Revolution SDK

Graphics Library (GX)

Version 1.03

© 2006-2009 Nintendo

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

Graphics Library (GX)

"Confidential"

These coded instructions, statements, and computer programs contain proprietary

information of Nintendo and/or its licensed developers and are protected by national
and international copyright laws. They may not be disclosed to third parties or copied
or duplicated in any form, in whole or in part, without the prior written consent of Nin-

tendo.

© 2006-2009 Nintendo

TM and ® are trademarks of Nintendo.

Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.
IBM is a trademark of International Business Machines Corporation.
Roland GS Sound Set is a trademark of Roland Corporation U.S.

All other trademarks and copyrights are property of their respective owners.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Graphics Library (GX)

Version 1.03

Contents

O [o o {1 o3 1o o PPt 1
1.1 DOCUMENt OFQANIZALIONuiiiiiiiiie ettt e et e e e e e e s e e eab e e e e e e e e e e e e e s ansbeeneeas 1

D 1Y 01 = D N (0 (= PP T TP TP PTPTTR 1

I I AN o) (=3 o T 0]]] (=] £ T 2

S U Y= (| I = To o) 2

2 Code EXampPle: SIMP-ONELII.C ...coiii ittt ettt e e e e et e e e e e e e e e s e e aasbbbbe e e e eeaaeeeeeaannnnes 3
G T [011 T= 1[4 o o 9
70 RV o [=To I 1=\ 2= L1 o o SRS 9

3.2 Graphics INItIAlIZAtION.........ccceeieeiee e e e e e e s e s s e e e e e e e e e nnne 9

3.3 GraphiCs ProCeSSOr (GP)......uuuiiiiiieiieeiiesieiitee et s s s s et e e e e e e e s s s s areeeeeaeeeeeeannnnnnes 10

4 VerteX and PrimitivVe Data........coouueeiiiiiiiie ettt e et e e e bt e e e e sbaeeeessbbeeeenane 11
4.1 Describing the VErteX Dat@.........cccuuiiiiiiiieeee e ettt e e e e e e e e s s s s e e e e e e e s e e s s nannrnaeeeeeeaees 12

A O 11T od] o] o [AN 4 = = SRR 14

4.3 Describing Attribute Data FOIMALS........cceeeiiiiiiiiiiieiie e e e s e e e e e e e s s reeeeee e e 15

4.4 Drawing GraphiCs PrMITIVES........c.c.uuuiiiiiiiie e iiiiiiieir e e e e s s e e e e e e e e e s s ssnnreeaereeeaeeeeanns 17
Ot R = 101 ()Y T 1Y = SR 17

4.4.2 POINES @NG LINES ...eeiiiiiiieiiie ittt et sttt e e st e e s e nnbbe e e e e nneeee 18

4.4.3 RASLErization RUIESoiiiiiiiiiie e 20

4.4.4 UsING VErteX FUNCLONSuuiiiiiiie et e e s e e e e e e e e s raeeeeeaaeeae s 20

4.5 Vertex Data Organizationcccuueuiiiieeieoiii et e e e e s e e e e e e e s s e e e aeaa e 22
451 INdeXed VErteX DAtcciiiiiiiiieiiiiiiiie it 25

4.5.2 DIreCt VErteX DatA.......uuviiiiiiiiiiie ittt ettt 26

4.5.3 Mixture of Direct and INdeXed Data..............eeeiiiiiiiiiiiiiiieesiee e 27

T I 1] = | I (SRR 27
4.6.1 Creating DISPIay LiStSuuuiiiiiiiieieeis i e e e e e e s s e e e e e e e e 28

4.6.2 Drawing Primitives Using Display LiStS.........uuuuiiieiieiiiiniiiiiieiireeee e cevieeeene e 30

4.6.3 Effect 0n MaChinNg State..........uuiiiiiiiiiiiiiiiee e 30

o A) B = (Y ¥ o Tox 1o o L O SOPPRU 31

LY 41111/ o RS 33
5.1 Loading @ MOAEIVIEW MALIIXuvvviierieeeiisiiieiiiiieeeeeeeesesssssieeeeee e e e aeesssssnnnnnrneeeeeeeeeseeannnnes 34

5.2 Setting a ProjeCtion MatriX.........uuuueeiieeeiieisiiiiiiiieiireee e e e e s s s e e e e e e s s e s e snnrnaeeeeeeeeeeesnnnnns 35

5.3 Culling, Clipping, aNd SCISSOMNNQevutieeieeiiiiiiiiteeeereeeeeeseessstesieereereeeseesassnrrsrreeraeeseessann 36

5.4 Viewport and SCISSOMNGuuuruuriiiieiieeiiisiiiiiieeeeseee e e s e s sssssrereeereaeaeesssssnsansraerreeaeeeseeannsnns 37

5.5 COOrdiNate SYSIEIMScccciiiieie e e ee s e e e e e e s e e s s e e e e e e aeessa s e nan e neeeeaeeaeeeanrane 38

5.6 How to Override the Default Matrix Memory Configurationcccececcvvvvieereeeeeeneeiinnns 39

LI =14 (=G I o]) 1o RS 41
L% A I T | o1 i1 o T 0T 11 =PSRRI 41
6.1.1 Diffuse Lights, Diffuse Attenuation and Vertex Normalsccccccvevreveeenniiiinnns 41

6.1.2 Local Lights and Range AttenUALIONcceeiiiiieiiiiiieiiee e ces e e e e e e e e eeenes 41

6.1.3 Spotlights, Directional Lights and Angle Attenuationcccoeeecciviiiveeeee s 41

6.2 Diffuse Lighting EQUALIONSuuiiiiiiiee et e e e e e s s e e e e e e s e s ssaenrree e e e e e e e s e e ennnnes 43

LR T V.= 11 b 1Y/ 1= 1 o Y/ SRR 44

6.4 Light PArameterscccoiiiiiiiiiie ettt e e e e e s e e e e e e e e s s s snban e eeeeeaeeeeeannrenn 44
L A Y To | L3N 1 1T 11 = 1 [o R 44

6.4.2 DiIStanCe AENUALIONcceiitiiiiie ettt et e ettt e e e e e snaeeeeas 46

© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

6.5 Channel Parameters........cccocuiieiiiieiie e
6.5.1 Channel Colorsccccuiiiiiiieeie e

6.5.2 Channel Control.........ccceeeeeieeiei e

6.5.3 Pre-lighting.....cccoooiiiiiiee e

6.6 Specular LIghtiNgcoveeeiiiiiiieeec e

6.7 Vertex PerformMancCecccccviieiiiieeiee e

6.8 Lighting PerformancCe...........cccuviiiieiiee e

7 Texture Coordinate GENEratioNcccuvvrriiriereeeeieeirienierer e e e e e e e s s e sneeeeees
4% S o Y=Y Y/ o N =0 (o (= 1R

7.2 Renormalization and “post-transform” Matrices Added for Texgens

7.3 Other Texture Coordinate Generation ISSUES...........ccceeereerirneeennne.
7.4 Texture Coordinate Generation Performance..............cccovevvverneeennne
T =Y a (0 £ =0\, =T o] o] 1 o SRR
8.1 Example: Drawing a Textured Trianglecccccceveeeeeviiiccciiieieeeeeen,
8.2 Loading a Texture into Main MEemOTIYc.uvviieieiiieeeiiiiiieeeeeee e
8.3 Describing a Texture ODJECTcoviiiiiiiiiiiie e
8.3.1 TeXel FOIMALScoeiiiiiiie et
8.3.2 Texture Lookup Table (TLUT) Formats............cooccuuvviineeeenannn.
8.3.3 Texture Image FOrmatS..........cooeeiiiiiiiiiiiiiieeee e
8.3.4 Texture Coordinate SPACEcoeviiuvriiiiiieiie e
8.3.5 Filter Modes and LOD CoONtroIS...........coccvveeiiiiiieeneniiee e

8.4 Loading Texture ODJECTS..........uuuiiiiiieiiiiiieee e
8.5 Loading Texture Lookup Tables (TLUTS)uueverieeiiniiiiiiiiiiieieeeeeenn,
8.6 How to Override the Default Texture Configuration...............cccc.......
8.6.1 TeXtUre REOIONS.......uuuiiiiiiiiieeie ettt
8.6.2 Cached REQIONScccuuiiiiiiiiiieee et
8.6.3 TLUT REQIONSoiiiiiiiiiiieieiee et
8.6.4 Preloaded REQIONScoeiiiiiiiiiiiiiiiieiee e
8.6.5 Texture Cache AlIOCAtIONcocuviieeeiiiiiieeiee e
8.6.6 TLUT AllOCALION ...ccoviiiiieiiiiieiie ettt

8.7 Invalidating Texture Cachecceeeiiiiiiiiiiiiii e
8.8 Changing the Usage of TMEM RegioNscccceeveeiiiiiiiiiiiiiiiieeee.
8.9 Creating Textures by Copying the Embedded Frame Buffer............
810 Z TEXIUIES....uviiiiiiiiiiiee ittt
8.11 Texture PerformanCec..eviiiiiiiieiiiiieiee et
9 Texture EnvironmMent (TEV) ...t
S % N B 1= ST g o] 1 o] o H TR TSP
9.2 Default Texture Pipeline Configurationccccceeeeeiiiiiiiiiiieieenneenn.
9.3 Number of Active TEV StagesSccccceeriiiiiiiiiiiiieiieee e
0.4 GXSEITEVOP ittt a e e e e e e e e e e e e e e eeabeaenaees
9.5 Color/alpha Combine Operationscccuvuiieeeiieeeesiiiiiiieeeeeae e
9.5.1 Compare MOEuuuuiiiiiiiaiiaa e

S I I ©7o] (o] g 1] o1V = T RO PP RUPUTTPRT
9.7 AIPNA INPULS ...ttt
9.8 Color Component SWap MOUE........ccceeuiiiiiiiiiiiiieiiee e
9.9 TEV “constant” Color REJISLEISuuiiiiieiiiiiiiiiiiieeeee e
9.10 EXAMPIE SELHNGS ...evteiiieeiiiiiiiiie ettt
9.11 Alpha Compare FUNCLONuuuiiiiiiiaiiiiiiiiee e
.12 Z TEXIUIES. ...ttt e
9.13 Texture Pipeline Configurationcccooiiiiiiiieiiiiee e
10 Indirect Texture MapPPiNg........coouiiiuriiieiiee e ee e e eeeea e e
10.1 Setting Up Indirect Texture Stages..........uueeeeieeerraiiiiiiiiiiiieeeeeaeeeeeae
10.2 Basic Indirect TeXture ProCeSSinguuueeeeieeeeniiiiiiiiiieeieeaaeaeenaaane

RVL-06-0037-001-E
Released: March 27, 2009

Graphics Library (GX)

© 2006-2009 Nintendo
CONFIDENTIAL

10.3 Basic Indirect TEXIUre FUNCLIONSooiiiiiiiiiieiee e 112
10.3.1 TEXIUIE WAIPING «.uvvvvreieeiiieeeeeeesiiiittieeteeeaeeeeesasssataraeeeeeraeeseesasssnnsnnnsneraaeeeesesannnnnes 112
10.3.2 Environment-mapped Bump-mapping (EMBM) (dX, dY, dZ).....ccccccevveeeeeiiiiicnnnns 113

10.4 Advanced Indirect TeXtUre PrOCESSINGuvuuiriiiieeeeiiisiiitintitieeeeeee e e e sssereererreeeeeeeeasannnnees 114
10.4.1 Selecting “BUMP alpha”ccoo oo 114
O)V P g (o 1V = 1 g o = RS 114
10.4.3 Selecting Texture Coordinates for Texture LODcccveeeieiiiiiniiiiieieee e e seeesnnnns 115
10.4.4 Adding Texture Coordinates from Previous TEV Stages........ccccceeevveeeeevievcnnvnnnnn. 115

10.5 Advanced INdIireCt FUNCLIONScoiiiiiiieiieie e 115
10.5.1 Texture Tiling and PSeudo-3D TEXLUINGccocvverrererereeeeseeiiienieereeeeeeeeeesessnnnnes 115
10.5.2 Environment-mapped Bump-mapping (EMBM) (dS, dT)ccccovvrvireereeereeeiieiinnns 116
10.5.3 General INdir€Ct TEXIUMNNG 1.oeveviiieeeiieeiiiie e e e e e ees et e e e e e e e e s e e st aareeeeer e e e s e e e e nnannnnes 117

11 Fog, Z-compare, Blending, and Dithering........ccccuuviiiiiieiee e 119

I T T o o O PP 119
0 I R o To I O [YT S TP PP 120
11.1.2 FOQ PArAQmMELEIScoiiiiiiiiiiiiiieieeeee e e e e e e e e e et et et et ettt e e e bbb e e e e e e e e e e aaaaaans 122

L11.2 Z-COMIPAIE ..ttt e e e e e e e e e e e e e et et et et ettt teeeee e ba b et e s e e e e e e e e e e e e e e e e eeaeaaaaeeeeaeeseeeeesnnnnnns 122
11.2.1 Z BUFfEI FOMM@Leeiieiiiiieeei ettt e e e ee e e e e e e e e e e e anranes 123

IR I =1 =7 o To [T o TP PPRURPTIN 124
IR 20 R =1 [T o To [o U F= 4o TP UPPURPTOIN 124
11.3.2 Blending Par@meterscooiiiiiiiiiiiiiieiea ettt e e e eeeea e e s e e e anneees 125
11.3.3 LOQIC OPEIALIONSueueiiiieiiiiaeae ettt ee e e e e e e e e ettt e et e e e e e e e s s anbbbebeeeeaaaaaeasaaanne 126

I B 11 0 1= 1 o o [T PPTTURPIN 127

D2 o [T I @ 11 1 o 11 | SO PPRPTPPRN 129

12.1 The COoPY PIPEIINE ..ottt e e e e e e e e e s e ennees 129
12.1.1 COPY SOUICE ...oeieiiiiiiiiieiettatet e e e s e e e e e e e e e e e e e teeeteteeeeeesbesesbabeb et s e s e e e e e e e aeaeaans 129
12.1.2 Antialiasing and DefliCKeringuueiiiiiiiii e 129
12.1.3 GaAmMMA COMTECHIONtiiiieiee ettt ettt et e e e e e e e e e et a e e eeaaaeeeaasaannnes 130
12.1.4 RGB 0 YUV .ttt ettt sttt sbt e bbb e e e it e e s sabe e e snbeeens 131
12,105 Y SCAIE....eei ittt bbb b e re e e beaeae 131
12.1.6 COPY DESHNALIONuuiiiiiiiiiae ittt e e e e e e s s bbb e e e e e e e e e e e e e aanes 131
12.1.7 Clear Color and Z for NeXt FIamMe........ccuuiiiiiiiiiiiiieiie it a e 131

12.2 Predefined RENAEr MOAESooiiii ittt e e e e e e e e neeees 132
12.2.1 Double-strike, Non-antialiased MOUEoooi it 133
12.2.2 Double-strike, Antialiased MOAEoooiiiiiiiiiiii e 133
12.2.3 Interlaced, Non-antialiased, Field-rendering Modeccoooiiiiiiiiinnnis 134
12.2.4 Interlaced, Antialiased, Field-rendering Mode.............ccccoiiiiiiiiiiiiiie s 134
12.2.5 Interlaced, Non-antialiased, Frame-rendering, Deflicker Mode..................c.ooue. 134
12.2.6 Interlaced, Non-antialiased, Frame-rendering, Non-deflicker Mode 135
12.2.7 Interlaced, Antialiased, Frame-rendering, Deflicker Mode.............ccccccceeiiiiiiinnnns 135
12.2.8 ProgreSSiVE MOcoiiiiiiiiiiiiiiiitii ettt e e e e e et e e e e e e e e e e e anreees 136
12.2.9 Progressive, “Soft” MOAEooouuiiiiiiiiiiae et 136
12.2.10 Progressive AntialiSed MOUE.uuiiiiiiiiiiiiiiieiie e 136

12.3 GX API Default RENAEr MOUE........coi it a e 137

12.4 Embedded Frame Buffer FOIMALSuuiiiiiiiiiiiiii e 137
12.4.1 48-bit Format — NON-antialiaSingc.ccueeiiiiiiiiiiiiiiiiiee e 137
12.4.2 96-bit Super-sampling Format — AntialiaSingueeeveeiiaiiiiiiiiiiieeee s 138

12.5 External Frame BUffer FOrMALooouuiiiiiiiii et 138

13 GraphiCS FIFO ...ttt ettt e e e e e e e e s o hb bbbttt eee e e e e e e s e aananbbbeaeeeaaeaaeaanaannnnes 139

R TR B 1= 2o 0] 1o o F TP PPUUPPTTRRIN 139

13.2 CreatiNg @ FIFO ...ttt et e e e e e e e et a e e e e e e e e e e e e aannees 141

13.3 Attaching and Saving FIFOS.......cooii it a e eeees 142

L1314 FIFO SEALUS ..eeieiiiiieiiiee ittt ettt ettt ettt et e e et b e e e be et e sbbe e e abb e e e sabe e e sabeeesabeeeenteens 143

13.5 FIFO FIOW CONLIOI ...ttt ee e e e e e e e et e e e e e e e e e e e e aannes 144

© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

14

15

13.6 Draw Synchronization Functions
GXDrawDone
GXDrawSync
FIFO Breakpoint
Abort Frame
VI Synchronization
13.7 Draw Synchronization Methods

13.7.1 Double-Buffering

13.7.2 Triple-Buffering
13.8 Graphics FIFO vs. Display List
13.9 Notes About the Write-Gather Pipe
13.10 GX Verify
Performance Metrics

13.6.1
13.6.2
13.6.3
13.6.4
13.6.5

141

14.2 GP Front-End and Texture-Related Metrics
14.2.1 GP Counter 0 Details
14.2.2 Counter 1 Details

14.3 Using Performance Counters

14.4 Vertex Cache Metrics

Pixel MEtriCScoeeeiiiiiieeeeeeeccee e,

Memory MetriCScooooiiiiiiiiiiiiieee e

Limitations

ANtAliaSiNgeeeveeiieiiii e

CPU Access to the Frame Buffer

Display LiStS.......uueieiiaeiiiiiiiiiiieeeee e

Vertex Performance

MatriX MEMOIYeeiiiiiiaiiiiiiiiiiieeeee e

TEXIUI.encei e

Blending and Logic Operations

Sharing Main Memory Resources

14.5
14.6

151
15.2
15.3
15.4
155
15.6
15.7
15.8

Types of Metrics

Code Examples

Code 2-1 onetri.c

Code 4-1 Vertex Descriptor
Code 4-2 GXSetVixAttrFmt

Code 4-3 GXSetPointSize
Code 4-4 GXSetLineWidth

Code 4-5 Vertex Functions

Code 4-6 Drawing Primitives Using Vertex Functions
Code 4-7 Using Vertex Functions
Code 4-8 Indexed vs. Direct Compression Example
Code 4-9 GXSetArray
Code 4-10 Arrays of Vertex Structures
Code 4-11 Direct Vertex Data
Code 4-12 Mixture of Direct and Indexed Data
Code 4-13 GXBeginDisplayList
Code 4-14 Sample Array Containing Display List
Code 4-15 GXCallDisplayList
Code 4-16 GX Draw Functions
Code 5-1 GXLoadPosMtximm
Code 5-2 GXSetProjection
Code 5-3 GXSetViewport
Code 5-4 GXSetScissor

RVL-06-0037-001-E
Released: March 27, 2009

Graphics Library (GX)

