and to set 256 levels of distortion.

Indirect textures can be mipmapped the same way as normal textures. The use of mipmaps allows the

distortion to be varied according to the distance from the camera.

In addition to their use for distorting regular textures, indirect textures can be used for other

applications.

When using NintendoWare, indirect textures can be used to express normal vector

mapping in object space.

Wii Graphics Primer

RVL-06-0301-001-A 88  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

6 Overview of Wii Graphics Hardware
This chapter provides an overview of the main hardware components of the Wii graphics features.

6.1 Hardware Configuration
At the core of Wii hardware is the Broadway CPU and the Hollywood graphics processor unit (GPU).

Broadway CPU performs the processes such as 3D model matrix and animation computations, as well

as physical calculations. Hollywood, which primarily renders polygons, comprises a graphics

processing unit that includes 3 MB of graphics RAM and 24 MB of internal main memory.

In addition to the Hollywood’s 24 MB of internal main memory (MEM1), the main memory also includes

GDDR3, which is 64 MB of external main memory (MEM2). In other words, Wii has a total of 88 MB of

main memory.

Figure 6-1 contains a schematic of the Wii's graphics-related hardware.

Figure 6-1 Block Diagram of Wii's Graphics Hardware

6.1.1 Broadway

This is the Wii’s CPU. Its features include:

• 729MHz operating speed

• 32-bit PowerPC architecture

• Big-endian

Broadway

CPU

External Main Memory

GDDR3 64 MB (MEM2)

3 MB Graphics Memory

24 MB Internal Main Memory (MEM1) Hollywood

Flash Memory

512 MB

Wii Graphics Primer

 2008 Nintendo 89 RVL-06-0301-001-A
CONFIDENTIAL Released: February 15, 2008

6.1.2 Hollywood

This is the Wii’s graphics processor. Its main features include:

• Graphics Processing Unit

• 24 MB of internal main memory (MEM1)

� Ability to hold programs

� Low latency

• 3 MB of graphics memory

6.1.3 External Main Memory (MEM2)

For external main memory, Wii uses 64 MB of GDDR3 (MEM2). Approximately 10 MB of this memory

is used for the System region, so about 54 MB is available to applications. Programs can be placed in

MEM2, but access speed is slower than with MEM1.

6.1.4 Graphics Memory

Wii has 3 MB of graphics memory, which it uses for the frame buffer, Z buffer, and texture cache.

6.2 Performance
This section contains information related to performance during rendering.

6.2.1 Processes that Have the Most Impact on Performance

The following processes increase the load on GPU and impact performance during rendering.

• Increasing the number of lights and textures used simultaneously for a polygon

• Increasing the maximum number of TEV stages

• Using indirect textures

6.2.2 Processes that Do Not Impact Performance

The following processes do not impact performance during rendering.

• Using compressed texture and color index affects the load no more or less than other texture

formats.

• Changing swap tables does not alter the load.

• Storing vertex data as a fixed point instead of a floating point does not alter the load.

• Using mipmap, except for the RGBA8 format, has no special load associated with it. In fact, due

to improved cache efficiency, the load is sometimes lightened when polygons are displayed

smaller.

Wii Graphics Primer

RVL-06-0301-001-A 90  2008 Nintendo
Released: February 15, 2008 CONFIDENTIAL

© 2008 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed or loaned in whole or in part without

the prior approval of Nintendo Co., Ltd.

	1 Introduction
	1.1 Overview
	1.2 Document Structure

	2 Special Features of Wii Graphics
	2.1 Introduction to Wii Graphics Concepts
	2.2 Main Features of Wii Graphics
	2.3 Unsupported Graphics Features

	3 Graphics Creation Process Flow
	3.1 Function of the Graphics Processor Unit (GPU)
	3.2 Vertex Data and Coordinate Conversion
	3.2.1 Vertex Data
	3.2.1.1 Vertex Data Format

	3.2.2 Conversion of Vertex Position Coordinates
	3.2.3 Primitives Types
	3.2.4 Front Surface of Polygon

	3.3 Shading
	3.3.1 Rasterized Color
	3.3.2 Lights

	3.4 TEV (Texture Environment Unit)
	3.4.1 What is the TEV?
	3.4.2 Registers that Can be Used with TEV Stage Computations
	3.4.2.1 Color Registers
	3.4.2.2 Constant Registers