© 2006-2009 Nintendo
CONFIDENTIAL

(0700 (SIS T I € o (] =] RS 39
Code 6-1 GXSEtNUMOCKRANS.coiiiiiiiiieiee et rn e 41
(0700 [T ST € Q111 1o | 72 11 PR 44
(0700 [T ST I Q111 1o |] £ Lo) RS 45
Code 6-4 GXINItLIGNIDISTAINeeeieieeeie e e e s e e e e e e e s ss s e e e e eeeeseessasanrreereereeeaes 46
Code 6-5 GXSetChanNAMDCOIONccuiiiiriieit et 47
C0ode 6-6 GXSELICNANCHI ...t 47
Code 6-7 Pre-lighting APot e e e e s e e e s e e e e e e e e e an et r e e e e e aeeeaen 48
Code 6-8 GXINItLIGtSRININESS() .vvvveeeeiiiiieiie e e e e e e e e s e e e e e e e e e an s s rereeaeeeaes 49
Code 7-1 GXSEtTEXCOOIUGENeeviiriieiieiiestree ettt s e e e et snr e s nne e e s nnre e s e s e nnnes 53
Code 7-2 GXSEINUMTEXGENSvviiiieieiirieesiree sttt et s e s e e nne e s nne e e s smn e s e e e s e nnes 54
Code 7-3 GXSEtTEXCOOIUGENZcuveieireieetree sttt ettt snne e s ne e e s e s e nnees 56
Code 7-4 GXSetTexCoordScaleManUAIlYcceieeiiiiiiiiiiiiie e e e e e e e e e e 56
Code 7-5 GXSetTeXCOOIACYIVWIAP ...ccceeriiiiieiee e e e e e ses e e e e e e e e s e s s er e e e aee s e s s annenreeereereeeseesannnns 56
Code 8-1 Simple TeXIUIre EXAMPIEcoi ittt e e e e et e e e e e aa e e e as 57
Code 8-2 Initializing or Changing a TexXture ODJECEuuiiiiiiiiei et 61
Code 8-3 Texture Component Promotion t0 8 DitSoooueiiiiiiiiiii e 62
Code 8-4 GXINILTEXODILODcoiiiiiiiiie ittt ettt e e sabe e e sbe e sabe e e e abe e e e be e e s sebeenaees 66
Code 8-5 GXLOAATEXOD) ...ttt et e e e e e e e e s b e b e e e e eeaaeeaeas 72
(070 [T L oY= To 10T B IV I U I =S TP 73
Code 8-7 GXINItTEXCACNEREGION ...t e e e e e e e e s 75
Code 8-8 GXINIETIULREGIONeeiiiiiieii ittt ettt e e e e e e e s et be et e e e e e e e e e e e s snbbebbeeeaeaaaaaaeas 76
Code 8-9 GXINItTEXPreLoadREGION()cccuueieeieiiie e ettt e e e e e e e e e e e e e e e s naebereeeeaaaaans 76
Code 8-10 GXPreLOadENIrETEXIUIE() ...uvurrreeeieeieeaeee ittt e e e e e e e ettt ee e e e e e e e e e s s sanbenbeeeeaaaaeeaaeas 81
Code 8-11 GXLoadTeXODJPIEeLOBAEA() vvreereeieeaeiiiiiiiietieeee e e e e e ettt e e e e e e e e e eeabee e eeaaaae e e s 82
Code 8-12 GXSetTexRegioNCallDACKoiiiiiiii e 82
Code 8-13 GXSetTIUtRegioNCalIDACKeiiiiiiii e 82
Code 8-14 Invalidating TeXtUIE IMEIMOIYeiuiiiie ettt e e e e e e ettt e et e e e e e e s e s nnbesbeeeeaaaaeaaaeas 83
Code 8-15 Texture COPY FUNCLIONSuiiiiiiiiiaiee ettt e et e e e e e e e e e s e aabenbaeeeaeeaeaeaeas 86
COAE 8-16 GXSEEZTEXLUIE ...eeeiiieeeeies ittt et et e e e e e e e e e bbbttt e e eaaaaaa s s e e aabbbbeeeeaaaaaaesesasnsbesbeeaaaaaaaaaaens 88
Code 9-1 GXSEtNUMTEVSIAGESc e e et iieiitiitie et e e e e e e e ettt e et e e e e e e s e s aaab bbb e e e eeaaaeaeaeaaansbesbeeeaaaaaaaaaas 92
(06700 [l B €Y 1= 1Y@ L o U PPTPPRTPT 93
Code 9-3 GXSetTevColorOp, GXSetTeVAIPhAOP. ...t 94
(070 [CRe B €Y Y= A NSV @o] (o] ¢ 1 IR RURTTR 97
Code 9-5 Setting CONSIANT COIONcciiiiiiee ettt e e e e e e e e rb e baeeeaaaaeaeaeas 98
Code 9-6 GXSELTEVAIDNAINeiiiiiiieee et e e e e e e e e s e et eebeeeeaaaaea e as 99
Code 9-7 GXSetTevSwapMode, GXSetTevSwapModeTablecccuiiiiiiiiiiiiiiiiie e 100
Code 9-8 PaASS TEXLUIE COIOF ...ciiiiiiiiiiiieiiti ettt e et e e e e e e s et eeaeeaaaaaeeans 101
(070 [TS V(oo (U] - (TP PPPRRTT 102
COodE 9-10 MOAUIALE 2X ...ttt ettt e e e e e e e e s e e bbb b e e e e eeaa e e e e s e abanbbeeeeeaaaaaaeaans 102
L0foTo [T R I o o D T PO U PP PP PPRTOPPIN 102
(070 SIS B D2 0] o] 1= o! (TR PPPRTTT 102
(070 (IS B R I =] 1= (o ISP 103
Code 9-14 GXSEtAIPNACOMPAIE.oei ittt e ettt e abnbbeaeaeeaaaaaeaans 103
COAE 9-15 GXSEITEVOIUEeeiiiiieeiii ettt ettt e e e e e e e e s e e bbb bt e e e e e e e e e e e e e e aanbbeaeeeaaaaaaeaaans 104
Code 10-1 GXSEtINATEXOIUEceiiiiititie ettt e e e e e e et e e e e e e e e e e s e bbb e eeeeeaaeaaeaaas 110
Code 10-2 GXSetINATEXCOOIUSCAIEuuuiiiiiiiieaii ettt e et e e e e e e e e e aas 110
COode 10-3 GXSEUNATEXMEXciiiiieiiiiiiiieie ettt e e ettt e e e e e e e e s s e bb et be e e e eeaaaesesaabnnbbeaeeeaaaaaaaaaans 112
Code 10-4 GXSEtTEVINAWAIPceeeiiiiiiiiit ettt e e e e e e e e e e e e aabbe e aeeaaaaaeeaas 112
Code 10-5 GXSetTeVINABUMPXYZttt et e e e e e e e e e st beeeeeeaaaaaeaaaan 113
Code 10-6 GXSEtTOVINATIIE ...cciiii ittt e e e e e e e s st b eeeeaaaaaeeans 115
Code 10-7 GXSetTexCoordScaleManUAIYooooiiiiiiiiie e 115
Code 10-8 GXSetTeVINABUMPST ...ttt ettt e e e e e e e e et e e e e e e e e e e s e e sanbbbraeeeeaaaaeas 116
Code 10-9 GXSetTeVINAREPEAL ..ottt e e e e e e e e s s bbb e e e eeeaaaaaeeaas 117
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

vi

Code 10-10 GXSetTevindirect
Code 10-11 GXSetTevDirect
Code 11-1 GXSetFog
Code 11-2 Fog Range Adjustment Functions
Code 11-3 GXSetZMode
Code 11-4 GXSetBlendMode
Code 11-5 GXSetDither
Code 12-1 GXSetDispCopySrc
Code 12-2 GXSetCopyFilter
Code 12-3 GXSetCopyClamp
Code 12-4 GXSetDispCopyGamma
Code 12-5 GXSetDispCopyYScale
Code 12-6 GXCopyDisp
Code 12-7 GXSetCopyClear
Code 12-8 GXSetScissorBoxOffset
Code 12-9 GXSetPixelFmt
Code 13-1 GXFifoObj
Code 13-2 FIFO Initialization Functions
Code 13-3 FIFO Basic Inquiry Functions
Code 13-4 FIFO Attachment Functions
Code 13-5 FIFO Attachment Inquiry Functions
Code 13-6 GXGetCPUFifo
Code 13-7 FIFO Status Functions
Code 13-8 APIs to Get and Set the Current GX Thread
Code 13-9 GXDrawDone Synchronization Commands
Code 13-10 GXDrawSync Synchronization Commands
Code 13-11 GXEnableBreakPt
Code 13-12 GXDisableBreakPt
Code 13-13 GXSetBreakPtCallback
Code 13-14 GXAbortFrame
Code 13-15 VI Synchronization Commands
Code 13-16 Double-Buffer Copy Synchronization
Code 13-17 Single-Buffer Copy Synchronization
Code 13-18 APIs to Control the Write-Gather Pipe
Code 13-19 APIs to Control Verification
Code 14-1 GP Metric Functions
Code 14-2 Counting a Metric
Code 14-3 Vertex Cache Metric Functions
Code 14-4 Pixel Metric Functions
Code 14-5 Memory Metric Functions
Code B-1 GXInit Defaults
Code C-2 Code Necessary to Utilize Example Display List
Code C-3 Set_TextureModeO
Code C-4 Set_TextureModel
Code C-5 Set_Texturelmage0
Code C-6 Set_Texturelmagel
Code C-7 Set_Texturelmage?2
Code C-8 Set_Texturelmage3
Code C-9 Set_TextureTLUT
Code C-10 SU_TSO
Code C-11 SU_TS1
Code E-12 DVDSetAutolnvalidation
Code E-13 Commands to Flush the CPU Data Cache

RVL-06-0037-001-E

Released: March 27, 2009

Graphics Library (GX)

© 2006-2009 Nintendo
CONFIDENTIAL

Equations

Equation 4-1 Attribute Address
Equation 5-1 Vertex position transform
Equation 5-2 Vertex Normal Transform
Equation 5-3 Perspective Projection
Equation 5-4 Orthographic Projection
Equation 5-5 Clip Space to Screen Space Conversion
Equation 5-6 Normal Matrix Index
Equation 6-1 Light Parameters
Equation 6-2 Rasterized Color
Equation 6-3 Color Channel
Equation 6-4 Material Source
Equation 6-5 Channel Enable
Equation 6-6 Sum of Lights in a Channel
Equation 6-7 Ambient Source
Equation 6-8 Diffuse Attenuation
Equation 6-9 Diffuse Angle and Distance Attenuation
Equation 6-10 Pre-lighting
Equation 6-11 Specular Attenuation
Equation 7-1 Texture Coordinate Generation
Equation 7-2 Transforming src_param by 2x4 and 3x4 Matrices
Equation 7-3 Input Coordinates
Equation 9-1 Regular TEV output
Equation 9-2 Compare TEV output
Equation 9-3 Pass Texture Color
Equation 9-4 Modulate
Equation 9-5 Modulate 2X
Equation 9-6 Addcceeveiiiiiiiiieeeee
Equation 9-7 Subtract

Equation 9-8 Blend

Equation 9-9 Alpha Compare
Equation 9-10 Sample Alpha Compare
Equation 10-1 Dynamic Indirect Matrices
Equation 11-1 Blending
Equation 11-2 Subtractive Blend Operation
Equation 11-3 Bayer Matrix
Equation 11-4 5-bit Dithering (ideal)
Equation 11-5 5-bit Dithering (approximation actually used)
Equation 11-6 6-bit Dithering (ideal)
Equation 11-7 6-bit Dithering (approximation actually used)
Equation 12-1 RGB to YUV conversion
Equation 14-1 Miss-Rate Calculation

Figures

Figure 3-1 Schematic of the GP
Figure 4-1 Vertex and Attribute Description
Figure 4-2 Vertex Attribute Format Table (VAT)
Figure 4-3 Graphics Primitives
Figure 4-4 Point Definition
Figure 4-5 Line Definition
Figure 4-6 Polygon Rasterization Rules
Figure 4-7 Flow of Indexed Vertex Data
Figure 4-8 Flow of Direct Vertex Data

© 2006-2009 Nintendo
CONFIDENTIAL

vii

RVL-06-0037-001-E
Released: March 27, 2009

viii

Figure 4-9 Indexed Vertex Data.........ccccvvereeiieeieeiiiscccieieiree e e s eeee s
Figure 4-10 Display LiSt FIOW........cccooiiiiiiiiiieeicee e e
Figure 5-1 Modelview and Projection Data Path.............ccccccceeeeeiiiiiiiiiinnnnnen,
Figure 5-2 Clipping and Culling Data Path.........c.cccccooeevciiiiiieeieeee e,
Figure 5-3 Clip COOrdINAESccoieiiiiiiiieeeii e ee e e e
Figure 5-4 Coordinate System Transformations...........cccccceeveveeeeiviiiccvivennnnn,
Figure 5-5 MatriX MEMOIYccccoiiiiiiiiiiiie e e e e e e sreer e e e e e s s nrraeeeee e
Figure 6-1 Associating Lights with Color Channelsccccccceeeeiiviiiiciiiinnen,
Figure 6-2 Lighting VECIOISccoii i
Figure 6-3 Spotlight FUNCLIONS ...t
Figure 6-4 Distance Attenuation FUNCLONS............cooviuiiviiieiieee e
Figure 6-5 Specular Lighting VECIOIS.........cuviiiieeiiiiiiciiiee e
Figure 6-6 GXInitLightShininess Valuescccccccovviiiniiiieiiiee e
Figure 7-1 Texgen Computation Path..........cccccceeiiiiiiiiiiiicec e,
Figure 8-1 Map-relative Texture Coordinatesccuuveeeeiiieenniiiiiiiiieeeeennn
Figure 8-2 Linear Filter—Clamp, Repeat, Mirror...........ceeeeveieieieiiiiiiiieieeen,
Figure 8-3 Nearest Filter—Clamp, Repeat, Mirror..........cccccceeeieiiiiciiiiienneenn.
Figure 8-4 Pixel Projected in Texture Space Exampleccccccceeiviniiiiinnenn.
Figure 8-5 LOD CalCUulationcccuuuiiiiiiiiiiiai e
FIQUIE 8-6 LOD BIAS .. .uuvitieiiiiiieeei ettt ettt e e e e eee e s
Figure 8-7 Anisotropic Filteringcocuuiiiiiiiiii e
Figure 8-8 Mipmap Pyramid for the Largest Texture Sizeccccvvveeeenn.
FIgUre 8-9 GX_INEARotiiiiiiiieii it
Figure 8-10 GX_LINEAR ...ttt
Figure 8-11 Default TMEM Configurationccoccuviiiiiiiiieenieiiieeeeennn
Figure 8-12 Mipmap in TMEMooiiiiiiiie e
Figure 8-13 Planar Texture in TMEM........c.cciiiiiiiiie e
Figure 8-14 32-bit Planar Texture in TMEM..........oooiiiiiiiiiiiieie e,
Figure 8-15 Color Index Mipmap in TMEM ...
Figure 8-16 32-bit Mipmap in TMEMciiiiiiiiieeee e
Figure 8-17 Texture Copy Data Path ..ot

Figure 8-18 Copying Small Textures into a Larger Texture in Main Memory

Figure 8-19 Z Texture BlOCK Diagram..........ccuiiieiiiiiiiiiiiiieeeeeee e
Figure 9-1 TEV BIOCK Diagramccc.uuuiiiiiiiiiaiaia e
Figure 9-2 Default Texture PIpeling ...
Figure 9-3 TEV OPerationScooiiiiiiiiiiiiiiieia ettt
Figure 9-4 TEV Stage Color INPULSuuiiiiiiiieiiiiiieiee e
Figure 9-5 TEV Stage Alpha INPULSeeviiiiiiiiiiiieeee e
Figure 9-6 Texture Pipeling Controlcciieiiiiiiiiiiiiie e
Figure 10-1 Indirect Texture OPeration...........c.oouiiiiiiriiiieeeeee e
Figure 10-2 Tiled Texture Mappingcceccaeieaaiiniiiiieiiee e
Figure 10-3 PSEUAO-3D TEXIUIES.....ccuuetiiiiiiieaia e e ettt eeee et e e e e e e
Figure 10-4 Regular Texture Functional Diagram..........cccccceeeereiiiiiiiiiiieenennn.
Figure 10-5 Regular and Indirect Texture Functional Diagram......................
Figure 10-6 Texture Coordinate Sharing Examplecccccceeeiiiininiiiinneen.
Figure 10-7 Indirect Texture Processing, Part 1cccoceeeieiriiiiiiiiiiiieieeenn,
Figure 10-8 Indirect Texture Processing, Part 2cccceeeveveiiieiiiiiiiiiieieenn,
Figure 11-1 Fog Range AdjUSIMENtcccoiiiiiiiiiiiiiiiieeee e
Figure 11-2 Linear FOQ CUMNVEcoiiiiiiiiii et
Figure 11-3 Exponential FOQ CUIVEooiiiiiiiiiiiiiiiiiee e
Figure 11-4 Exponential Squared FOg CUIVEccccuviiiiieiiieieeeiiiieeee
Figure 11-5 Reverse Exponential FOg CUIVe..........ccccuiiiiiiiiiieiiieiiiieiee
Figure 11-6 Reverse Exponential Squared FOg CUIVecceeeveiiiiniiiiinneee.
Figure 12-1 EFB-to-XFB Copy PIpelineccoooiiiii e

RVL-06-0037-001-E
Released: March 27, 2009

Graphics Library (GX)

© 2006-2009 Nintendo
CONFIDENTIAL

Figure 12-2 Render Mode Structure, Related Calls and Hardware Modules..
Figure 12-3 Double-strike, Non-antialiased Modecccccceeeeeviiiiciiiieneneennn.
Figure 12-4 Interlaced, Non-antialiased, Field-rendering Mode......................
Figure 12-5 Interlaced, Non-antialiased, Frame-rendering, Deflicker Mode ...
Figure 12-6 Interlaced, Antialiased, Frame-rendering, Deflicker Mode
Figure 12-7 OVerlapping COPYcoccuurriirreieieeeeee s snnieaereere s e e e s s s e ssenrnaeereeeeees
Figure 12-8 XFB Format in Main MEeMOIY.........ccciceviiiiiiiiieeeee e eesvnieeneeeee s
FIgure 13-1 GXFIfOOD]..uuuuiiiiiieeiiii i e e e e
Figure 13-2 Immediate MOUE........cccooi i e
Figure 13-3 Multi-Buffer MOAeccevviiieiiieie e
Figure D-1 Texel FOrMAtScccooviiiiiiiiiieee e e e
Figure D-2 Texture Tile FOrMatS.......c.uuuiiiiiieeie i a e
Figure D-3 Texture IMmage FOMMALS.........cuviveeeeeiiiiiiiiieiiree e e e e e e ereeeee s
Figure E-4 Data CONEIENCYcccoieeeiiiiieii e e e e e e e e e e et e e e e e e

Tables
Table 4-1 Vertex Attribute Order ReqUIreMeNntscceeeeevvievvcviinieeeeeeeeee e
Table 1 - Vertex Performanceoccuvviiiiiiiiiiciiee e
Table 7-1 Texture Coordinate Generation Ordercccccveevvivieeeinniieee e
Table 8-1 TexXel FOrMALScoiiiiiiiiiiiie e
Table 8-2 TLUT FOIMALS......cuuiiiii ittt
Table 8-3 Mipmap Minimum Filter MOAES.........cccvvveiveeeee e
Table 8-4 Texture Copy Formats and Conversion NOteSccccccvveeeereriinnnns
Table 8-5 Texture Performancecoooiiiiiiiiiiiie e
Table 9-1 GXTEVMOUE TYPES ...uuuiiiiieeieeeiiiiiiirntieereereeeseesassnsnesannreraaeesessannnns
Table 9-2 Correspondence Between TEV Input and Output Register Names
Table 9-3 Color or Alpha Compare Operationscccccovvveeuvvrveerereeeesesiennnnns
Table 9-4 Color-only Compare OpPerationsSeeeveeeeeevriiirierinieeeeeeeeeeesnnnns
Table 9-5 Alpha-only Compare OPerationscceeeeveeeeveiirsierinnerrereeeeeesnnnns
Table 9-6 Color and Alpha Constant Register Valuescccccccveveeeeeriiinnns
Table 11-1 16-bit Z Buffer FOrmMatS........cccooocveiieiiiiiiee e
Table 11-2 Blending Parametersccooiiiiiiiniiiiieieee e s eesivinieee e s ae e e s e s nneens
Table 11-3 LOQIC OPEIAtiONS........uuuuiiiiieeeieeiiiiiriiieeereeeeeessesinrrieereeeaeesesannnnns
Table 14-1 MemMOrY MELICSuuveiiieiieieeeeee s ceseiee e e e e e e s s e svrrerr e e e e e e e e s e ennnns
Table C-1 Display LiSt OPCOUEScuvviieeeieiiiiiiiiiie e e e e e e s e e
Table C-2 Vertex Index Stream Order Requirements...........cccccvcvveeeeeeeeeeinnnnns
Table C-3 Example Display LiSt........ccuieeiiiiiiiiiiiiieiieee e s e
Table E-4 Memory AlIgnment RUIEScccceiiiiieiieeee e
Table E-5 Alignment Assistance FUNCLIONSovvvveereeiiiiiiiiiieieee e e e

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

X Graphics Library (GX)

Revision History

Date

Version Revised Description

1.03 2009/01/22 4.4.2 Corrected errors in the GXSetLineWidth function.

Appendix | Corrected errors in the caption for Figure D2.

D2
1.01 2008/07/10 6.7, 6.8, Updated the performance explanations, which formerly used
8.11 old Nintendo GameCube data.
12.2 Added information on progressive mode.
13 Updated all content of Chapter 13 relating to FIFO and the dis-

play list.

13.6.1 Added information on XF stalls.

15.1 Removed the sentence “Dithering doesn’t work with antialias-
ing.”

46.1.2 Deleted the former section 4.6.1.2, “Loading GPL Files”.

16 Deleted the former Chapter 16, “OpenGL Comparison”.
Appendix | Deleted the list of GX API functions.
A
- Fixed typos and made other small corrections.
1.00 2007/12/01 - Applied a standardized format.
2006/03/01 - First release by Nintendo of America Inc.
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Introduction 1

1 Introduction

The Revolution SDK Graphics Library (GX Library) is a programmer’s interface to the Wii Graphics
Processor (GP). The GX Library is intended to be as thin as possible in order to achieve high performance,
but it must also provide a logical and straightforward view of the hardware. Our design goal for the GX
Library is to provide a default configuration of the hardware so that initially the programmer can
concentrate on the basics without being overwhelmed by unnecessary details. Later, as the hardware
becomes more familiar, programmers can easily override the default configuration to expose more
flexibility and features.

1.1 Document Organization

This document serves as a starting point for graphics programmers to learn about the Wii console’s
graphics capabilities. Chapters are organized as follows:

» Chapter 2 presents a simple code example.

» Chapter 3 discusses system initialization and presents a Graphics Processor block diagram.

» Chapters 4-12 document the GX functions to control the graphics pipeline (roughly in pipeline order).
» Chapter 13 explains the CPU-to-graphics interface in more detail.

» Chapter 14 discusses how to gather performance statistics, the CPU-to-EFB interface, and the GX
verify system.

» Chapter 15 lists feature limitations and notes.

» Appendix A: Refer to the GX pages in the online Revolution Function Reference Manual for a list of
functions in the GX API.

» Appendix B lists the default state set by GXInit.
» Appendix C provides more details on the display list format.
» Appendix D outlines the texture format used by the Wii console.

» Appendix E discusses in-memory data alignment and coherence issues.

1.2 Syntax Notes

All of the Graphics library functions are prefixed by ¢x, Video Interface library functions by v, and Matrix-
Vector library functions by mTx. For details on these other libraries, refer to the corresponding sections in
this guide. Functions prefixed with os and paD are described in “Operating System Library (0s.pdf)” and
“Nintendo GameCube Controller Library (paD. pdf),” respectively, in the “Programmer's Guide” directory of
the manuals.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

2 Graphics Library (GX)

While some VI and MTX functions are required to write a basic application, this overview is concerned pri-
marily with the GX library. GX functions follow the naming conventions listed below.

Note: Here, and in other places throughout the document, an asterisk (*) is used to indicate a wildcard.

e @Xset~ functions immediately set state in the graphics hardware. More accurately, they send state
commands through a command FIFO which is then read by the Graphics Processor and routed to the
proper register(s) (see "13 Graphics FIFQ" on page 139).

e GXInit* functions store initial settings for state registers in various types of object structures.

e GXLoad* functions set indexed state, usually from a precompiled object (structure). Indexed state
includes light parameters, matrices, texture state, etc.

e GXWrite* functions write data directly to CPU-accessible registers and thus set state asynchronously
with the graphics command pipeline.

* GXGet* functions read state back from a shadow copy of the state kept by the GX API.
* GXRead* functions read data directly from CPU-accessible registers.

The GX API uses many enumerated types and several structure types. A structure type will be suffixed by
Obj, Region, or List. GXColor is also a structure type. Any other type without these suffixes is an enu-
merated type.

1.3 A Note on Pointers

The GX APl sometimes expects pointers as arguments to its functions. The Wii operating system (see
“Operating System” in the “Programmer’s Guide” directory) sets up the CPU to treat virtual addresses in a
manner similar to a MIPS CPU. That is, the most significant bits (MSBs) of a virtual address indicate
whether the target data is mapped to cached or uncached memory. The rest of the bits are the physical
address of the data. The Wii Graphics Processor (GP) ignores these MSBs and therefore is only con-
cerned with physical addresses. The application is not required to convert virtual addresses to physical
addresses on behalf of either the Graphics Processor or the GX API.

In general, the application will be working with cache-mapped data. If the application is accessing the
same data as the Graphics Processor, the application must be careful to flush the data from the CPU
cache before the Graphics Processor uses it. The Graphics Processor has no visibility to data in the CPU
cache. For examples, see Appendix E.

1.4 Useful Books

This document assumes that you know how to program in the C language, and that are you are knowl-
edgeable about matrix and vector mathematics. If this is not the case, you might want to do some prepara-
tory reading. Here are some useful sources (check your local bookstore or library for the latest editions):

Foley, James D., et al., Computer Graphics: Principles and Practice, 2nd Ed., Addison-Wesley, Reading,
MA, 1990.

Kempf, Renate and Chris Frazier (eds.), OpenGL Reference Manual, 2nd Ed., Addison-Wesley, Reading,
MA, 1997.

Woo, Mason, et al., OpenGL Programming Guide, 2nd Ed., Addison-Wesley, Reading, MA, 1997.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Code Example: smp-onetri.c 3

2 Code Example: smp-onetri.c

Onetri.c is a fairly simple example that shows the basics of initializing graphics, making vertex formats,
and drawing flat-shaded primitives. All the data and code are included in a single file. This demo is also
available in the source tree at /rvl sdk/build/demos/gxdemo/src/Simple/smp-onetri.c.

Note: Despite the name, this demo draws more than one triangle.

Code 2-1 onetri.c

#include <demo.h>

/* ___ *
Model Data
K o o o e e o e e e e e e */
#define STRUT LN 130 // long side of strut
#define STRUT SD 4 // short side of strut
#define JOINT_SD 10 // joint is a cube
/* ___ *

The macro ATTRIBUTE_ALIGN provides a convenient way to align initialized
arrays. Alignment of vertex arrays to 32B IS NOT required, but may result
in a slight performance improvement.

s16 Verts_sl6[] ATTRIBUTE ALIGN(32) =

{

// x Yy z
-STRUT_SD, STRUT_SD, -STRUT_SD, // 0
STRUT_SD, STRUT_SD, -STRUT_SD, // 1
STRUT_SD, STRUT_SD, STRUT_SD, // 2
-STRUT_SD, STRUT_SD, STRUT_SD, // 3
STRUT_SD, -STRUT_SD, -STRUT_SD, // 4
STRUT_SD, -STRUT_SD, STRUT_SD, // 5
STRUT_SD, STRUT_LN, -STRUT_SD, // 6
STRUT_SD, STRUT_LN, STRUT_SD, // 7
-STRUT_SD, STRUT LN, STRUT_SD, // 8
-STRUT_SD, STRUT_SD, -STRUT_LN, // 9
STRUT_SD, STRUT_SD, -STRUT_LN, // 10
STRUT_SD, -STRUT_SD, -STRUT LN, // 11
STRUT_LN, STRUT_SD, -STRUT_SD, // 12
STRUT_LN, STRUT_SD, STRUT_SD, // 13
STRUT LN, -STRUT_SD, STRUT_SD, // 14
-JOINT_SD, JOINT_SD, -JOINT_SD, // 15
JOINT_SD, JOINT_SD, -JOINT_SD, // 16
JOINT SD, JOINT SD, JOINT SD, // 17
-JOINT_SD, JOINT_SD, JOINT_SD, // 18
JOINT_SD, -JOINT_SD, -JOINT_SD, // 19
JOINT SD, -JOINT SD, JOINT SD, // 20
-JOINT_SD, -JOINT_SD, JOINT_SD // 21

}i

u8 Colors_rgba8[] ATTRIBUTE_ALIGN (32) =

{

// r, g, b, a
42, 42, 50, 255, // 0
80, 80, 80, 255, // 1
114, 114, 110, 255 // 2

Vi

/ K e e e e e e *

Forward references
K o e m */
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

void main
static void Cameralnit
static void DrawInit
static void DrawTick
static void AnimTick
static void PrintIntro

void) ;
Mtx v) ;
void)
Mtx v
Mtx v
void) ;

7

7

void main (void)

{

{

RVL-06-0037-001-E

Mtx v; // view matrix
PADStatus pad [PAD_MAX CONTROLLERS]; // Controller state

pad[0] .button = 0;
DEMOInit (NULL); // Init os, pad, gx, vi

CameralInit(v); // Initialize the camera.
DrawInit () ; // Define my vertex formats and set array pointers.

PrintIntro(); // Print demo directions

while (! (pad[0] .button & PAD BUTTON_ MENU))

{
DEMOBReforeRender () ;
DrawTick (v) ; // Draw the model.
DEMODoneRender () ;
AnimTick (v) ; // Update animation.
PADRead (pad) ;

OSHalt ("End of demo") ;

Name : Cameralnit

Description: Initialize the projection matrix and load into hardware.
Initialize the view matrix.

Arguments: v view matrix

Mtx44 p; // projection matrix

Vec up = {0.20F, 0.97F, 0.0F};

Vec camLoc = {90.0F, 110.0F, 13.0F};

Vec objPt = {-110.0F, -70.0F, -190.0F};
£32 left = 24.0F;

£32 top = 32.0F;

£32 znear = 50.0F;

£32 zfar = 2000.0F;

MTXFrustum(p, left, -left, -top, top, znear, zfar);
GXSetProjection(p, GX_ PERSPECTIVE) ;

MTXLookAt (v, &camLoc, &up, &objPt) ;

Released: March 27, 2009

Graphics Library (GX)

© 2006-2009 Nintendo

CONFIDENTIAL

Code Example: smp-onetri.c 5

Name : DrawInit

Description: Initializes the vertex attribute format 0, and sets
the array pointers and strides for the indexed data.

Arguments: none

Returns: none

static void DrawInit (void)

{

GXColor black = {0, 0, 0, 0};
GXSetCopyClear (black, GX MAX Z24);

// Set current vertex descriptor to enable position and colorO.
// Both use 8b index to access their data arrays.
GXClearVtxDesc () ;

GXSetVtxDesc (GX_VA_POS, GX_INDEX8) ;

GXSetVtxDesc (GX_VA CLRO, GX_ INDEXS8) ;

// Position has 3 elements (x,y,z), each of type sl6,
// no fractional bits (integers)
GXSetVtxAttrFmt (GX_VTXFMTO0, GX VA POS, GX POS XY7Z, GX S16, 0);

// Color 0 has 4 components (r, g, b, a), each component is 8b.
GXSetVtxAttrFmt (GX_VTXFMTO0, GX VA CLRO, GX CLR_RGBA, GX RGBA8, 0);

// stride = 3 elements (x,y,z) each of type sl16
GXSetArray (GX_VA POS, Verts sl6, 3*sizeof(sl6));
// stride = 4 elements (r,g,b,a) each of type u8
GXSetArray (GX_VA CLRO, Colors_rgba8, 4*sizeof (u8));

// Initialize lighting, texgen, and tev parameters

GXSetNumChans (1) ; // default, color = vertex color

GXSetNumTexGens (0) ; // no texture in this demo

GXSetTevOrder (GX_TEVSTAGEO, GX_TEXCOORD NULL, GX_TEXMAP NULL, GX_COLOROAO) ;
GXSetTevOp (GX_TEVSTAGEO, GX_ PASSCLR) ;

Name : Vertex
Description: Create my vertex format
Arguments: v 8-bit position index
c 8-bit color index
Returns none
K o e m */
static inline void Vertex(u8 v, u8 c)
{
GXPositionlx8 (v) ;
GXColorlx8(c) ;
1
/* __ *
Name : DrawFsQuad
Description: Draw a flat-shaded quad.
Arguments: vO0 8-bit position index 0
vl 8-bit position index 1
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

RVL-06-0037-001-E
Released: March 27, 2009

6 Graphics Library (GX)
v2 8-bit position index 2
v3 8-bit position index 3
c 8-bit color index
Returns none
K o e o e e e e o e e e */
static inline void DrawFsQuad (
u8 vo,
us8 vi,
u8 vz,
u8 v3,
us8 c)
Vertex(v0, c);
Vertex(vl, c);
Vertex(v2, c);
Vertex(v3, c);
/* ___ *
Name DrawTick
Description: Draw the model once. Replicates a simple strut model
many times in the x, y, z directions to create a dense
3D grid. GXInit makes GX_ PNMTX0 the default matrix.
Arguments: v view matrix
Returns: none
K o e e o e e e e e e e e = */
static void DrawTick(Mtx v)
f32 x; // Translation in x.
f32 vy; // Translation in y.
f32 z; // Translation in z.
Mtx m; // Model matrix.
Mtx mv; // Modelview matrix.
GXSetNumTexGens (0) ;
GXSetNumTevStages(1);
GXSetTevOp (GX _TEVSTAGEO, GX PASSCLR) ;
MTXIdentity (m) ;
for(x = -10*STRUT_LN; x < 2*STRUT_LN; X += STRUT_LN)
for(y = -10*STRUT _LN; y < STRUT_LN; y += STRUT LN)
for(z = STRUT LN; z > -10*STRUT_LN; z -= STRUT LN)
MTXRowCol (m, 0, 3) = x;
MTXRowCol (m, 1, 3) = y;
MTXRowCol (m, 2, 3) = z;
MTXConcat (v, m, mv) ;
GXLoadPosMtxImm (mv, GX_ PNMTXO) ;
GXBegin (GX_QUADS, GX_VTXFMTO, 36); //4 vtx/gd x 9 gd = 36 vtx
DrawFsQuad(8, 7, 2, 3, 0);
DrawFsQuad (1, 2, 7, 6, 1);
DrawFsQuad (1, 0, 9, 10, 2);
DrawFsQuad (4, 1, 10, 11, 1);
DrawFsQuad (1, 12, 13, 2, 2);
DrawFsQuad (2, 13, 14, 5, 0);
DrawFsQuad (18, 15, 16, 17, 2);
DrawFsQuad (20, 17, 16, 19, 1);

© 2006-2009 Nintendo
CONFIDENTIAL

Code Example: smp-onetri.c

DrawFsQuad (20, 21, 18, 17, 0);

GXEnd () ;
/* ___ *
Name AnimTick
Description: Moves viewpoint through the grid. Loops animation so
that it appears viewpoint is continuously moving forward.
Arguments: v view matrix
Returns: none
K o e m - */
static void AnimTick(Mtx v)
static u32 ticks = 0; // Counter.
Mtx fwd; // Forward stepping translation matrix.
Mtx back; // Loop back translation matrix.
u32 animSteps = 100;
£32 animLoopBack = (£32)STRUT_ LN;
£32 animStepFwd = animLoopBack / animSteps;
MTXTrans (fwd, 0, 0, animStepFwd) ;
MTXTrans (back, 0, 0, -animLoopBack) ;
MTXConcat (v, fwd, v);
if((ticks % animSteps) == 0)
MTXConcat (v, back, v);
ticks++;
/* ___ *
Name PrintIntro
Description: Prints the directions on how to use this demo.
Arguments: none
Returns: none
K o e m */

static void PrintInt
OSReport (“\n\n**
OSReport (“to qui
OSReport (“ hi
OSReport (“W****x*

ro(void)

**************************************\n"),-
t:\n");

t the start button\n”) ;
**********************************\n"),-

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E

Released: March 27, 2009

Graphics Library (GX)

The following library functions are explained in the listed sections:

DEMOInit ("3.1 Video Initialization" on page 9).

GXInit ("3.2 Graphics Initialization" on page 9).

GXSetVtxDesc ("4.1 Describing the Vertex Data" on page 12).

GXSetArray ("4.2 Describing Arrays" on page 14 and "4.5.1 Indexed Vertex Data" on page 25).

GXSetVtxAttrFmt ("4.3 Describing Attribute Data Formats" on page 15).

GXBegin/GXEnd ("4.4.4 Using Vertex Functions" on page 20).

GXPosition, GXColor ("4.4.4 Using Vertex Functions" on page 20).

GXLoadPosMatrixImm ("5.1 Loading a Modelview Matrix" on page 34).

GXSetProjection ("5.2 Setting a Projection Matrix" on page 35).

GXSetNumChans ("6.1.3 Spotlights, Directional Lights and Angle Attenuation" on page 41).

GXSetNumTexGens ("7.1 Specifying Texgens" on page 53).

GXSetTevOp ("9.4 GXSetTevOp" on page 92)

GXSetTevOrder ("9.13 Texture Pipeline Configuration" on page 104).

GXSetCopyClear ("12.1.7 Clear Color and Z for Next Frame" on page 131).

The GX Library can be accessed using <revolution.hs. This header file is included here by way of the
<demo . h> header file.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Initialization 9

3 Initialization

3.1 Video Initialization

In the preceding code segment, the DEMOInit function initializes the operating system, Controller,
graphics, and video. The DEMOInit function takes a parameter that is a pointer to the render mode to be
used. If you pass in a NULL pointer, then a default mode is chosen based upon the video standard.

For NTSC, the default render mode is 640x480, non-antialiased, double-buffered, and deflickered. On the
640x480 screen, some pixels are trimmed off to account for overscan. Currently, DEMOInit trims 16 pixels
from the top and bottom of the screen, resulting in an actual size of 640x448. For more information about
render modes, see "12 Video Output" on page 129 or refer to the “Graphics (GX)” and “Render Modes”
pages in the Revolution Function Reference Manual (HTML).

The DEMO library encapsulates common functionality for the Wii demo programs.

3.2 Graphics Initialization

The Graphics Processor (GP) comes out of reset with unknown register values. The GxInit function is
used to set all the registers in the GP to default values. In the code example (in Chapter 2), GXInit is
called by way of DEMOInit.

GXInit alsoinitializes a FIFO in main memory that is used to send graphics commands and data from the
CPU to the GP (for more information on FIFO, see "13 Graphics FIFO" on page 139). The FIFO write port
is attached to the CPU, and the FIFO read port is attached to the GP. This configuration is known as
immediate mode, because graphics commands are sent immediately from the CPU to the GP as they are
executed. In immediate mode, the GP will interrupt the CPU when the FIFO is nearly filled and temporarily
stop any threads calling GX functions. As a result, multi-threaded applications must call GX commands
from a single thread only. In this way, even if the FIFO is nearly full, only the thread generating graphics
commands will be stopped. It is also possible to set the FIFO(s) up in a multi-buffered mode, in which the
CPU writes commands to one FIFO while the GP reads commands from a different FIFO. See "13_
Graphics FIFQO" on page 139 for more information on the graphics FIFO.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

10

3.3

Graphics Processor (GP)

Graphics Library (GX)

The following figure is a logical block diagram of the GP. The subsequent chapters in this book roughly
follow the order of the pipeline’s processing blocks.

Figure 3-1 Schematic of the GP

Main Memory position position’
normal normal’ ion'
Transform \L position
GX FIFO — FIFO
4KB Command color . color channels
) Lighting
Processing
Matrix Memory
. . Call FIFO
Display Lists — 4KB
position, normal,
Vertex Arravs Vertex Cache tex coords Texture Coordinate | tex coords’
y 8KB, 8 way Generation
Clipping
Culling —— Rasterize |—> Z Compare
Setup
External Frame
Buffer Co Frame Buffer
or Py 2.1MB
Texture
Texture
Textures Mem/Cache
1.0MB
Texture Z
Bump Texture Environment) Fog —— Compare Blend
Indirect
Texture

RVL-06-0037-001-E

Released: March 27, 2009

© 2006-2009 Nintendo

CONFIDENTIAL

Vertex and Primitive Data 11

4 Vertex and Primitive Data

The GX API supports indexed and direct vertex data with flexible sizes and types. Here is a list of the terms
that we will use in the following discussion:

Attribute: A component of a vertex; for example, position, normal, color, texture coordinate, or matrix
index. Each attribute consists of one or more elementary types; for example, a position may consist of
three floats (x, v, z).

Vertex: A group of attributes attached to a point in space; therefore, every vertex must have, at mini-
mum, a position attribute.

Primitive: A geometric object described by a group of vertices with the same format.

Vertex Descriptor: Describes which attributes are present in a particular vertex format and how they
are transmitted from the CPU to the GP (either direct or indexed).

Vertex Attribute Format: Describes the format (type, size, format, fixed point scale, etc.) of each
attribute in a particular vertex format.

Vertex Format: A Vertex Attribute Format together with the Vertex Descriptor.

Direct: When an attribute is GX_DIRECT, the data representing that attribute is sent to the GP via the
CPU/Graphics FIFO.

Indexed: When an attribute is GX_INDEX*, an index to the attribute data is sent to the GP via the
Graphics FIFO. The GP then fetches the actual attribute data automatically by using the index and an
array pointer.

To draw a primitive, you should follow these steps:

1.

o M~ N

Describe which attributes are present in the vertex format and describe whether the attributes are
indexed or referenced directly.

For indexed data, set the array pointers and strides.
Describe the number of elements in each attribute and their types.
Describe the primitive type.

Draw the primitive by sending the GP a stream of vertices that match the vertex description and
attribute format.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

12 Graphics Library (GX)

Figure 4-1 Vertex and Attribute Description

Al vedices ina primitive hawve the =ame Yertex
- h'l Descriptor and Yertex Atribute Format
!

[———

Wetex attrbue Fornat O

P osition:=y,z, 160 fixed point, unsigned 14 .2 format
Mormal: nexny nz; Sh fixed point, signed 1.6 format
Colord: RGBSSS format

TexCoordD: =t foating poirt format

Yertex Descriptor:
Position: Sk [ndex
Monmal: S Index
Coalord; Direct
TexZoordd: 16k Index

4.1 Describing the Vertex Data

Code 4-1 Vertex Descriptor

GXClearVtxDesc () ;

GXSetVtxDesc (GX_VA POS,
GXSetVtxDesc (GX_VA_ NRM,

GX_INDEX8
GX_INDEXS8

;
;
i
)i

)
)
GX_DIRECT)
6

(
GXSetVtxDesc (GX_VA CLRO,
(GX_INDEX1

GXSetVtxDesc (GX_VA_ TEXO,

The GxSetVtxDesc function is used to indicate which attributes are present in the vertex data, and
whether they are indexed or direct. There is only one active vertex descriptor, known as the current vertex
descriptor. The GXClearVtxDesc command is used to set the value GX_NONE for all the attributes in the
current vertex descriptor. GX_NONE indicates that no data for this attribute will be present in the vertex.
Once cleared, you only need to describe attributes that you intend to provide. The possible attributes are:

* Position, GX_VA POS (this attribute is required for every vertex descriptor).
* Normal, GX_VA NRM, or normal/binormal/tangent, GX_VA NBT.

+ Color_0,GX VA CLRO.

+ Color_1,GX VA CLRL.

» Up to 8 texture coordinates, GX_VA TEXO0-7.

* A position/normal matrix index, GX_VA PNMTXIDX.

* Atexture matrix index, GX_VA TEXOMTXIDX - GX VA TEX7MTXIDX.

These last two attributes are 8-bit indices which can reference a transformation matrix in the on-chip matrix
memory. This supports simple skinning of a character (for more on skinning, see the Graphics Library
(Advanced Rendering) manual in this guide). These indices are different from the other attributes in that
they may be sent only as direct data.