	3.4.3 TEV Stage Computations
	3.4.3.1 Color Stage and Alpha Stage
	3.4.3.2 TEV Computation Expression
	3.4.3.3 Compare Mode
	3.4.3.4 Color Stage
	3.4.3.5 Alpha Stage
	3.4.3.6 Outputting the Results of Stage Computation

	3.4.4 Swap Table
	3.4.5 Fog

	3.5 PE (Pixel Engine)
	3.5.1 What is the PE?
	3.5.2 Z Comparison
	3.5.3 Blending
	3.5.4 Dithering

	3.6 Video Output
	3.6.1 Frame Buffer
	3.6.2 Antialiasing
	3.6.3 Gamma Correction
	3.6.4 Deflicker
	3.6.5 Converting From RGB to YUV

	4 Examples of TEV Settings
	4.1 Modulation
	4.1.1 Features of Modulation
	4.1.2 What is Modulation?

	4.2 Blending Using Two Textures
	4.2.1 Addition
	4.2.1.1 How Addition Works
	4.2.1.2 Stage Settings for Adding Textures

	4.2.2 Subtraction
	4.2.2.1 How Subtraction Works
	4.2.2.2 Stage Settings for Subtraction

	4.2.3 Multiplication
	4.2.3.1 How Multiplication Works
	4.2.3.2 Stage Settings for Multiplication

	4.2.4 Addition and Multiplication Combined
	4.2.4.1 How Addition and Multiplication Combined Works
	4.2.4.2 TEV Settings for Addition and Multiplication Combined

	4.2.5 Decal
	4.2.5.1 How Decal Works
	4.2.5.2 Stage Settings for Decal

	4.2.6 Decal (Applied)
	4.2.6.1 How Decal (Advanced) Works
	4.2.6.2 Stage Settings for Decal (Applied)

	4.2.7 Proportional Blending
	4.2.7.1 How Proportional Blending Works
	4.2.7.2 Stage Settings for Proportional Blending

	4.3 Two-Color Interpolation
	4.3.1 How Two-Color Interpolation Works
	4.3.2 Stage Settings for Two-Color Interpolation

	5 Textures
	5.1 Texture Size
	5.2 Texture Formats
	5.2.1 Opaque, Translucent, and Outline
	5.2.2 Types of Texture Formats
	5.2.3 Optimal Texture Format
	5.2.4 Intensity
	5.2.5 Intensity Alpha
	5.2.6 RGB
	5.2.7 RGBA
	5.2.8 Compressed Texture
	5.2.8.1 How Compressed Texture Works

	5.2.9 Color Index Texture
	5.2.9.1 Color Palettes
	5.2.9.2 Color Index Format

	5.2.10 Tiles

	5.3 Repeat Pasting of a Texture
	5.3.1 Clamp, Repeat, and Mirror
	5.3.2 Restrictions for Specifying Repeat and Mirror

	5.4 Mipmap
	5.4.1 Mipmaps
	5.4.2 LOD Bias

	5.5 Texture Filters
	5.6 Texture Mapping
	5.6.1 Texture Coordinate Space and Texture Coordinates
	5.6.2 Converting and Mapping Texture Coordinates
	5.6.2.1 Converting Texture Coordinates
	5.6.2.2 Texture Matrices
	5.6.2.3 Environment Mapping
	5.6.2.4 Projection Mapping
	5.6.2.5 Toon Shading

	5.7 Mapping Multiple-Layered Textures (Multi-Texturing)
	5.8 Indirect Textures
	5.8.1 What is an Indirect Texture?

	6 Overview of Wii Graphics Hardware
	6.1 Hardware Configuration
	6.1.1 Broadway
	6.1.2 Hollywood
	6.1.3 External Main Memory (MEM2)
	6.1.4 Graphics Memory

	6.2 Performance
	6.2.1 Processes that Have the Most Impact on Performance
	6.2.2 Processes that Do Not Impact Performance