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

Describing the Vertex Data

13

The GP assumes that you will send any specified attribute data in the ascending order shown in the table

below:

Table 4-1 Vertex Attribute Order Requirements

Order Attribute

0 GX_VA_PNMTXIDX

1 GX_VA_TEXOMTXIDX
2 GX_VA_TEXIMTXIDX
3 GX_VA_TEX2MTXIDX
4 GX_VA_TEX3MTXIDX
5 GX_VA_TEX4MTXIDX
6 GX_VA_TEX5MTXIDX
7 GX_VA_TEX6MTXIDX
8 GX_VA_TEX7MTXIDX
9 GX_VA_POS

10 GX_VA_NRM or GX_VA_NBT
11 GX_VA_CLRO

12 GX_VA_CLR1

13 GX_VA_TEX0

14 GX_VA_TEX1

15 GX_VA_TEX2

16 GX_VA_TEX3

17 GX_VA_TEX4

18 GX_VA_TEX5

19 GX_VA_TEX6

20 GX_VA_TEX7

Note: Texture coordinates must be enabled sequentially, starting at GX_ VA TEXO.

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

14 Graphics Library (GX)

4.2 Describing Arrays

The attributes of a vertex may be indexed or direct (with the exception of GX VA PNMTXIDX, and
GX_VA TEXOMTXIDX-GX_ VA TEX7MTXIDX, which are always direct). For an indexed attribute
(GX_INDEXS8 or GX_INDEX16), you need only to send an index to the attribute data. The GP will use the
following equation to compute the address of the data:

Equation 4-1 Attribute Address
Attrdddress = AttrBase + ndex™ AttrStride

The GX_INDEXS index type allows a maximum array size of 255 elements (0-254). The index 255 is
reserved and indicates that this vertex should be skipped in the command stream. See “Multi-Resolution
Geometry” in Advanced Rendering for applications of this feature.

The GX_INDEX16 index type allows a maximum array size of 65,535 elements (0-65,534). The index Oxffff
(65,535) is used to indicate that this vertex should be skipped.

The attribute base pointer (byte-aligned) and stride (in bytes) are set using the GXxSetArray function
(described further in "4.5.1 Indexed Vertex Data" on page 25). The hardware will read the data described
by the vertex attribute format (see "4.3 Describing Attribute Data Formats" on page 15) from the array. This
avoids the need to read the data into the CPU, only to copy it back into the graphics FIFO. However,
indexing vertex data has cache coherency issues; see Appendix E.

The Graphics Processor has its own vertex data cache in order to make the fetching of indexed data more
efficient. The vertex cache is an 8-KB, 8-way set-associative cache. Notice that each attribute can be
stored as a separate array. There is no need to pack a vertex structure in memory, because the current
vertex descriptor and vertex attribute format allow the assembly of vertex data from the various arrays at
run time. You can invalidate the vertex cache using GXInvalidateVtxCache. This will force the cache to
reload vertex data.

A directly referenced attribute (6X_DIRECT) will have its data copied directly into the Graphics FIFO. Direct
data can be used when the data is already available in the CPU cache or when you are generating data
algorithmically on the fly.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Describing Attribute Data Formats 15

4.3 Describing Attribute Data Formats

The Vertex Attribute Format Table (VAT) allows you to specify the format of each attribute for up to eight
different vertex formats. The VAT is organized as shown:

Figure 4-2 Vertex Attribute Format Table (VAT)

o — o~ o <t o ©w ~
— — — — — _ Pt ~
= = = = = = = =
[T L [T L L o o =
> > > > =< > =< =
— — — — — _ = =
g) Z > = = = =
> > > > =< =< < <
o &) o [0) 1) o ® >
GX_VA_POS
B nelements —
GX VA NR format/size
. scale _
format/size
——
GX_VA_CLRO
nelements
format/size
GX_VA_CLR1
GX_VA_TEX0
|| n elements
format/size
GX_VA_TEX1 scale
GX_VA_TEX2
GX_VA_TEX3
GX_VA_TEX4
GX_VA_TEX5
GX_VA_TEX6
GX_VA_TEX7
/S

You can store eight predefined vertex formats in the table. For each attribute in a vertex, you can specify
the following:

The number of elements for the attribute.
* The format and size information.

» The number of fractional bits for fixed-point formats using the scale parameter. (The scale parameter is
not relevant to color or floating-point data.)

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

16 Graphics Library (GX)

Code 4-2 GXSetVtxAttrFmt

// format index attribute n elements format n frac bits
GXSetVtxAttrFmt (GX_VTXFMTO, GX_VA POS, GX_POS_XYZ, GX_S8, 0) ;
GXSetVtxAttrFmt (GX_VTXFMTO, GX_ VA CLRO, GX_CLR_RGBA, GX_RGBA8, 0);

The code above defines vertex attribute format zero. GX_VTXFMTO indicates that position is a 3-element
coordinate (x, y, z) where each element is an 8-bit 2’'s complement signed number. The scale value,
labeled n frac bits in the code above, indicates the number of fractional bits for a fixed-point number, so
zero indicates that the data has no fractional bits. The GX_VA CLRO attribute has four elements (r, g, b, a)
where each element is 8 bits.

Notes:
e The matrix index format is not specified in the table, because it is always an unsigned 8-bit value.

» The scale value is implied for normals (scale = 6 or scale = 14) and not needed for colors. Also,
normals are assumed to have three elements (Nx, Ny, Nz) for GX_VA NRM, and nine elements
(Nx, Ny, Nz, Bx, By, Bz, Tx, Ty, Tz) for GXx_VvA NBT. Normals are always signed values.

* The normal format (GX_VA NRM) is also used for binormals/tangents (GX_VA NBT) when they are
enabled in the current vertex descriptor.

The VAT in the Graphics Processor has room for eight vertex formats. The idea is to describe most of your
attribute quantization formats early in the application, loading this table as required. Then you provide an
index into this table (which specifies the vertex attribute data format) when you start drawing a group of
primitives using GXBegin. If you require more than eight vertex formats, you must manage the VAT table
in your application, reloading new vertex formats as needed.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Drawing Graphics Primitives 17

4.4 Drawing Graphics Primitives

44.1 Primitive Types
The following figure illustrates the types of primitives supported:

Figure 4-3 Graphics Primitives

\,O. o \VA R 2
- X FONTS
e V2 X QUADS
vi o
4 \Ve) 3
AV VO \2
« — ® X LINES GX LINBSTRF
VO > \3 \3 \VA R
“ \VA R
X TRANA ESTRP X TRANAEHAN
4
\VA R 3
vi X TRANAES V3
A 2
\V41
AV
VO V2 \3 VO 2 vl VO

GX_POINTS draws a point at each of the n vertices. Points are described further in "4.4.2 Points and Lines"
on page 18.

GX_LINES draws a series of unconnected lines. Segments are drawn between v0 and v1, v2 and v3, and
so forth. The number of vertices drawn should be a multiple of 2. Lines are described further in "4.4.2
Points and Lines" on page 18.

GX_LINESTRIP draws a series of connected lines, from vO to v1, then from v1 to v2, and so on. If n
vertices are drawn, n-1 lines are drawn.

GX_TRIANGLES draws a series of triangles (three-sided polygons) using vertices vO, v1, v2, then v3, v4,
v5, and so on. The number of vertices drawn should be a multiple of 3, and the minimum number is 3.

GX_TRIANGLSTRIP draws a series of triangles (three-sided polygons) using vertices vO0, v1, v2, then v1,
v3, v2 (note the order), then v2, v3, v4, and so on. The number of vertices must be at least 3.

GX_TRIANGLEFAN draws a series of triangles (three-sided polygons) using vertices v0, v1, v2, then vO, v2,
v3, and so on. The number of vertices must be at least 3.

GX_QUADS draws a series of non-planar quadrilaterals (4-sided polygons) beginning with vO, v1, v2, v3,
then v4, v5, v6, v7, and so on. The quad is actually drawn using two triangles, so the four vertices are not
required to be coplanar. The diagonal common edge between the two triangles of a quad is oriented as
shown in "Eigure 4-3 Graphics Primitives" on page 17. The minimum number of vertices is 4.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

18 Graphics Library (GX)

442 Points and Lines

Points are described by a single vertex, either 2D or 3D, and may be textured or not. You define a point’s
size using:

Code 4-3 GXSetPointSize

GXSetPointSize (u8 size, GXTexOffset tex offset);

Points are drawn as a square in screen space, centered about the location of the vertex. The size of a
point may be specified in 1/6 pixel units, and the maximum size is 42.5 pixels. If the point is textured, a
texture coordinate should be generated or supplied per point. This texture coordinate is attached to the
top-left corner of the point. The other texture coordinates for the other corners of the point are generated
using tex_offset.

Note: tex offset is specified in normalized texture coordinates.

Figure 4-4 Point Definition

tex_offset
) —— oD
/:\
: o
: E — xy2)
S, QIIPRTITIS
éf size/2
v

Lines are described by two vertices, either 2D or 3D, and may be textured or not. You define a line’s width
using:

Code 4-4 GXSetLineWidth

GXSetLineWidth (u8 width, GXTexOffset tex offset);

Lines are centered about the location of the vertices. The small edges of a line will be drawn horizontally or
vertically, depending upon the slope of the line (see "Eigure 4-5 Line Definition" on page 19). The width of
a line is specified in units of 1/6 pixel, and the maximum width is 42.5 pixels. If you are looking down the
line from the start point to the end point, the starting texture coordinate is attached to the near left-hand
corner of the line, while the ending texture coordinate is attached to the far left-hand corner. The texture
coordinates for the right-hand corners are produced by adding the tex_offset value to the corresponding

left-hand corner texture coordinates. The tex_offset is only added to the s component. See Figure 4-5 for
details.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Drawing Graphics Primitives

width/2
(s0+A, t0) —— < >
. 4 \
L 4
(s1+A, t1) J(........... >
tex_offset

19

Figure 4-5 Line Definition

GX_LINESTRIP

(s0, t0)
Lines closer to vertical have
(x0, y0, z0) edges aligned to X axis
Lines closer to horizontal have
edges aligned to Y axis
(s0+A, t0) (s0,t0) (s1,t1) (s1+A, t1)
(s0, t0) (s1, t1)
(sO+A, t0) (s1+A, t1)
(s1+A, t1) (s0+A, t0)
(x1, y1, z1)
(s1,t1) (s0, t0)

(s1+A, 1) (s1,t1) (sO,t0) (sO+A, t0)
(s1, t1)

Wide line strips created using GX_LINESTRIP may have overlapped joints that may show gaps and

cracks.

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

20 Graphics Library (GX)

443 Rasterization Rules

As shown in "Figure 4-3 Graphics Primitives" on page 17, polygons whose vertices appear in clockwise
order are defined to be frontfacing.

Polygon edges that fall exactly across a sample center will include the sample if the sample lies on a left
edge of a polygon; samples that fall exactly on right edges will not be included. When an edge is horizon-
tal, samples that fall exactly on upper edges are included, while samples that fall exactly on lower edges
are not. A sample that occurs at the intersection of two edges will be included only if each edge follows the
aforementioned rules at that intersection. These rules are illustrated in the following diagram.

Figure 4-6 Polygon Rasterization Rules

Samples are indicated by
circles.

Each triangle includes only
the similarly-shaded
samples that it overlaps.

Points are converted into a quad (two triangles) by extending them by half the point size horizontally and
vertically about the center. After this is completed, the rules for polygon edges are applied to determine
which samples the point includes. Lines are converted into quads in a similar way, and again, the rules for
polygon edges are applied to determine which samples the line will include.

4.4.4 Using Vertex Functions

The following functions can specify vertex data and indices to vertex data:

Code 4-5 Vertex Functions

GXPosition[n] [t]

n: {1, 2, 3}, t: {s8, u8, sle6, ule, £32, x8, x16}
GXNormal [n] [t]

n: {1, 3}, t: {s8, sle, £32, x8, x16}
GXColor [n] [t]

n: {1, 3, 4}, t: {us, ule, u32, x8, x16}
GXTexCoord [n] [t]

n: {1, 2}, t: {s8, us, sl6, ule, £32, x8, x16}
GXMatrixIndexlu8

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Drawing Graphics Primitives 21

You draw primitives by calling vertex functions (GXPosition, GXColor, etc.) between GXBegin/GXEnd
pairs. You must call a vertex function for each attribute you enable using GxsetVtxDesc (), and for each
vertex in the order specified in "Table 4-1 Vertex Attribute Order Requirements" on page 13. Each vertex
function has a suffix of the form ¢x [data] [n] [t], where data indicates an attribute (such as position or
color), n indicates the number of attributes, and t indicates the types of each of the elements passed to the
vertex function. See the GX pages in the online Revolution Function Reference Manual for details on each
particular vertex function.

Code 4-6 Drawing Primitives Using Vertex Functions

GXBegin (GX_TRIANGLES, GX_VTXFMTO, 3);

GXPositionlx8(0); // index to position
GXColorlxl6(0) ; // index to color

GXPositionlx8 (1) ;
GXColorlxl6 (1) ;

GXPositionlx8(2) ;
GXColorlxl6 (2) ;

GXEnd () ;

GXBegin specifies the type of primitive, an index into the VAT, and the number of vertices between the
GXBegin/GXEnd pair. This information, along with the latest call to GXSetVtxDesc (), fully describes the
primitive, vertex, and attribute format. GXEnd () is a null macro in the non-debug version of the library. In
the debug version, it makes sure that GXBegin and GXEnd are paired properly. You may call vertex
functions between GxBegin and GXEnd only.

The data type for each attribute should correspond to the vertex attribute format selected. In the example
below, the data is indexed, so you call vertex functions that describe the format of the index (the ‘x8’ or
‘x16’ type is used to indicate indices):

Code 4-7 Using Vertex Functions

GXClearVtxDesc () ;
GXSetVtxDesc (GX_VA_CLRO, GX_INDEXS8) ;
GXSetVtxDesc (GX_VA POS, GX INDEX16) ;

GXSetVtxAttrFmt (GX_VTXFMTO, GX_VA POS, GX POS XYZ, GX U8, 0);
GXSetVtxAttrFmt (GX_VTXFMTO, GX VA CLRO, GX CLR RGBA, GX RGBA8, 0);

/] -
GXBegin (GX_TRIANGLES, GX_ VTXFMTO, 3);

GXPositionlx8 (0) ; // index to position
GXColorlxlé (0x3e4); // index to color

GXPositionlx8 (1) ;
GXColorlxle (0x123e) ;

GXPositionlx8(2) ;
GXColorlx16 (17) ;

GXEnd () ;

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

22 Graphics Library (GX)

The function GXPosition1x8 indicates that this function takes one unsigned char (8-bit) index as a
parameter. The function GXxColor1x16 indicates that this function takes one unsigned short (16-bit) index
as a parameter.

4.5 Vertex Data Organization

Indexed attribute data supports the Wii system’s goal of flexible data organization. Programmers can
organize data used by animation, collision, and graphics with a minimum of reformatting.

When using indexed attribute data, the attribute values themselves are stored in main memory in an array.
The programmer describes graphics primitives using indices to reference into one or more of these arrays.
The graphics hardware computes the physical addresses from the indices and fetches the data.

A vertex cache is used to cache parts of the arrays as they are accessed, taking advantage of the natural
locality in geometric data. The data is stored in the vertex cache in quantized format, which improves
effective memory bandwidth.

Figure 4-7 Flow of Indexed Vertex Data

]i-mm da; 3 Indices reed Gaphics Frooessor (G 4. Datareed
franGXand framattribute
AFOad |.. + arayirnowvertex
Wite- aonvertedto | ™ a i vertex cacheoncade
m:]“ Cather adressss | . Rro Cache mss
Buifer
2 Indices 2
agpiedinto
AR

> Qaphics Comard Attribute
AFO Dea
Aray

NMan Menay

The following example of a simple textured box shows how indexed data can be more compressed than
direct data.This example only computes memory size. Indexing can also be beneficial in terms of
bandwidth, because data already in the vertex cache will not need to be read from main memory.

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo
CONFIDENTIAL

Vertex Data Organization 23

Code 4-8 Indexed vs. Direct Compression Example

//

// Indexed version of textured cube

//

// position data

£32 MyPos|[] =

{
100.0, 100.0, 100.0,
100.0, 100.0, -100.0,
100.0, -100.0, 100.0,
100.0, -100.0, -100.0,
-100.0, 100.0, 100.0,
-100.0, 100.0, -100.0,
-100.0, -100.0, 100.0,
-100.0, -100.0, -100.0

Vi

// texture data

ule MyTex[] =

{
0x0000, 0x0000,
0x0000, 0x0f00,
0x0f00, 0x0000,
0x0f00, 0x0f00

//

// draw 6 sides of cube, 2 x 8-bit index per vert
// 6 sides X 4 verts x 1B/indx x 2 indx/vert = 48B
// 8 pos x 3 £32 x 4B/f32 = 96B

// 4 texcoord x 2 ulé6/texcoord x 2B/ulé = 16B

// total = 48B + 96B + 16B = 160B
//
// Direct version of textured cube

// draw 6 sides of cube, 4 vertex each
// 1 pos x 3 f32/pos x 4B/f32 + 1 texcoord x 2 ul6/texcoord x 2B/ulé = 16B/vtx

// total = 24 vtx x 16B/vtx = 384B

The indexed attribute arrays can be compressed, removing duplicate attribute data. Also, you can order
the data for animation or collision processing so that it will be loaded efficiently into the CPU cache. Keep
in mind that the graphics chip is not cache-coherent with the CPU. In other words, before the GP accesses
the data, you must explicitly flush the CPU cache of any attribute array data it has accessed previously
(see OS function bCStoreRange). Also, you must invalidate the vertex cache using
GXInvalidateVtxCache if you relocate or modify an array of vertex data that is read by, or may be
cached by, the vertex cache.

The Wii system also supports direct data, which is copied directly into the graphics FIFO (see "13 Graphics
FIFQ" on page 139). The hardware gets the data from the FIFO and sends it down the pipeline; it does not
go through the vertex cache.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

24 Graphics Library (GX)

Figure 4-8 Flow of Direct Vertex Data

1. Data read CPU .
from main | Graphics Processor (GP)

memory |

Write-
CPU Gather Command Vertex

Cache Buffer FIFO Cache

2. Data copied 3. Data read

| into GX Cmd ., | from GX
/| FIFO. “ Cmd FIFO

and
processed.

» { Graphics Command FIFO
Attribute
Data
Array

Main Memory

In addition, it is possible to use indexed and direct access together for a single vertex.

Finally, the Wii system can generate new vertex data based on the existing vertex data in hardware. For
example, you can generate texture coordinates from position. This can be considered another form of data
compression. See "7 Texture Coordinate Generation" on page 53 for more information.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Vertex Data Organization

451 Indexed Vertex Data

In addition to specifying the vertex attribute descriptor (using GXSetVtxDesc) to indicate that an attribute
is indexed, you must also specify a pointer to the array of attribute data and the stride in bytes between
successive elements in the array.

25

There is a unique base pointer and stride for every attribute type. The pointer and stride are set using the
GXSetArray function. You can also use GXSetArray for setting pointers and strides for indexed light

arrays and matrix arrays.

Figure 4-9 Indexed Vertex Data

GXSetVtxDesc(GX_VA_POS, GX_INDEX8)
) GXSetVixAtrFmt(GX_VTXFMTO, GX_VA_POS, ...)
Main Memory » GXSetArray(GX_VA_POS, ...)
Position Array
{ - Base Pointer
- Stride
Position
Array
GXSetVixDesc(GX_VA_TEX0, GX_INDEX8)
GXSetVixAtrFmt(GX_VTXFMTO, GX_VA_TEXO,...)
Tex Coord Array GXSetArray(GX_VA_TEXO, ...)
.| - Base Pointer
- Stride
GXBegin(GX_TRIANGLES, ...)
GXPosition1x8(12) I
GXColor1x8(1) |, ..
GXTexCoord1x8(5) | Tex Coord
Array
. GXSetVitxDesc(GX_VA_CLRO, GX_INDEX8)
GXSetVtxAtrFmt(GX_VTXFMTO, GX_VA_CLRO, ...)
- GXSetArray(GX_VA_CLRO, ...)
- Color Array
GXEnd .
0 .- - Base Pointer
- Stride
Color
Array
Code 4-9 GXSetArray
s8 Verts8[9] = { -100, 100, O,
100, 100, O,
-100, -100, 0 };

u32 Colors[3] = {
0xFF000000,
0x00FF0000,
0x0000FF00 };

GXSetArray (GX_VA POS, (u32)Verts8, 3);
GXSetArray (GX_VA_CLRO, (u32)Colors, sizeof (u32));

/]

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

26 Graphics Library (GX)

The stride parameter also allows you to handle structures such as the following.

Code 4-10 Arrays of Vertex Structures

typedef struct {

u8 x,vY,z;

ulé s, t;

u32 rgba;

u32 private_data;
} Myvert;

MyVert myverts[100];

Y

GXSetArray (GX_VA_POS, &myverts[0].x, sizeof (MyVert)) ;
GXSetArray (GX_VA CLRO, &myverts[0].rgba, sizeof (MyVert)) ;
GXSetArray (GX_VA TEX0, &myverts[0].s, sizeof (MyVert));

GXSetVtxDesc (GX_VA POS, GX_INDEXS) ;
GXSetVtxDesc (GX_VA CLRO, GX_ INDEXS) ;
GXSetVtxDesc (GX_VA TEX0, GX_ INDEXS) ;

GXSetVtxAttrFmt (GX_VTXFMTO, GX VA POS, GX POS XYZ, GX U8, 2);
GXSetVtxAttrFmt (GX_VTXFMTO, GX_VA CLRO, GX CLR RGBA, GX RGBA8, 0);
GXSetVtxAttrFmt (GX_VTXFMTO, GX VA TEX0, GX TEX ST, GX_S16, 4);

45.2 Direct Vertex Data

When the vertex descriptor for an attribute is set to GX_DIRECT, the vertex function will copy the vertex
data into the graphics FIFO (see "13 Graphics FIFO" on page 139). This is different from indexed
primitives, in which the vertex function copies an index to the data into the graphics FIFO, and the data is
read directly from main memory by the Graphics Processor.

Direct data is coherent with the CPU cache, since it is copied through it.

Direct data is also useful in cases where the data you want to send is already in the cache. For example,
when a vertex’s position coordinates are calculated and generated by the CPU, it may be more efficient to
write them to the graphics FIFO directly, rather than index them from an array. On the other hand, direct
data uses more bandwidth because each element must be read into the CPU cache, written to the
graphics FIFO, and then read out of the FIFO again into the Graphics Processor. With indexed data, you
write the index into the FIFO and only read the data if there is a miss in the vertex cache.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Display Lists 27

Code 4-11 Direct Vertex Data

GXClearVtxDesc () ;
GXSetVtxDesc (GX_VA POS, GX DIRECT);
GXSetVtxDesc (GX_VA CLRO, GX_DIRECT) ;

GXSetVtxAttrFmt (GX_VTXFMTO, GX VA CLRO, GX CLR RGB, GX RGB8, 0);
GXSetVtxAttrFmt (GX_VTXFMTO, GX_VA POS, GX POS XYZ, GX F32, 0);

GXBegin(GX_TRIANGLES, GX_VTXFMTO, 3);
// vert 0
GXPosition3£f32(100.0, 100.0, 0.0);
GXColor3u8(Oxff, 0x00, 0x00);
// vert 1
GXPosition3£f32(0.0, 0.0, 0.0);
GXColor3u8(0x00, Oxff, 0x00);
// vert 2
GXPosition3£f32(100.0, 0.0, 0.0);
GXColor3u8(0x00, 0x00, Oxff);
GXEnd () ;

453 Mixture of Direct and Indexed Data

Indexed data may be mixed with direct data in a vertex format. Sometimes, the data size may be small and
since each vertex is unique, it is not worth indexing. This data can be sent directly while using indexing for
other attributes:

Code 4-12 Mixture of Direct and Indexed Data

GXClearVtxDesc () ;

GXSetVtxDesc (GX_VA POS, GX_ INDEX8) ;

GXSetVtxDesc (GX_VA CLRO, GX DIRECT) ;

GXSetArray (GX_VA_POS, &MyPos[0], sizeof (£32)*3);

GXSetVtxAttrFmt (GX_VTXFMTO, GX VA CLRO, GX CLR RGB, GX RGB565, 0);
GXSetVtxAttrFmt (GX_VTXFMTO, GX_VA POS, GX POS XYZ, GX F32, 0);

GXBegin (GX_TRIANGLES, GX_VTXFMTO, 3);

// vert 0

GXPositionlx8(1); // this is an index, use the ‘x’ type
GXColorlulé (0xf551); // this is color data, not an index
// vert 1

GXPositionlx8(0) ;

GXColorlulé (0x3243);

// vert 2

GXPositionlx8(2);

GXColorlulé (0x1897);
GXEnd () ;

4.6 Display Lists

A display list is a pre-compiled list of primitive-rendering or state-setting commands. Once the list has been
created, the GP can access it directly and process the commands as many times as needed. This provides
tremendous savings in memory bandwidth, compared to having the CPU re-create and send primitives
every time. To get optimum performance from the system, therefore, requires the use of display lists.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

28 Graphics Library (GX)

Figure 4-10 Display List Flow

4. Start reading
commands from
Display List into Call
AFO GP executes | .
1 Issue conmrands from
CallDisplayList - CcPU Call HFO Graphics Processor (GP) 5. If the Display
conmend. - " List includes
Whte - e | comrendsto
CcPU 3. CallDisplaytist A HHW | reference indexed
Cache %ﬁg commendread |... g \mme(ceta, GPietches
byap,| . ARO[AFO the indexed et
. - A -

2 CalDispayist) — 6. When Display List
| comerdoopied ||| e command finishes,
7| into GXOrd AFO switch execution to

Command HFO.
: Graphics Conmand
AFO
Attribute
Deta Array
Display
List
Main Menory

4.6.1 Creating Display Lists
Display lists may be created in various ways:
* By calling GXBeginDisplayList, GX primitive commands, and GXEndDisplayList, in that order.

» By creating arrays containing display list command tokens and data.

4.6.1.1 Using GXBeginDisplayList and GXEndDisplayList
Code 4-13 GXBeginDisplayList

void GXBeginDisplayList (
void *1ist,
u32 size) ;

The GXBeginDisplayList function prevents display lists from starting and disables writes to the FIFO
currently attached to the CPU. After this function has been called, the functions in the GX API that usually
send commands and data to the CPU FIFO will send commands and data to a display list buffer instead,
until the GXEndDisplayList function is called. Running the GXEndDisplayList function will re-enable
writes to the CPU FIFO. The list argument is the starting address of the display list buffer. The size
argument indicates the number of bytes available in the allocated space for writing display list commands;
it allows the system to check for overflow.

The application must allocate the memory for the display list buffer. If the display list exceeds the maximum
size of the buffer, size, the GXEndDisplayList function will return an error. The buffer address is 32-byte
aligned. Use the memory allocation functions provided by the OS library and MEM library to allocate a
memory region for the display list buffer that is guaranteed to be 32-byte aligned.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Display Lists 29

The CPU write-gather pipe is used to write graphics commands to a display list. Consequently, information
in the CPU cache must be flushed before beginning a write. This is done because the CPU write-gather
buffer (the buffer used to write GP commands into memory) is not cache coherent. You can call the
DCInvalidateRange function, provided by the OS library, to ensure that the cache data in this memory
region is deleted. Additionally, the mechanism that flushes the write-gather pipe requires that the display
list buffer be at least 32 bytes larger than the total maximum data value expected to be stored. In order to
make the pointer to the write-gather pipe 32-byte aligned and always push graphics commands into the
display list buffer from its starting address, the GXBeginDisplayList function will call the
GXResetWriteGatherPipe function internally and reset the write-gather pipe.

Display lists cannot be nested. This means that the GXBeginDisplayList, GXCallDisplayList, and
GXEndDisplayList functions cannot be invoked between a call to the GXBeginDisplayList and
GXEndDisplayList functions. Also, the GXBeginDisplayList function calls the GXF1lush function, so
the GXFlush function does not need to be called explicitly after running the GXBeginDisplayList
function.

For the most part, GX APl commands can be sent to a display list. However, it is possible to bypass the
consistency of the states controlled by the GX APl when display lists are used at runtime. This sometimes
causes unexpected behavior, stops the graphics pipeline, or creates some other problem, resulting in a
state collision or conflict. The most recommended safe method of sending GX API commands is to send
only primitives which will not cause state collisions, within the range which can be bracketed by the
GXBegin and GXEnd functions.

4.6.1.2 Creating Arrays Containing Display List Commands

Appendix C describes some of the command tokens that go into a display list. You can put such tokens and
the associated data directly into an array. When creating an array whose elements are defined at compile
time, use the ATTRIBUTE ALIGN (32) macro to guarantee proper alignment. You must also be sure to pad
the length of the array to a multiple of 32 bytes using GX_NOP commands, as shown in Code 4-14.

Code 4-14 Sample Array Containing Display List

u8 OneTriDL[] ATTRIBUTE_ALIGN(32) =

{

(GX_DRAW_QUADS | GX VTXFMTO), // command, primitive type | vat idx
0, 36, // number of verts, 16b
8, o0, 7,0, 2,0, 3,0, // quad 0

1, 1, , 1, 7, 1, 6, 1, // quad 1

i, 2, 0,2, 9,2, 10, 2, // quad 2

4, 1, 1, 1, 10, 1, 11, 1, // quad 3

i, 2, 12, 2, 13, 2, 2, 2, // quad 4

2, 0, 13, 0, 14, 0, 5, O, // quad 5

18, 2, 15, 2, 16, 2, 17, 2, // quad 6

20, 1, 17, 1, 16, 1, 19, 1, // quad 7

20, 0, 21, o, 18, 0, 17, O, // quad 8

GX_NOP, GX NOP, GX_NOP, GX NOP, GX NOP, GX NOP, GX NOP, // pad
GX_NOP, GX_NOP, GX_NOP, GX NOP, GX_NOP, GX_NOP, GX NOP, // pad
GX_NOP, GX NOP, GX NOP, GX NOP, GX NOP, GX NOP, GX NOP // pad to 32B

Arrays created in this manner are loaded into memory via the disc system, and thus should be guaranteed
to be resident in memory and not in any CPU cache, so no special cache flushing is required.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

30 Graphics Library (GX)

In addition, display list arrays can be created dynamically. Use the memory allocation functions provided
with the OS and MEM libraries to allocate a memory region guaranteed to be 32-byte aligned for the
display list array. Next, fill the array with the desired command tokens and data (remember, of course, to
pad the end of the command stream to a 32-byte boundary using GX_NOP commands). Finally, the array
must be flushed from the CPU’s data cache before the Graphics Processor can call it. You can use the
DCStoreRange (or DCFlushRange) function, provided by the OS library, to do this.

4.6.2 Drawing Primitives Using Display Lists
Once a display list has been created, you can call it using GXCallDisplayList, as shown in Code 4-15.

Code 4-15 GXCallDisplayList

void GXCallDisplayList (
void *1ist,
u32 size) ;

This call takes the size of the display list to increase the efficiency of display list processing and obviate the
need for an explicit return command.

As shown in "Figure 4-10 Display List Flow" on page 28, the Graphics Processor has its own logic to
handle GxcallDisplayList commands. CPU involvement is not necessary to change over the FIFO
source, since the GP handles this (and in fact, has separate internal FIFOs for mainstream graphics
commands vs. display list commands). This allows the GP to handle display lists very efficiently.

46.3 Effect on Machine State

A call to GXCallDisplayList does not perform any state pushing and popping. The only effect is to
temporarily change the source of graphics commands from the original source to the display list.
Therefore, any state that is changed during a display list call remains changed after the display list has
been processed.

Display lists that include state-changing commands have further complications. Certain state registers in
the GP include more than one piece of state. However, when writing to such a register, all of the included
state is affected. You cannot write to only certain bits of a register without writing to all the other bits.

The GX API maintains shadow copies of the registers that are updated as the CPU processes GX
commands. However, when the GP processes display lists, any state-changing commands in the display
list will update the actual registers and not update the shadow copies of the registers. Consequently, the
state-changing commands that occur in a display list (or after a display list) may unexpectedly affect other
pieces of state as well. Also, calls to inquire about current state (which read the shadow registers) may
return incorrect results.

As a result, one should be very careful about placing state-changing commands within display lists. You
may want to separate state from geometry within a display list, or else limit the state-changing commands
to ones that relate to the contained geometry. Geometry-only display lists can thus be used without
worrying about side effects, and the user need only pay special attention when using state-changing
display lists.

There is one further complication. Not all of the GX commands act immediately (“act” means inserting
commands into the current FIFO or command buffer). Instead, these GX commands will only set internal
variables maintained by the GX library; the actual GP commands will not be sent out until a GXBegin
command is called. This is known as “lazy evaluation,” and the purpose is to avoid sending unnecessary
commands that could slow the system down. This “lazy state” is also flushed by GXBeginDisplayList
before the display list is started, by GXEndDisplayList before the display list is finished, and by
GXCallDisplayList before the display list is called. Currently, the lazy state includes the VCD/VAT

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

GXDraw Functions 31

registers, the texture-coordinate scale registers, and the GEN_MODE register. The latter contains bits
indicating the number of active TEV and indirect stages, the number of active textures, the number of
rasterized colors, back/front culling mode, and antialiasing mode (these features are described in later
chapters).

Appendix C includes more information on display-list format, and it details which pieces of state are tied
together within the hardware registers.

4.7 GXDraw Functions

A number of basic 3D objects can be drawn using functions provided by GX. The following are provided:
* Cylinder

» Torus

» Sphere (iterated)

» Sphere (recursive)

* Cube

* Dodecahedron

* Octahedron

* Icosahedron

* Normal table

The following features are common:

» All shapes fit tightly within X = +/-1, Y =+/- 1, Z = +/- 1.

» The shapes are typically symmetric around the Z axis.

* All functions save and restore the VCD and VAT/VTXFMTS3.

» Positions and normals are provided for all shapes.

Texture coordinates may be provided for the torus, iterated sphere, and cube. They will be sent if the VCD
had texture coordinates enabled prior to the function being called. Similarly, NBT normals may be provided
for the cube.

These are the functions themselves:

Code 4-16 GX Draw Functions

void GXDrawCylinder (u8 numEdges) ;

void GXDrawTorus (£32 rc, u8 numc, u8 numt) ;
void GXDrawSphere (u8 numMajor, u8 numMinor) ;
void GXDrawCube (void) ;

void GXDrawDodeca (void) ;

void GXDrawOctahedron(void) ;

void GXDrawIcosahedron(void) ;

void GXDrawSpherel (u8 depth);

u32 GXGenNormalTable(u8 depth, £32* table);

GXDrawTorus takes arguments specifying the radius of the cross-section (such as the “fatness,” with 0 <
rc < 1), the number of subdivisions around the cross-section, and the number of subdivisions around the
overall torus. GXDrawSphere is the iterated sphere, and it takes arguments specifying the number of
lateral subdivisions and the number of longitudinal subdivisions. GXDrawSpherel is the recursive sphere;

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

32 Graphics Library (GX)

it is generated by recursively subdividing an icosahedron to the specified depth. GXGenNormalTable
allows a normal table to be generated by recursive subdivision of an icosahedron. You specify the
recursion depth and a pointer to memory to store the table. The function returns the total number of
normals generated.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Viewing 33

5 Viewing
This chapter describes the transformation section of the Graphics Processor.

The GP has an internal matrix memory. Programmers can load several matrices into the memory and
specify one of them as the default matrix using GXxSetCurrentMtx. Another way to specify a matrix is to
provide a per-vertex matrix index. Vertices that do not specify a modelview matrix index will use the current
matrix. When a matrix index is specified, the index used becomes the current matrix index and overwrites
the index set by GXSetCurrentMtx.

The same matrix memory index that specifies the modelview matrix that transforms the vertex position also
specifies the normal matrix when lighting is enabled. The picture below is somewhat simplified. Refer to
"5.6 How to Override the Default Matrix Memory Configuration" on page 39 for more details on the matrix
configuration.

Figure 5-1 Modelview and Projection Data Path

Position Matrix Normal Matrix
Memory Memory
GX_PNMTXO0 GX_PNMTXO0
GX PNMTX1 GX_PNMTX1
GXLoadPosMtx* - .|
GXLoadNrmMtx* GX PNMTX2 GX_PNMTX2
GXSetCurrentMtx - L
GX_PNMTX3 GX_PNMTX3
- & ®
[) [J
[) [J
GX_PNMTX9 GX_PNMTX9
4 (Nxe, Nye, Nze) for
Vertex Normal Lighting and Texture
(Nx,Ny,Nz) Normal Coordinate Generation
Transform
3x3
4
Projected
Vertex Position . Coordinate
Modelview L
(X.Y.Z.,1.0) > Transform | > Projection (Xc, Yc, Zc, Wc) >
Transform
3x4
4
Projection Matrix GXSetProjection
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

34 Graphics Library (GX)

5.1 Loading a Modelview Matrix
The functions shown below are used to load a position matrix and to specify which matrix should be used:

Code 5-1 GXLoadPosMtxImm

GXLoadPosMtxImm(&v, GX_ PNMTXO) ;
GXSetCurrentMtx (GX_ PNMTXO0) ;

Assuming an implicit W of 1.0, the basic vertex position transform from object or model space to homoge-
neous eye space is as shown in Equasion 5-1.

Equation 5-1 Vertex position transform

X
XE
¥, |= [Tmm formhdatriz (a3 x4}] ¥
Z
i 1.0

The matrix memory is configured by default to contain:

» 10 position and normal matrix pairs (GX_PNMTXO0-9), described by the enumeration GXPosNrmMtx.
+ 10 texture matrices (GX_TEXMTXO-9), described by the enumeration GXTexMtx.

* Anidentity matrix (3X_IDENTITY), also described by the enumeration GXTexMtx.

All matrices use floating point data.

The normal matrices are used for vertex lighting (see "6 Vertex Lighting" on page 41). The texture matrices
are used for various texture coordinate operations ("7 Texture Coordinate Generation" on page 53). In the
example onetri.c, GXInit sets the default matrix to GX_PNMTXO.

The normal transform is similar to the position transform; however, translation is neither required nor
useful. Consequently, the matrix does not need to convert a homogeneous normal. The normal is not
transformed by the projection and screen space conversions. The GXLoadNrmMtxImm function converts a
3x4 matrix into a 3x3 matrix and loads it into normal matrix memory. This assumes that the normal matrix
is the inverse transpose of the modelview matrix, which is usually a 3x4 matrix. The functions
GXLoadNrmMtxImm3x3 and GXLoadNrmMtxIndx3x3 may be used to load a normal matrix directly from
a 3x3 matrix in main memory. There is no function to do an indexed load of a 3x3 matrix from an array of
3x4 matrices.

The transformed normal is re-normalized before being used in the lighting calculations.

Equation 5-2 Vertex Normal Transform

Nxe N?:'
Ny |= [Nﬂrmaﬂ’pfam:f{ﬂjﬁﬂj]x M,
N.E'E NE'

A matrix can be loaded either by copying it directly into the Graphics FIFO (GXLoadPosMtxImm) or by
indexing a matrix array in main memory (GXLoadPosMtxIndx). Indexed matrices are loaded directly by
the graphics hardware. The matrix data is never sent through the Graphics FIFO.

Note: Indexed matrix loads have cache coherency issues; see Appendix E.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Setting a Projection Matrix 35

When using index matrices, you must first set up a base pointer and stride for the array you wish to access
using the GXsetArray function. The base pointer is the address of the first element in the array (index =
0). The stride is the number of bytes between successive elements of interest in an array. For example, an
array of 3x4 floating point matrices would have a stride of 48 bytes = 3 rows x 4 columns x 4 bytes/float.
The stride also allows the programmer to index arrays of structures that have additional data in the same
manner as indexing a normal array of matrices. The maximum stride accepted by GXSetArray is 255
bytes. Use the attributes GX_POS_MTX ARRAY, GX NRM MTX ARRAY, and GX_TEX MTX ARRAY to
specify a matrix array.

Matrix memory is not a matrix stack. It is assumed that the application will manage matrix stacks in main
memory and concatenate matrices using the CPU. The loaded matrix should transform the object to be
drawn from local model space to view space. The MTX library supports creating and manipulating matrix
stacks.

It is the application's responsibility to manage the matrix memory; the GX API simply provides a
mechanism for loading and using matrices.

A utility library is provided for matrix and vector math functions; see Matrix-Vector Library (MTX).

5.2 Setting a Projection Matrix

The GP performs standard projection transforms for each vertex position. The projection is done
separately from, and after, the modelview transform in the GP. The GXSetProjection function will load a
single projection matrix.

Code 5-2 GXSetProjection

void GXSetProjection(f£32 mtx[4] [4], GXProjectionType type);

The first argument is a pointer to a 4x4 projection matrix (see Matrix-Vector Library (MTX) for more
information on matrix format and construction). The second argument specifies whether the matrix is
perspective (6X_PERSPECTIVE) or orthographic (X ORTHOGRAPHIC). The projection transform
hardware assumes the forms shown in Equation 5-3 and Equation 5-4 for the projection matrix:

Equation 5-3 Perspective Projection

A, 20 0 pl 0O|]X,
¥ o p2 p3i 0¥

. 0 0 pd4 p3E
W I o -1 10 1

L

Equation 5-4 Orthographic Projection

XA, p00 0 pl]|X.
¥ o p2 0 pil|r
Z, 0 0 pd4 psS|E
W, o 0o o 1 |

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

36 Graphics Library (GX)

The Matrix-Vector library contains functions to help set up perspective and orthographic projection matri-
ces conveniently. They include MTXFrustum, MTXPerspective, and MTXOrtho.

The resultant homogeneous coordinates are in clip space. Once the clip space coordinates are obtained,
1.0/Wc is computed for converting to non-homogenous coordinates. Once this is done, the (x, y, z) coordi-
nates will lie within the normalized space of ([-1...+1], [-1...+1], [-1...0]).

5.3 Culling, Clipping, and Scissoring
Figure 5-2 Clipping and Culling Data Path

Projected Coordinate

- Bachface Culling Clipping

Clip Coordinates

F

Perspective Divide ‘Mewport Transform Setup

Screen Coordinates

Fasterzation Scizsor Box Test

Pixel Processing

The coordinates resulting from the projection transform are in clip space [Xc, Yc, Zc, Wc]. The hardware
will conditionally reject triangles that are frontfacing, backfacing, or both front- and backfacing as set by the
GXSetCullMode function. As stated earlier, frontfacing triangles are those whose vertices appear
onscreen in clockwise order.

Guardband clipping to +/-2Wc reduces the amount of clipping in the transform unit. The rasterization pro-
cess uses evaluation to compute only pixels that are within the visible screen, so there is no fill rate penalty
for this type of clipping.

Triangles are clipped when they are both outside the guardband region and inside the viewport. Other tri-
angles will be either totally out of the viewport (trivially rejected), totally inside the viewport (trivially
accepted), or partially inside the viewport (trivially accepted but scissored).

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Viewport and Scissoring 37

Points are trivially accepted when they are within +/-2Wc and are trivially rejected when they are outside +/
-2Wc. This prevents wide points from being trivially rejected when the vertex is outside of +/-Wec. In this

case, due to the point’s width, some of it may be visible. Lines are also only trivially rejected when they are
outside +/-2Wc.

Figure 5-3 Clip Coordinates

(0]

CGuardband

dip Wide point

Trivial Accept

L. Wide point

Trivial Accept Trivial Accept
Wide point
Trivial Reject

Trivial Reject

After clipping, the vertex (x, y, z) is perspective-divided. The viewport transform converts the coordinates
into screen space.

Actual clipping is a very slow procedure that creates stalls in the transform engine, thus it should be
avoided whenever possible. Clipping can be disabled by the function GXSetClipMode. There is a guard-
band at the far clipping plane that makes it acceptable to turn off clipping for most far-clipped objects. How-
ever, disabling clipping for near-clipped objects results in incorrectly drawn polygons.

GXInit enables backface culling and sets the viewport and scissor box to full screen size.

5.4 Viewport and Scissoring
The following equation performs the conversion from clip space to screen space and perspective scaling:

Equation 5-5 Clip Space to Screen Space Conversion

X 0 X

3 10 affset
Fj = E* Fc e |t Ir::ﬁe:
Es ’ E:: *Esr:ﬂie Eﬂ_me:r

The resultant screen space coordinate is then sent to the setup unit for rasterization. The 1/Wc value is
also sent to the setup unit for texture space computations.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

38 Graphics Library (GX)

The viewport is set using the following function:
Code 5-3 GXSetViewport

GXSetViewport (
£32 xOrig,
£32 yOrig,
£f32 width,
£32 height,
£32 nearz,
£f32 farz);

The screen space origin (0, 0) is at the top-left corner of the display. The screen space scale and offset are
computed using floating-point values. This is used to advantage in the function GXSetViewportJitter
to jitter the viewport by half a line in field rendering modes.

GXSetScissor sets the scissor box, typically to the same size as the viewport.

Code 5-4 GXSetScissor

GXSetScissor (
u32 left,
u32 top,
u32 width,
u32 height) ;

5.5 Coordinate Systems

The GX API assumes a right-handed coordinate system for model and eye space. The eye in eye space is
assumed to be looking down the negative Z axis. In order to map eye space into the viewport, the coordi-
nates undergo two changes of coordinate systems. The first occurs during projection into clip space
(assuming the MTX library projection routines are used). As a result of this transformation, the Z axis is
flipped, with Znear mapped to -W and Zfar mapped to zero. The second change occurs during the viewport
mapping into screen space. In this mapping, the Y axis is flipped, and the Z values are offset such that
Znear maps to the viewport's Z value that is close to the viewer, and Zfar maps to the viewport’s Z value
that is far from the viewer. The diagram below illustrates the process:

Figure 5-4 Coordinate System Transformations

Y
Y v
" Zfar 7 Viewport
Projection / Mapping
o X .
K"Znear } Y
Z Eye Space Clip Space Screen Space
Right-handed Left-handed Right-handed
coordinate coordinate coordinate
system system system
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

How to Override the Default Matrix Memory Configuration 39

The function GXProject is provided to transform a single point from object space to screen space. You
pass it the object coordinate, the model-view matrix, the projection matrix, and the viewport. It returns the
transformed point:

Code 5-5 GXProject

void GXProject (

£f32 x, // object coordinates

£32 vy,

£f32 =z,

£32 mtx[3][4], // model-view matrix

£32* pm, // projection matrix, as returned by GXGetProjectionv
f32* vp, // viewport, as returned by GXGetViewportwv

f32* sx, // returned screen coordinates

£32* sy,

£32* sz);

5.6 How to Override the Default Matrix Memory Configuration

The GX API configures the matrix memory in a way that is useful for the majority of general applications. In
some specific cases, you may want to override this default configuration. Here we describe the physical
layout of matrix memory and the rules an application must follow to allocate the matrix memory success-
fully.

The matrix memory consists physically of three separate memories. The first is for modelview and texture
matrices, the second is for normal matrices, and the third is matrix region for post-transform. For more on
the matrix region for post-transform, see Chapter 7.

Figure 5-5 Matrix Memory

ModelView/Texture Matrix Normal Matrix Memory

Memory
Row O Row O
Row 1 Row 1
Row 2 Row 2
Row 3 Row 3
[] [)
. .
Row 63 Row 31
Each row contains 4 floats Each row contains 3 floats
fo fl f2 3 fo f1 f2

The modelview/texture matrix memory consists of 64 rows, each row consisting of four floats. A matrix is
loaded as a set of contiguous rows in matrix memory. The index used by GXLoadPosMtx* and
GXLoadTexMtx* to specify the matrix in matrix memory (GX_PNMTX0 or GX_TEXMTX5, for example) is
actually the row address where the first row of the matrix is loaded. Modelview matrices loaded using
GXLoadPosMtx* are assumed to have three rows (3x4 matrices). Texture matrices can have either two or
three rows, specified in GXSetTexCoordGen. The matrices may be loaded starting at any row address.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

40 Graphics Library (GX)

The normal matrix memory consists of 32 rows, but each row contains only three floats. Since normals are
not required to be homogeneous, only 3x3 matrices are needed. Normal matrices can be loaded from
either a 3x4 matrix (GXLoadNrmMtxImm) or from a 3x3 matrix (GXLoadNrmMtxImm3x3) in main memaory.
Like modelview and texture matrices, normal matrices are indexed using the starting row address in nor-
mal matrix memory. However, normal matrices use the same index as modelview matrix, so the two must
be allocated as a pair. Normally, the matrix used to transform the normal is the inverse transpose of the
modelview matrix, so they are naturally pairs.

Since the modelview matrix index can address 64 rows, but the normal matrix index can address only 32
rows, the hardware computes the normal index as:

Equation 5-6 Normal Matrix Index
norm_mtx_indx = pos_mtx_indx % 32

For example, a modelview matrix row address of 33 or 1 will address the same normal matrix (at row
address 1). If you wish to use modelview matrices beyond the first ten matrices (thirty rows), you need to
leave a gap at row 30 and row 31. The eleventh modelview matrix must start at row 32 in order to line up
with a normal matrix.

The default matrix configuration organizes the modelview/texture matrix memory as follows:
» Ten modelview matrices (3x4).

» Ten texture matrices (3x4).

* One identity matrix (3x4).

Sixty-three rows are used in this configuration.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Vertex Lighting 41

6 Vertex Lighting

6.1 Lighting Pipeline

The Wii system supports lighting in hardware as a per-vertex calculation. This means that a color (RGB)
value can be computed for every lit vertex, and that these colors are then linearly interpolated over the
surface of each lit triangle (known as Gouraud shading).

Wii has full support for diffuse local spotlights. There is also some support for infinite specular lighting. This
chapter focuses mainly on diffuse lighting. Specular lighting is covered in "6.6 Specular Lighting" on page
49.

6.1.1 Diffuse Lights, Diffuse Attenuation and Vertex Normals

The hardware supports diffuse attenuation. This means that the front of the object can be brighter than the
sides, and the back darkest. Diffuse attenuation is the primary reason vertex normals are supported. For
each vertex, the vertex normal (N) is compared against the vector between the vertex and light position.

This encompasses two important physical effects. First, surfaces on “the back” of an object receive no
light. This can be seen as a simple self-shadowing technique—one that only works for convex objects.
Second, surfaces facing the light are lit more or less, depending on the incident angle of the incoming light.

6.1.2 Local Lights and Range Attenuation

The hardware supports local lights. Local lights have a position within the world and possibly, a direction. In
fact, each light must have a position. Using the position of each vertex and the position of the light, the
hardware can perform per-vertex distance attenuation. This means that you can make the brightness of
the light shining on an object decrease as the object moves away from the light.

6.1.3 Spotlights, Directional Lights and Angle Attenuation

The hardware supports directional lights, ranging from non-directional lights, to subtle directional effects, to
highly directional spotlights. These effects are supported by angle attenuation. This means that vertices
directly “in the beam” of the light can be made brighter than vertices outside the beam or behind the light.

Local diffuse lights can be both distance- and angle-attenuated (spotlights). By programming the proper
lighting equation, you can obtain the attenuation value as an output color or alpha. This color or alpha can
then be used in the Texture Environment (TEV) unit to attenuate projected texture lights.

The hardware supports eight physical lights. The programmer can describe the attenuation parameters,
position, direction, and color of each light. The programmer can control up to four physical color channels
that accumulate the result of the lighting equation. By associating lights with channels, the programmer
can choose to sum the effect of multiple lights per vertex or combine them later in the TEV. The number of
channels available to the TEV is set by GXSetNumChans. In some cases (for example, when using a color
channel to generate texture coordinates), a light channel is computed but not output. If only one channel is
available to the TEV, it is GX_COLOROAO. The light channel GX_COLOR1A1 is only available if two channels
are output to the TEV.

Code 6-1 GXSetNumChans

GXSetNumChans (u8 nChans) ;

Each color channel allows the enabling of attenuation and the selection of the color source. A light mask
associates up to eight lights with the channel.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

42

Graphics Library (GX)

One light is supported at the peak vertex rate of 48.6 million vertices/second. With two texture coordinates
per vertex and two lights, the peak vertex rate is 27 million vertices/second. With two texture coordinates

per vertex and four lights, the peak vertex rate is 14.3 million vertices/second.

Figure 6-1 Associating Lights with Color Channels

Light Attenuation Parameters
Light Position

Light Direction

Light Color

% -
* GX_ALPHAO

Diffuse Control: GX_DF_NONE, SIGN, CLAMP
Atten Control: GX_AF_NONE, SPOT, SPEC
Material Src: GX_SRC_REG or GX_SRC_VTX
Ambient Src: GX_SRC_REG or GX_SRC_VTX
Material Color (GX_SRC_REG)

Ambient Color (GX_SRC_REG)

Light Mask

Color Channels

//> GX_COLOR1

RVL-06-0037-001-E
Released: March 27, 2009

GX_ALPHA1

Light Mask Associates
Lights With a Channel

GX_COLOROAO

GX_COLOR1A1

Output Accumulated Colors
to Rasterizer

© 2006-2009 Nintendo
CONFIDENTIAL

Diffuse Lighting Equations 43

6.2 Diffuse Lighting Equations

Figure 6-2 Lighting Vectors

o

Equation 6-1 Light Parameters

P =10 0.0 e 14}, ColorChannel
J=1012.345677, Light
{ = LightParameter

Equation 6-2 Rasterized Color
ChannelColor,
ChannelColor;
Equation 6-3 Color Channel

Rasterized Colory -z, = <

ChannelColor, = Material, x LightFunc,
Equation 6-4 Material Source

Muaterial, = (MaterialSre, = GX _ SRC _ REG P MuaterialFeg, VertexColon)
Equation 6-5 Channel Enable

. 1.0, of LightfuncEnable, =FALSE
LightFune, = ,
Hlum Af LightFuncEnable;, =TRUE
Equation 6-6 Sum of Lights in a Channel

;
IHlum, = Clamp| Amb; + SignedInt z LightMask;(j)Atten, (j)DiffuseAtteni(j)CoIorj
j=0
Equation 6-7 Ambient Source
Amb, = (AmbSre, = GX _SRC _REG 7 AmbientReg, VertexColor,)
Equation 6-8 Diffuse Attenuation
1.0, if DiffAtenSelect, = GX _DF _NONE
DiffuseAtten; () = N-L,, if DiffittenSelect; = GX _DF _SIGN
Clamp 0 (f'-} 3 i i DiffAttenSelect; = GX _ DF _ CLAMPF

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

44 Graphics Library (GX)

Equation 6-9 Diffuse Angle and Distance Attenuation
C’Iampﬂ[gzr AA#, (7 + oy Adit (i1 + “'nj-,]

kzjﬁfz'iﬂg + Ryl)+ F
AAst (7)) = Clamp 0(L; - Ly) 11 GX _AF _SPOT

Atten,(j) = GX _AF NONE 21

di()= L, L, 1 GX _AF _SPOT

6.3 Matrix Memory

To use per-vertex lighting, you must provide a normal with each vertex. In order for the hardware to
transform the normal, you must provide a normal matrix. The normal matrix must be the inverse transpose
of the modelview matrix. The position modelview and normal modelview matrix are indexed by a single
index. In other words, they are considered to be a pair. The transformed normal is re-normalized before the
lighting computations.

For directional lights, you must provide a light normal for each active light. It is the application’s
responsibility to transform the light normal and light position into view space when the viewpoint changes.
The world-to-view matrix should be used to transform the light’s position. The light’s direction should be
transformed by the inverse transpose of the world-to-view matrix. The light’s direction is not normalized by
the hardware; therefore, the application must ensure it is properly normalized.

6.4 Light Parameters

You may define the position, direction, attenuation factors, and color for each physical light. There are eight
sets of physical light parameters. Light state is stored in a GXLightObj structure. The application is
responsible for allocating the memory for a GXLightObj. The GXInitLight* functions can be used to
initialize or modify the GXLightObj structure. The GXLoadLightObjImm or GXLoadLightObjIndx
function is used to load the GXIL.ightOb5j parameters into a physical light. GXLoadLightObjIndx has
cache-coherence issues; see "E.3 Data Coherency" on page 182 for more details.

6.4.1 Angle Attenuation

The function GXInitLightAttn is used to initialize parameters used to compute angle and distance
attenuation, as shown in "Equation 6-2 Rasterized Color" on page 43.

Code 6-2 GXInitLightAttn

void GXInitLightAttn(
GXLightObj *1t_obj,

£32 ao,
£32 al,
£32 az,
£32 ko,
£32 k1,
£32 k2) ;

The angle attenuation (a0, al, a2) is a quadratic function of the cosine of the angle between the light
direction and the light to vertex direction. By controlling the quadratic function’s coefficients, you control the
effective angle of the light.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Light Parameters 45

A more convenient way of controlling the angle attenuation is provided by:
Code 6-3 GXInitLightSpot

GXInitLightSpot (
GXLightObj* 1t _obj,
£32 cutoff,
GXSpotFn spot_fn);

This function defines two easy-to-control parameters, rather than a0, al, a2 used by GXInitLightAttn.
The parameter cutoff specifies cutoff angle of the spotlight in degrees. The spotlight works while the angle
between the ray for a vertex and the light direction given by GXInitLightDir is smaller than this cutoff
angle. The value for cutoff should be within (0.0 < cutoff <= 90.0), otherwise given light object doesn't
become a spotlight.

The parameter spot_fn defines type of the illumination distribution within cutoff angle. The following graphs
show the curve shape of the distribution functions given by acceptable values for spot_fn. The value
GX_SP_OFF turns the spotlight feature off even if the color channel setting is using GX_AF SPOT (see
GXSetChanCtrl).

Figure 6-3 Spotlight Functions

cutaff

=X 3P FLAT =X B8P _Co3 =X 3P C0ak

GX_SP_SHARP G¥X_8P_RING1 GX_SP_RINGZ

This function sets parameters only for angular attenuation. Parameters for distance attenuation should be
setusing GXInitLightDistAttn. You can also use GXInitLightAttn, butyou have to care about the
order for calling these functions because GXInitLightAttn overwrites parameters for both angle and
distance attenuation.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

46 Graphics Library (GX)

6.4.2 Distance Attenuation

GxInitLightAttn can also be used to control the light's distance attenuation characteristics. As shown
in "Equation 6-2 Rasterized Color" on page 43, the distance attenuation is an inverse quadratic function of
distance from the light to the vertex in world coordinates. By controlling the coefficients kO, k1, and k2 the
attenuation function can be controlled.

A more convenient way to control the distance attenuation is provided by GXInitLightDistAttn, as shown by
Code 6-4.

Code 6-4 GXInitLightDistAttn

GXInitLightDistAttn (
GXLightObj *1t_obij,
£32 ref distance,
£32 ref brightness,

GXDistAttnFn dist_ func);

In this function, you can specify the brightness on a defined reference point. The parameter ref_distance is
distance between the light and the reference point. The parameter ref_brightness specifies the ratio of the
brightness at the reference point. The value for ref_distance should be greater than 0 and ref_brightness
should be within O<ref_brightness<1, otherwise the distance attenuation feature is turned off.

The parameter dist_func defines how brightness decreases as a function of distance. The following graphs
show the curve shapes given by acceptable values for dist_func. The value GX_DA OFF turns the distance
attenuation feature off.

Figure 6-4 Distance Attenuation Functions

brightn hrightre brigghtn

distance - el distance - el distance

GX_DA_GENTLE GX_DA_MEDIUM GX_DA_STEEP

This function sets parameters only for distance attenuation. The parameters for angle attenuation should
be set using GXInitLightSpot. You can also use GXInitLightAttn, but you have to be careful about
order when calling these functions because GXInitLightAttn overwrites parameters for both angle and
distance attenuation.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Channel Parameters 47

6.5 Channel Parameters

6.5.1 Channel Colors

A vertex may include up to two colors, each having up to two channels: Color (R, G, B) and Alpha (A).
Taken together there are a total of four channels: color0, colorl, alpha0, and alphal.

Each channel has an associated ambient color or alpha and a material color or alpha. These colors can
come from vertex colors or from special ambient and material registers. The register colors are set using
the functions shown in Code 6-5.

Code 6-5 GXSetChanAmbcColor

void GXSetChanAmbColor (
GXChannellID chan,
GXColor amb_color) ;

void GXSetChanMatColor (
GXChannellID chan,
GXColor mat_color);

Only the components of GXColor needed by the channel are set. Also, you may set both the color and
alpha of a channel at the same time if this is more convenient.

6.5.2 Channel Control
Each channel is controlled using the function:
Code 6-6 GXSetChanCitrl

GXSetChanCtrl (

GXChannellID chan,
GXBool enable,
GXColorSrc amb_src,
GXColorSrc mat_src,
GXLightID light mask,
GXDiffuseFn diff fn,
GXAttnFn attn_fn);

If a lighting channel is disabled, enable = GX DISABLE, the material color for that channel will be passed
through unmodified to be rasterized. The mat_src parameter determines whether the material color comes
from the vertex color or from the material register.

When a channel is enabled, the lighting equation is computed for each light enabled in the light_mask. The
spot light enable, attn_fn, is defined as part of the channel, even though the angle attenuation parameters
are part of the light description. Diffuse attenuation can be enabled using diff_fn. Normally, when diff_fnis
enabled, the GXx_DF_CLAMP value is used. Sometimes it is useful to disable diffuse attenuation in order to
pass distance attenuation directly to the TEV.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

48 Graphics Library (GX)

6.5.3 Pre-lighting

Often, it is useful to pre-light an object in a modeling tool, such as 3D Studio MAX. The result of pre-lighting
is usually captured in the vertex colors of the object. When the lighting channel is configured properly, you
can combine hardware-computed local diffuse lighting with pre-lighting. One example, shown below,
assumes the pre-lit color is GX_VA CLRO per-vertex. The equation we want to implement is:

Equation 6-10 Pre-lighting
fit _elr=pre fit clr*(amb seale + diff scale® ather _attn *diff L clr)
amb _seale+ diff seale=1.0

When no local diffuse light is shining on an object, the color is equal to the ambient pre-lit color which is
(pre_lit_clrxamb_scale). When a light is shining on the object, the percentage of pre-lit color is increased
until, where the light is the brightest, the full value of pre-lit color is used.

The following example sets up GX_COLORO channel for pre-lighting. The vertex colorO will be the pre-lit
color at full intensity. The ambient color is set to white and scaled so that with no lighting the vertex color
will be 25% of the pre-lit color. The diffuse light color is scaled so that when fully lit, the vertex color will
equal 100% of the pre-lit color.

Code 6-7 Pre-lighting API

// init light position and direction and dist atten
GXInitLightColor (

Lt_obj,

ScaleColor (myLitColor, 0.75)); // diffuse scale
GXInitLightSpot (

Lt_Obj,

30.0,

GX_SP _COS2) ;
GXLoadLightObj Imm (

Lt_obj,

GX_LIGHTO) ;
GXSetChanAmbColor (

GX_COLORO,

ScaleColor (White, 0.25)); // ambient scale
GXSetChanCtrl (

GX_COLORO,

GX_ENABLE,

GX_SRC_REG, // ambient color source

GX_SRC_VTX, // material color source (pre-lit color)

GX_ LIGHTO,

GX_DF_CLAMP,

GX_AF_SPOT) ;

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Specular Lighting 49

6.6 Specular Lighting

The GP supports the computation of specular lighting. Specularity is actually a surface property that is
commonly equated with “shininess.” Specular highlights result when a surface is angled such that it reflects
the light from the light source toward the eye point. Specular lighting is implemented by creating an infinite
specular light source and modifying the angle attenuation control appropriately. In the equations below, “H”
refers to the half-angle between the vectors to the light and to the eye, as shown in Figure 6-5.

Figure 6-5 Specular Lighting Vectors

Equation 6-11 Specular Attenuation

Cleemp 0 %121 Adn, (71 + a,; Adt, {1+ . J
kzjif.t[ﬁ'z +hy il () + Ko

AAR ()= N L5 07 Clamp U (N - H): 0/ GX _AF _SPEC

d (A =N-L>0?Clamp V(. H): 0N GY _AF _SPEC

Atten,(j)= GX _AF NONE?1:

One may specify a specular light in the GxsetChancCtrl function by setting the GXAttnFn parameter to
GX_AF _SPEC. Since specular light sources are infinite, distance attenuation does not apply to them. You
specify the specular light direction using GXInitSpecularDir. It will compute and store the half-angle
and light direction. You may also specify the half-angle directly using the function
GXInitSpecularDirHA. Setting a light this way overwrites the position and direction from a diffuse light
source. You should not use GXInitLightDir or GXInitLightPos with a specular light source.

A specular light's half-angle is stored in the “light direction” field of the light object, while the specular light
direction is stored in the “light position” field of the light object. The specular light direction is first multiplied
by 2720 before being stored. This factor does not affect the specular computation, since the direction is
normalized first, and the factor allows the same light object to be used as a diffuse, non-directional light
source (when used with a different channel). The specular-computed light and the diffuse-computed light
can only be combined in the TEV.

You can use the macro GXInitLightShininess to control the specular attenuation function:
Code 6-8 GXInitLightShininess()

GXInitLightShininess (1t _obj, shininess);

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

50 Graphics Library (GX)

This macro effectively controls how sharp the specular highlight appears on the lit surface. It sets both the
distance and angle attenuation coefficients. Care should be taken when using this macro with other
functions that set the attenuation coefficients, such as GXInitLightAttn, GXInitLightAttnA,
GXInitLightAttnK, GXInitLightDistAttn, and GXInitLightSpot.

A plot of the shininess attenuation function is shown below for various values of shininess s. The plot
shows that higher values of shininess result in a sharper fall-off in the attenuation function. Minimum

attenuation occurs when - & is +/- 1.0.

Figure 6-6 GXlInitLightShininess Values

EilnLightShirimess

1.1 T T T
=4
1L 4
| |
08 |
[\ s=128 1
] II
0E II'-, s=256 l.' I
1 .-'I
07 \ f
€ .l'll
] 06 H !
& II'\ /
4 /
w \ |
® psH \ Fi
= Y /
Y f
Ty Ay H
..1. /
. A /
o3 K -LK‘ y Iy 4
._\' -}."
0.z -ll N 4 |I 1
I) F / |I
| ., 4 .'l |
0.1 S . o
o ——e -\-"—-__ L e - e —
-1 -D5 0 s 1
H*H

6.7 Vertex performance

"Table 1 - Vertex Performance” on page 51 lists the peak vertex data rate for various combinations of
vertex data and lighting. Actual performance depends on a number of game-specific variables and should
be determined empirically (see "6.8 Lighting Performance" on page 51 for an example). This table takes
into account transform, lighting, and setup performance.

e #T:. Number of (s, t) textures.

e #PT:. Number of (s, t, q) projected textures.

e #L: Number of local diffuse or specular lights.
e #BM: Number of generated bump maps.

e #C: Host-supplied color.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Lighting Performance 51

Table 1 - Vertex Performance

Performance
Vertex Mode (Vertices per

second)
1C Vertex 48.6 MV/s
1T Vertex 40.5 MV/s
[1 PT] [1L] Vertex 30.5 MV/s
2T 1L Vertex 22.1 MV/s
3T 1L Vertex 17.4 MV/s
3PT 1L Vertex 17.4 MVIs
2T 2L Vertex 22.1 MVIs
2T 4L Vertex 14.3 MV/s
4PT 4L Vertex 14.3 MV/s
8T 4L Vertex 8.4 MV/s
8PT 4L Vertex 8.4 MV/s
2T 1BM 1L Vertex 12.8 MV/s
3T 2BM 1L Vertex 7.8 MV/s
3T 2BM 4L Vertex 6.9 MV/s

6.8 Lighting Performance

In hardware, the lighting pipeline computes three components per light. If a color channel is being
computed, the components correspond to R/G/B. If an alpha channel is being computed, the components
correspond to A/A/A. Each light costs four cycles (at 243 MHz) for all the lights that will contribute to a
channel, plus one cycle. The discussion below applies only to local diffuse lighting (no texture coordinate
generation or bump mapping). It is assumed that the vertex supplies only a color for each active channel.

For example, if channel GX_COLORO uses two lights and channel GX_ALPHAO uses one light, then the
performance is 2*4 + 1*4 + 1 = 13 cycles, or 243/13 million vertices/second (18.7 million vertices/second).
If channel O (GX_COLORO and GX_ALPHAO0) uses three lights and channel 1 (GX_COLOR1 and GX ALPHA1L)
uses four lights, the total performance is 2*3*4 + 2*4*4 + 1 = 57 cycles, or 243/57 million vertices/second
(4.3 million vertices/second).

You can use the performance counter function described in "14 Performance Metrics" on page 151 to
determine the number of Graphics Processor clocks required per vertex, given the current lighting and
texture coordinate generation settings. You can also use the online GX calculator, titled Vertex
Performance Calculator, in the Revolution Function Reference Manual (HTML).

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

52 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Texture Coordinate Generation 53

7 Texture Coordinate Generation

7.1 Specifying Texgens

The GP has many ways to generate texture coordinates. This section briefly describes the major aspects
of the GXSetTexCoordGen function. For details on applications of texture coordinate generation, see the
Graphics Library (Advanced Rendering) manual.

Code 7-1 GXSetTexCoordGen

GXSetTexCoordGen (
GXTexCoordID dst_coord,
GXTexGenType func,
GXTexGenSrc src_param,
u32 mtx) ;

The texture coordinate generation function takes this general form:
Equation 7-1 Texture Coordinate Generation
dst_coord = func(src_param, mtx)

The input data described by the current vertex descriptor is transformed into a texture coordinate. The
most common function of texture coordinate generation is to transform the src_param by a 2x4 or 3x4
texture matrix, mtx. In this case, func is set to either GX_TG MTX2x4 or GX_TG MTX3x4.

Equation 7-2 Transforming src_param by 2x4 and 3x4 Matrices

i

[6x TExMTX*][InputCoord] //GX TG MTX2x4

or

[GX TEXMTX*][InputCoord] //GX TG MTX3x4
q
The parameter q indicates the vertical distance from the light's focus. When conversion is done using a

3x4 texture matrix, the calculated s and t are divided by q before being passed to the next process. For
details, see the Graphics Library (Advanced Rendering) manual.

Input coordinates, src_param, are one of:

Equation 7-3 Input Coordinates
(s, ¢, 1.0 1.0] HOX_TG_TEX*

(x y z 10} HGY TG _POS
i, » Pzz 1.0} H O TG NRM
[f:nx b, 1.0] [GY_TG_BINRM
b, ¢ :x 1.0} NGX TG TANGENT

Input coordinates for GX_TG MTX2x4 and GX_TG_MTX3x4 functions are the untransformed vertex data.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

54 Graphics Library (GX)

At a minimum, the GP always transforms input texture coordinates by a matrix. By default, the available
texture matrices are described by the enumeration GXTexMtx. To pass input texture coordinates
unchanged into output coordinates, use the GX_IDENTITY matrix. You must always generate a
consecutive number of texture coordinates starting at GX_ TEXCOORDO.

In addition to transforming texture coordinates, you can also transform positions and normals to create
output texture coordinates. Transforming an input texture coordinate using a 2x4 matrix is useful for
translation and rotation effects. A 3x4 matrix is useful for projecting textures and reflection mapping.

You can change the order of output texture coordinates from the input coordinate order using the
GXSetTexCoordGen function. In addition, you can use a single input parameter to generate multiple
texture coordinates. You can also ignore certain input parameters. This allows you to turn various layers of
texture on and off without needing to build a new display list for each version (at the cost of sending vertex
data you don't use).

The bump mapping function (func = GX_TG_BUMP*) of texture coordinate generation supports the
embossing style of bump mapping. This style of bump mapping is useful when the surface geometry of an
object is being animated. Texture coordinate generation carried out with the bump mapping function also
affects the vertex lighting hardware. A maximum of three GX_TG_BUMP* texture coordinates are supported
simultaneously. See the Graphics Library (Advanced Rendering) manual for more details on embossed
bump mapping.

Texture coordinates can also be generated from the red and green components of a particular lighting
channel (func = GX_TG SRTG). These can be used to create “cartoon” lighting functions, with sharp
transitions between arbitrary colors. Normally, the red component represents the intensity function of a
single local diffuse light. The green channel is programmed as a material control. The red channel is
mapped to the s-coordinate. The green channel is mapped to the t-coordinate. The s-coordinate (the
diffuse light intensity) is mapped by an arbitrary 1D texture lookup into a color. The t-coordinate can be
used to select which 1D table to use from an array of tables (a 2D texture). A maximum of two texture
coordinates may be generated using GX_TG_SRTG. The first one must be used with color channel 0, while
the second can only be used with color channel 1. See the Graphics Library (Advanced Rendering)
manual for more details on cartoon lighting.

Generated texture coordinates must be sorted by function. That is, texture coordinates generated by
simple transforms should occur first, followed by bump map coordinate generation, and finally the
generation of any texture coordinates based on lighting results.

Table 7-1 Texture Coordinate Generation Order

Required Order Texture Coordinate Generation Function

First GX_TG MTX2x4, GX_TG MTX3x4

Next GX_TG BUMPO-7

Last GX_TG_SRTG (up to 2 texture coordinates can be
generated)

In addition to setting the texture-coordinate generation functions, one must also specify how many
coordinates are being generated. This is performed by the function in Code 7-2.

Code 7-2 GXSetNumTexGens

GXSetNumTexGens (u8 nTexGens) ;

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Renormalization and “post-transform” Matrices Added for Texgens 55

The default number of texgens (set in GXInit) is one. If no vertex lighting is enabled
(cGxsetNumChans (0)), then at least one texture coordinate must be generated. If at least one channel is
being lit (¢XSetNumChans (1)), then the number of texgens can be set to zero.

7.2 Renormalization and “post-transform” Matrices Added for Texgens

It is also possible to use renormalization and post-transformation in the texture coordinate generation
computation path.

Figure 7-1 Texgen Computation Path

Source Select
GX TG TEX
GX_ TG POS
GX_TG NRM
GX_TG_BINRM
GX_TG_TANGENT

Row O —\l Row O —\l
(X: Optional < > , Computed
Renormalize TexCoord
Mat-Vec Mat-Vec
Multiply Multiply
Row 63 Row 63
Pos/Tex Mix Mem Post-Transform Mtx Mem

It is possible to add an optional renormalization step followed by a second “post-transform” matrix-vector
multiplication.

There are various ways to make use of these extra features. You can choose to provide twice as many
matrices for position transformation and use the extra memory for texgens (by selecting the identity matrix
for the first transformation). You can also use this feature to provide more efficient projected textures. In
this case, you use the position multiplied by the position matrix, then multiplied by a reprojection/rescale
matrix. This feature may also be used to make environment mapping easier. You use the normal multiplied
by a regular normal matrix (but stored in the Pos/Tex Mtx memory), then renormalized and multiplied by a
post-transform matrix that rescales the normal into texture space.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

56 Graphics Library (GX)

This feature is accessed by using GXSetTexCoordGen2, as shown in Code 7-3.
Code 7-3 GXSetTexCoordGen2

GXSetTexCoordGen?2 (
GXTexCoordID dst_coord,
GXTexGenType func,

GXTexGenSrc src_param,
u32 mtx,

GXBool renormalize,
u32 pt_mtx);

7.3 Other Texture Coordinate Generation Issues

In the GP, texture coordinates must be scaled to the size of the texture to which they are being applied.
Normally, this is taken care of automatically by GX. However, you can also control the texture coordinate
scaling manually by calling the function in Code 7-4.

Code 7-4 GXSetTexCoordScaleManually

void GXSetTexCoordScaleManually (GXTexCoordID coord, GXBool enable, ulé ss, ulé ts)

One application of this function is discussed in "10 Indirect Texture Mapping" on page 107.

The GP also has a feature that allows cylindrical geometry to be wrapped with a texture without having to
specify different texture coordinates for the seam vertices. This is known as cylindrical texture wrapping,
and it can be enabled with the function in Code 7-5.

Code 7-5 GXSetTexCoordCylWrap

void GXSetTexCoordCylWrap (GXTexCoordID coord, GXBool s _enable, GXBool t_enable)

In effect, this function computes the spread between each vertex’s texture coordinate and the minimum
coordinate, then subtracts 1 from any coordinate where the spread exceeds 0.5.

7.4 Texture Coordinate Generation Performance

The functions that are based on lighting, GX_TG BUMP* and GX_TG_SRTG, exhibit performance similar to
lights (see "6 Vertex Lighting" on page 41 for vertex lighting performance details). Each GX_TG_SRTG is
equivalent to a light, or four clocks for each coordinate generated plus one clock. Bump mapping is equiv-
alent to two lights, or eight clocks for each coordinate generated plus one clock.

The GX_MTX_ 2x4 and GX_MTX 3x4 functions take three clocks per component. For the special case of a
single (s, t) texture coordinate transform, only two clocks are required.

In general, the actual vertex performance is a function of lighting, texture coordinate generation, input data,
and output data parameters. To compute the performance for a particular configuration, use the Vertex
Performance Calculator in the Performance section of the GX API pages in the Revolution Function
Reference Manual (HTML).

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Texture Mapping 57

8 Texture Mapping

Wii has powerful texture mapping features, including single-cycle mipmapping, compressed color texture
and color index textures, anisotropic texture filtering, multitexture support (in multiple cycles), indirect
textures, and Z textures. The graphics processor (GP) textures four pixels per clock at a 243 MHz clock
speed, for a peak mipmapped texture rate of 972 megapixels/second.

A highly-flexible 1IMB Texture Memory (TMEM) can be configured as multiple texture caches, color index
lookup tables (TLUTSs), or it can be preloaded with textures. Texture caches can automatically prefetch
texels from main memory as needed. The TMEM is embedded high-speed 1TSRAM and is physically
separate from the embedded frame buffer (EFB). Textures are prefetched in parallel with rendering.

The GP can be configured to Z-buffer before texturing, eliminating texture fetches for pixels that are not
visible.

The texture hardware performs perspective correction, Level of Detail (LOD), and coordinate operations
like clamping, repeating, or mirroring at the rate of 4 pixels per clock per image. To support multitexturing,
the state describing up to eight active textures is stored in the GP. Multitexturing is accomplished by
processing a quad of pixels (2x2) through the pipeline over multiple cycles.

GXInit provides a default configuration of the texture pipeline that abstracts away many of the more
complex texture features. (You can override this configuration easily, as described later in this chapter and
in "9 Texture Environment (TEV)" on page 91.) Code 8-1 shows a simple program that loads and uses a
texture.

8.1 Example: Drawing a Textured Triangle

Code 8-1 Simple Texture Example

Project: Dolphin/Revolution gx demo
File: smp-texexample.c

Copyright 1998 - 2006 Nintendo. All rights reserved.

These coded instructions, statements, and computer programs contain
proprietary information of Nintendo of America Inc. and/or Nintendo
Company Ltd., and are protected by Federal copyright law. They may
not be disclosed to third parties or copied or duplicated in any form,
in whole or in part, without the prior written consent of Nintendo.

#include <demo.h>

#define BALL64 TEX ID 8

/* ___ *
Model Data
K o - */

static s8 Vert_s8[] ATTRIBUTE_ALIGN (32) =
{

-100, 100, 0, // O

100, 100, O, // 1

-100, -100, O // 2

}i

static u32 Colors_u32[] ATTRIBUTE ALIGN(32) =

{

// rgba
0xff0000ff, // O
0x00ff00ff, // 1

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

58 Graphics Library (GX)

0x0000ffff // 2

}i

// Array of texture coordinates

static u8 TexCoords_u8[] ATTRIBUTE ALIGN(32) =

{
0x00, 0x00, // O

// s t fixed-point format is unsigned 8.0
0x01, 0x00, // 1
0x00, 0x01 // 2

}i

static void CameralInit(Mtx v);

void main (void)

{

PADStatus pad[4]; // Controller state
GXTexObj texObj ; // texture object
Mtx v; // view matrix

us i; // loop variable

TPLPalettePtrtpl = 0; // texture palette
pad[0] .button = 0;
DEMOInit (NULL) ; // Init os, pad, gx, vi

Cameralnit (v) ;
GXLoadPosMtxImm (v, GX_ PNMTXO) ;

GXSetNumChans (1) ; // Enable light channel; by default = vertex color

GXClearVtxDesc () ;

GXSetVtxDesc (GX_VA POS, GX_INDEXS8) ;

GXSetVtxDesc (GX_VA_CLRO, GX_INDEXS8) ;

// Add an indexed texture coordinate to the vertex description
GXSetVtxDesc (GX_VA TEX0, GX_ INDEXS8) ;

GXSetArray (GX_VA_POS, Vert_s8, 3*sizeof(s8));
GXSetArray (GX_VA CLRO, Colors_u32, 1l*sizeof (u32));
GXSetArray (GX_VA TEX0, TexCoords_u8, 2*sizeof (u8));

GXSetVtxAttrFmt (GX_VTXFMTO, GX_VA POS, GX_POS_XYZ, GX_S8, 0) ;
GXSetVtxAttrFmt (GX_VTXFMTO, GX_VA CLRO, GX_CLR_RGBA, GX_RGBA8, 0);
// Describe the texture coordinate format

// fixed-point format is unsigned 8.0

GXSetVtxAttrFmt (GX_VTXFMTO, GX VA TEX0, GX TEX ST, GX_US8, 0) ;

// Load the texture palette
(file loading omitted)

TPLBind (tpl) ;

// Initialize a texture object to contain the correct texture
TPLGetGXTexObjFromPalette (tpl, &texObj, BALL64_TEX ID);

// Load the texture object; tex0 is used in stage 0
GXLoadTexObj (&texObj, GX_TEXMAPO) ;

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Example: Drawing a Textured Triangle

59

with 2x4 identity mtx

// Set the Texture Environment (Tev) Mode for stage 0
// GXInit sets default of 1 TexCoordGen

// Default TexCoordGen is texcoord(n) from tex(n)

// Default number of tev stages is 1

// Default stage0 uses texcoord0, texmap0O, color0a0
// Only need to change the tevop

GXSetTevOp (GX_TEVSTAGEO, GX_DECAL) ;

OSReport (“\n\n*****kkkkkkkkkkkkkkkkkkkkkkxx%**k\n”) ;

OSReport (“to quit:\n”);
OSReport (" hit the start button\n”) ;

OSREPOTL (Wk**kkkkkkkkkkkkkkkkkkkkkkkkkkkkkx\n”) ;

while (! (pad[0] .button & PAD BUTTON_ MENU))

{

DEMOBReforeRender () ;

// Draw a triangle
GXBegin(GX_TRIANGLES, GX_VTXFMTO, 3);
for (i = 0; 1 < 3; i++)

{

GXPositionlx8 (1) ;
GXColorlx8 (i) ;
// Add texture coordinate
GXTexCoordlx8 (1) ;

1

GXEnd () ;

DEMODoneRender () ;

PADRead (pad) ;

OSHalt ("End of demo") ;
/* ___ *
Functions
K o o o o e e e e e e e */
/* ___ *
Name Cameralnit
Description: Initialize the projection matrix and load into hardware.
Initialize the view matrix
Arguments: v view matrix
Returns: none
K o e o e e e e o e e e */

static void CameralInit (Mtx v)
Mtx44 p;
Vec camPt = {0.0F, 0.0F, 800.0F};
Vec at = {0.0F, 0.0F, -100.0F};
Vec up = {0.0F, 1.0F, 0.0F};
MTXFrustum(p, 240.0F,-240.0F,-320.0F, 320.0F,
GXSetProjection(p, GX PERSPECTIVE) ;
MTXLookAt (v, &camPt, &up, &at);

500, 2000);

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

60 Graphics Library (GX)

The GX API requires the following basic steps to use texturing:
1. Load textures into main memory.

2. Allocate a texture object (GXTex0bj) structure for each texture.
3. Initialize the texture object (GXInitTexObj) to describe the texture.
4

Load a texture object (GXLoadTexOb3j) into the GP to activate the texture.

For color index textures, you should perform the following additional steps:

5. Load TLUTs into main memory.

6. Allocate a TLUT object (GXT1utObj) structure for each TLUT.

7. Initialize the TLUT object (GXInitTlutObj) to describe the TLUT.

8. Load the TLUT (GXLoadT1lut) into one of the named TLUT regions of texture memory (GXT1luts).
9. Associate a TLUT name with a texture when initializing the color-index texture object.

These steps are explained in more detail in the sections that follow.

8.2 Loading a Texture into Main Memory

The first step in using a texture is to load it into main memory from the optical disc. The software released
with the Revolution SDK includes a program called TexConv . exe for converting common images files to
a “Texture Palette” (TPL, extension . tpl) format. TPL files can be stored on disc and loaded using the
Texture Palette library. This library will load a TPL file and return a texture object that can be used by the
GX API.

8.3 Describing a Texture Object

The GX API uses a GXTexObj structure to describe the various parameters associated with a texture, and
it is the user’s responsibility to allocate the memory for this structure. Parameters include:

» A pointer (aligned to 32B) to the texture image data.
* The texture’s format.

* The width and height of the texture.

* The texture filter modes.

» The texture wrapping controls.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Describing a Texture Object 61

The user initializes or changes a GXTexObj using GXInitTexObj (for non-color index textures) or
GXInitTexObijCI (for color-index textures).

Code 8-2 Initializing or Changing a Texture Object

GXInitTex0bj (
GXTexObj* obj,
void* image_ptr,
ulé width,
ulé height,
GXTexFormats format,

GXTexWrapModes wrap_s,
GXTexWrapModes wrap_t,

GXBool mipmap) ;
GXInitTexObjCI (

GXTexObj* obj,

void* image ptr,

ulé width,

ulé height,

GXCITexFmt format,

GXTexWrapModes wrap_s,
GXTexWrapModes wrap_t,
GXBool mipmap,
u32 tlut_name) ;

Additional mipmap controls (which are set to default values by the GXInitTexObj* functions listed
above) can be set using GXInitTexObjLOD. The GXInitTexObj* functions pre-compile their
parameters into hardware register state settings for optimum performance. The GXTexObj structure is
used to store these pre-compiled values and so are not directly readable by the application. Instead, you
should use the GxGet* functions to read the contents of a GXTex0bj.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

62 Graphics Library (GX)

8.3.1 Texel Formats

The parameter format in GXInitTexO0bj and GXInitTex0bjCI sets the texture format. The table below
lists the possible formats. GXInitTex0ObjCI should only set color-index formats and GXInitTexO0bj
should only set non-color-index texture formats.

Table 8-1 Texel Formats

Texture Format

Name Description Mipmap Filter Modes

GX_TF_l4 Intensity 4 bit all
GX_TF 18 Intensity 8 bit all
GX_TF_IA4 Intensity + Alpha 8 bit (4+4) all
GX_TF_IA8 Intensity + Alpha 16 bit (8+8) all
GX_TF_C4 Color Index 4 bit LIN_MIP_NEAR
GX_TF_C8 Color Index 8 bit LIN_MIP_NEAR
GX_TF_C14X2 Color Index 16 bit (14b index) LIN_MIP_NEAR
GX_TF_RGB565 RGB 16 bit (565) all
GX_TF_RGB5A3 When MSB = 1, RGB555 format (opaque) all

When MSB = 0, RGBA4443 format

(transparent)
GX_TF_RGBAS8 RGBA 32 hit (8888) all
GX_TF_CMPR Compressed 4 bits/texel, ~-RGB8A1 all

The texture filter always processes 4-channel colors, RGBA, where each channel is 8 bits wide. In general,
when the size of the texel component is less than 8 bits, the most significant bits (MSBs) of the texel are
copied into the least significant bits (LSBs) of the color channel:

Code 8-3 Texture Component Promotion to 8 bits

Input Texel = 0xa5a5 (RGB565 format)
Hex Binary
0x14, 10100
0xa5, 10100_101

Input Channel Red
Filter Channel Red

Input Channel Grn
Filter Channel Grn

0x2d, 101101
0xbé6, 101101_10

Input Channel Blu
Filter Channel Blu

0x05, 00101
0x29, 00101_001

This method guarantees that the entire color range from 0 to 255 is utilized. For the intensity formats, the
intensity component is copied to all four of the RGBA channels. For the intensity/alpha texels, the intensity
value of the texel is copied into only the RGB channels. For the RGB texture formats, the alpha channel is
set to opaque (A = 0xff).

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Describing a Texture Object 63

RGB5A3 is a 16-bit format that uses the MSB of each texel to indicate if the texel is opaque (MSB == 1) or
transparent (MSB == 0). When the texel is opaque, the remaining 15 bits are assumed to be in a 5/5/5 RGB
format. When the texel is transparent, the format is assumed to be 4/4/4/3 RGBA. The 8-bit alpha channel is
formed as described above; the three bits of alpha are replicated starting at the MSBs until an 8-bit field is
created. This format allows eight equal levels of transparency from fully transparent (A1pha = 0x00) to
fully opaque (A1lpha = 0xff). This format has two ways to represent opaque: when the MSB is 1 or when
the MSB is 0 and the three bits of alpha are all 1's.

Compressed textures (GX_TF_CMPR) are stored as such in TMEM. Decompression occurs after texture
lookup and before filtering. This results in storage savings in TMEM and main memory, and lower main
memory to TMEM bandwidth requirements.

8.3.2 Texture Lookup Table (TLUT) Formats
Table 8-2 lists the possible TLUT formats. There is no support for 24-bit or 32-bit TLUT formats.
Table 8-2 TLUT Formats

TLUT Format Name Description

GX_TL_IA8 Intensity + Alpha 16-bit (I8 + A8)

GX_TL_RGB565 RGB 16-bit (R5 + G6 + B5)

GX_TL_RGB5A3 When MSB = 1, RGB555 format (opaque)
When MSB = 0, RGBA4443 format (transparent)

The color index lookup occurs before filtering. The color that is looked up from the TLUT is converted into
an 8-bit per-component (RGBA) format for filtering in the same manner described in the previous section.

8.3.3 Texture Image Formats

Textures are stored in main memory as a row-column matrix of tiles with the following attributes:
» Each tile is a small sub-rectangle from the texture image.

» Each tile is a 4x4, 4x8, or 8x8 texel rectangle.

» Each tile is 32B, corresponding to the texture cache line size.

» Textures must be aligned to 32B in main memory and be a multiple of 32B in size.

» Texels are packed differently within a 32B tile depending on their type.

The level of detail maps for a mipmap are stored together one after another in main memory. The mipmap
image data is referenced by the base pointer of LOD 0. The size of a mipmap refers to the size of the LOD
0 map. Mipmaps must be a power of 2 texels in width and height but not necessarily square. All the other
LOD addresses can be calculated by the hardware from size and format information, and from the LOD 0
base pointer.

See Appendix D for texture formatting details. The texture conversion tool, TexConv . exe, can convert
from common image formats to Wii texture formats.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

64 Graphics Library (GX)

8.34 Texture Coordinate Space

Input texture coordinates (those supplied by the application to the GP) are map-relative (normalized)
coordinates. The following diagram shows how to map a single texture image onto a quad:

Figure 8-1 Map-relative Texture Coordinates

Quad Primitive

(0.0, 0.0) (1.0, 0.0)

Textured Quad

(0, 0) (1.0*m, 0)

\

(0.0, 1.0) (1.0, 1.0) >

Texture (any size)

(0, 0) (m, 0) (0, 1.0*n) (1.0*m, 1.0*n)

v

(O, n) (m, n)

The GP will scale the input map-relative coordinates into texel coordinate space by multiplying the s-
coordinate by the texture width and by multiplying the t-coordinate by the texture height. Each texture
coordinate is associated with a texture map using the GxSetTevOrder function described in "9 Texture
Environment (TEV)" on page 91.

The texel coordinate space ranges between +/-64K-texels. The largest texture image size is 1K by 1K-
texels. The maximum texel coordinate extent across a primitive is 128K texels regardless of the image
size. This implies a maximum number of repeats that can occur across a single primitive that depends on
the texture size. For example, a 1K-texel image can repeat a maximum of 128 times across a single
primitive.

The parameters wrap_s and wrap_t of the GXInitTex0Obj and GXInitTex0bjCI functions control the
texture coordinate operation. Texture coordinates can be operated on independently in one of three ways:
either clamped (GX_CLAMP), repeated (GX_REPEAT), or mirrored (GX_MIRROR).

When clamping (GX_CLAMP), the texture coordinate is clamped within the bounds of the image. If the s-
coordinate is negative, column 0 of the image is used. If the s-coordinate exceeds the width of the image,
then the last column of the image is used. This clamping operation also occurs independently for the t-
coordinate using the height of the image. When mipmapping, the width and height of the image should be
powers of two, but the image does not have to be square.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Describing a Texture Object 65

Texture borders are sometimes used to piece together larger textures from smaller textures (tiled). The
border area contains texels from the adjacent texture(s) so that filtering will use the correct information.
The Wii system has no support for texture borders. For planar (non-mipmapped) images, the border can
be included in the image itself because the GP supports arbitrary image width and height. Mipmapped
images do not support borders, so they cannot be tiled without visible seams (unless borders are carefully
designed into the textures themselves).

When repeating (GX_REPEAT), the (s, t) coordinates are modulo’d by the width/height of the image.
Repeating is only valid for power of 2 image sizes. You can repeat textures to replicate a small texture over
a large surface.

When mirroring (GX_MIRROR), the (s, t) coordinates are modulo’d by the width/height of the image, similar
to GX_REPEAT. In addition, the coordinates are 1's complemented on every other wrap. Mirroring a texture
is useful when an image is symmetrical about the (s, t) axis, like a tree texture. Mirroring is also useful for
eliminating the seams that naturally occur when GX_REPEAT-ing a small texture.

The figures below illustrate the coordinate operations for a texture that is four texels wide for both linear
and nearest filters. When using linear filtering, a %2 texel offset is subtracted to ensure proper spatial
alignment of mipmap levels.

Figure 8-2 Linear Filter—Clamp, Repeat, Mirror

20 10 QO 10 20 30O 40 50
>M1.5]Qted

<
< s s s s
REPIIP S 15 S S
<

<

20 30 Q0 10 20 30 QO 10

10 Q0 00 10 20 30 30 20
: : : : X MRRCR

Figure 8-3 Nearest Filter—Clamp, Repeat, Mirror

20 10 00 10 20 0 40 SO 60
>.mmmme

@ @ 4o 10 2Zo 30 30 20

20 30 G0 10 2O I 4O 10

10 Q0 4o 10 ZOo 30 30 20
>G(_I\,FFCR

ANV ANANVAN

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

66 Graphics Library (GX)

8.35 Filter Modes and LOD Controls

Filter modes and LOD controls are set to default values based on the state of the mipmap flag in the
GXInitTexObj and GXInitTexObjCI functions. These default values can be overridden by a
subsequent call to GXInitTexObjLOD. The parameters described in this section are set using the
GXInitTexObjLOD function.

Code 8-4 GXInitTexObjLOD

GXInitTexObjLOD (
GXTexObj* obj,
GXTexFilters min_ filt,
GXTexFilters mag filt,

£32 min lod,
£32 max_lod,
£32 lod_bias,
GXBool bias clamp,
GXBool do_edge_1lod,

GXAnisotropy max_aniso);

Figure 8-4 Pixel Projected in Texture Space Example

texture

pixel —>\ 7
projected on
texture L

view plane

In the example above, the road texture is projected onto the view plane such that a square pixel on the
screen maps to an elongated quadrilateral in texture space. The following discussion will reference this
image of the pixel projected in texture space.

The level-of-detail calculation computes the effective texel-to-pixel ratio for a quad (2x2) of pixels. A log
base 2 function converts the ratio into a corresponding mipmap level and a fraction, called LOD. Negative
LOD indicates magnification, while positive LOD indicates minification. There are two methods of
computing LOD. By setting do_edge_lod to GX_TRUE, LOD is computed using the distance in (s, t)
between adjacent pixels in the quad. If you set do_edge_lod to GX_FALSE, LOD is computed using the
distance in (s, t) between diagonal pixels in the quad.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Describing a Texture Object 67

Figure 8-5 LOD Calculation

b ede lod=GX TRLE b ete lod=GX FALSE

|
ma>‘<(a, b)

N
o mjedgdinuedue \ — ; P pgedadintodre
B filter foorirt S
LCD=0

tedure LCD-Otedure

In other words, the LOD calculation assumes that a pixel projects to a square in texture space. This is only
true if the polygon is roughly facing the viewer. The square filter pattern used by normal mipmapping is
called an isotropic (uniform shape) filter. When the polygon to be rendered is oblique to the viewer, the
pixel projected into texture space is distorted into a quadrilateral. In this case, the LOD calculation makes
the square encompass the quadrilateral, resulting in excessive blurring in one of the coordinate directions.

There are two methods available in the GP for improving the overblurring behavior of the LOD
computation: LOD biasing and anisotropic filtering.

The computed LOD value can be adjusted using the lod_bias parameter of the GXInitTex0bjLOD
function. Lod_bias can be used to prevent texture from becoming too blurry due to the conservative nature
of the LOD calculation. Lod_bias must be in the range —4.0 to +3.99. The result of LOD + lod_bias is
clamped between the min_lod and max_lod parameters. The min_lod and max_lod parameters define the
usable region of the texture pyramid and can range from 0.0 to 10.0. The following figure shows how a
negative lod_bias can be added to the computed LOD to effectively shrink the filter footprint in texture
space.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

68 Graphics Library (GX)

Figure 8-6 LOD Bias

Il
-

lod_bias
\

max(a,b)

/ |
L 1
/

pixel projected in texture space / pixel projected in texture space

filter footprint
& : (lod_bias is negative)

LOD bias will sharpen the texture when the polygon is oblique (the desired effect) but also when it is not.
To alleviate this problem, the bias_clamp parameter can be used to lessen the effect of lod_bias when the
polygon is more perpendicular to the view direction. When bias_clamp is enabled, the biased LOD will be
clamped to the minimum extent of the pixel projected in texture space.

Multiple square trilinear texture filter “footprints” can be iterated to approximate the shape of the
guadrilateral. This type of filter produces a sharper pixel and is said to be anisotropic (non-uniform shape).
The maximum number of “footprints” allowed is programmable using the max_aniso parameter. Setting
max_aniso to GX_ ANISO 1 allows only one square footprint and is the standard isotropic mipmap filter.
Setting max_aniso to GX_ANISO 2 and GX_ANISO 4 allows a maximum of two or four footprints per pixel,
respectively. The actual number of footprints used for each pixel is determined by the anisotropy of the
pixel as computed by the hardware. Trilinear filtering should be enabled (min_filt = GX LIN MIP_ LIN)
when using GX_ANISO 2 or GX ANISO 4. Also, edge LOD must be enabled in order for anisotropic
filtering to take place.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Describing a Texture Object 69

Multiple iterations of the texture filter require multiple internal cycles of the texture hardware. For example,
if GX_ANISO_4 is enabled, and the polygon being rendered requires the maximum four filter steps, the
peak fill rate will be divided by a factor of four. Anisotropic filtering does not lower the number of available
TEV stages (see "9 Texture Environment (TEV)" on page 91).

Figure 8-7 Anisotropic Filtering

RN

'/

S~

>

NG
N

>
" \ /

pixel prgected in texture

spece direction of anisotropy two sguare ‘foatprints' to
approxinete the quadralateral
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

70 Graphics Library (GX)

The maximum image size is 1K x 1K-texels, so the largest mipmap pyramid is 11 levels of detail. LOD 0
always refers to the highest resolution LOD, regardless of the image size. In the case of the 1K x 1K-texel
mipmap, LOD 10 is the coarsest resolution (1 x 1 texel).

Figure 8-8 Mipmap Pyramid for the Largest Texture Size

LOD .
10.0 1x1
00 | max_lod = 9.0 2x2
8.0 I A 4x4
7.0 : % 8x8
60 o 16x16
s0 || |§ 32x32
40 | % 64x64
% 30 | > min_lod = 2.5 128x128
S 20 | [T 256x256
s 10 B 512x512
0.0 1024x1024
"""" 10 ||
20 |

Magnification

When LOD is negative, the LOD is said to be in the magnification region. In other words, the pixel
projected into texture space covers only a fraction of a texel. This causes the LOD 0 texture to be
magnified on the display device.

When the texture is in the magnification region, you can choose between GX_NEAR and GX_LINEAR filter
modes using the mag_filt parameter.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Describing a Texture Object 71

Within an image, the GX_NEAR filter mode indicates that the closest texel to the pixel’s s- and t-coordinates
is chosen, as shown in the figure below:

Figure 8-9 GX_NEAR

A B

C D

Pixel Color P = A

The GX_LINEAR filter mode indicates that the nearest four texels to the pixel’s (s, t) coordinates should be
bilinearly interpolated using the (s, t) fractional bits, as shown in Figure 8-10.

Figure 8-10 GX_LINEAR

A B
sO

o—pgq—1——0

"a

o—p4g—F———o

sl
C D

sO = A + (B-A)*s_fraction
sl = C + (D-C)*s_fraction
Pixel Color P = sO + (s1-s0)*t_fraction
When LOD is positive, the LOD is said to be in the minification region. In other words, the pixel projected

into texture space covers more than one texel, and to achieve a 1:1 texel to pixel ratio these texels must be
filtered. The texture will appear smaller on the display device.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

72 Graphics Library (GX)

As illustrated in the table below, when the texture is in the minification region, you can choose between
several filter modes using the min_filt parameter.

Table 8-3 Mipmap Minimum Filter Modes

Within LODn, LODn+1 Between LODn, LODn+1
(based on s, t fraction) (based on LOD fraction)
GX_NEAR_MIP_NEAR Use texel nearest to sample point. Use nearest LOD.
GX_NEAR_MIP_LIN Use texel nearest to sample point. Interpolate between two
closest LODs.
GX_LIN_MIP_NEAR Bilinearly interpolate four texels Use nearest LOD.
surrounding sample point.
GX_LIN_MIP_LIN Bilinearly interpolate four texels Interpolate between two
surrounding sample point. closest LODs

Color-index textures cannot use the GX_ NEAR MIP LIN Or GX_LIN MIP_ LIN filter modes. All other
texture types, including compressed texture, can use any min_filt filter mode.

8.4 Loading Texture Objects

As shown in "9 Texture Environment (TEV)" on page 91, the default texture pipeline configuration accepts
up to eight texture coordinates, each associated with a texture map. To associate a texture with
GX_TEXMAPO, for example, you use the function in Code 8-5.

Code 8-5 GXLoadTexObj

GXLoadTexObj (GX_TEXMAPO, &myTexObj) ;

Loading a texture object only loads the state describing the texture into the hardware. The default GX
configuration allocates texture memory as caches and automatically assigns a cache to use with this
texture when you call GXLoadTex0bj. Once you have loaded a texture object, you may render polygons
using that texture. Up to eight texture objects can be loaded at once for multitexturing. There is no need to
synchronize the texture state with primitives explicitly. The GP automatically synchronizes state changes
with pixels in the rendering pipeline.

Refer to "9 Texture Environment (TEV)" on page 91 for more advanced control of texture coordinate
ordering.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Loading Texture Lookup Tables (TLUTS) 73

8.5 Loading Texture Lookup Tables (TLUTS)
Code 8-6 Loading TLUTs

GXInitTlutObj (
GXTlutObj* obj,
void* lut,
GXT1utFmt fmt) ;
GXLoadTlut (
GXT1lutObj* obj,
u32 tlut_name,
ulé start_entry,
ulé n_entries);

In order to use a color-indexed texture, you must first load a texture lookup table (TLUTS) into TMEM. The
default configuration of TMEM allows for 20 TLUTs, 16 with 256 entries, and four with 1kb entries (see the
GXT1luts enumeration). To load a TLUT, you follow steps similar to loading a texture object:

1. Describe the location and format of the TLUT in main memory using GXInitT1lutObj.
2. Load the TLUT into one of the named TLUTSs in texture memory using GXLoadT1lut.
3. Use GXInitTexO0bjCI to describe the color-indexed texture.

4. Set the tlut_name parameter to the TLUT name you have loaded.

Pointers to TLUTs in main memory must be aligned to 32 bytes. TLUTs must be a multiple of 16 entries,
with 16 bits for each entry. The total number of entries loaded using GXLoadT1lut must also be a multiple
of 16.

8.6 How to Override the Default Texture Configuration

So far, we have discussed the texture pipeline only in the context of the default configuration set by
GXInit. The purpose of this configuration is to abstract some of the complexities of the GX API in order to
allow the developer to concentrate on the basic features. However, developers may easily override the
default configuration in order to tailor the system to fit their specific applications more closely. This section
discusses how a developer can take advantage of the GX API's additional flexibility to configure the
following options:

* Allocation of TMEM.

e Binding of textures to texture caches and preloaded textures at run time.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

74 Graphics Library (GX)

8.6.1 Texture Regions

The TMEM is a 1MB high-speed 1TSRAM that can be configured to contain texture caches, preloaded
textures, and TLUTs. The GX API uses a simple TMEM management scheme that is set up by GXInit.
This scheme assumes that texture caches and TLUT regions are pre-allocated in TMEM. The default
configuration does not allow use of pre-loaded textures. Regions are simply defined by a TMEM pointer
and size. At runtime, textures are bound to a particular cache region by calling GXLoadTex0Obj according
to information such as the texture ID of the target and the texture format. TLUT data is loaded into TLUT
regions by calling GXLoadTlut. GXInit configures TMEM as shown in Figure 8-11.

Figure 8-11 Default TMEM Configuration

Low Bank (512KB) High Bank (512KB)
0x00000 0x80000

32KB GX_TEXMAPO (A) 32KB GX_TEXMAPO (B)
GX_TEXMAPO (C) GX_TEXMAP4 (B)
GX_TEXMAP1 (A) GX_TEXMAP1 (B)
GX_TEXMAP1 (C) GX_TEXMAP5 (B)
GX_TEXMAP2 (A) GX_TEXMAP2 (B)
GX_TEXMAP2 (C) GX_TEXMAPS6 (B)
GX_TEXMAP3 (A) GX_TEXMAP3 (B)
GX_TEXMAP3 (C) GX_TEXMAP7 (B)
8KB@ TLUT 0, 256 entry

32KB GX_TEXMAP4 (A)
TLUT 1, 256 entry

GX_TEXMAP4 (C)

GX_TEXMAP5 (A)

GX_TEXMAPS5 (C)
TLUT 15, 256 entry
GX_TEXMAPG (A) 32KBH TLUT 0, 1024 entry
GX_TEXMAPG (C) TLUT 1, 1024 entry
GX_TEXMAP7 (A) TLUT 2, 1024 entry
GX_TEXMAP7 (C) TLUT 3, 1024 entry
Ox7ffff Oxfffff

Logically, the 1IMB TMEM is split into two 512KB low and high banks. The default configuration defines 16
texture caches for the low bank and eight texture caches for the high bank. When textures are used, each
texture ID (GX_TEXMAPO, GX_TEXMAPL, ..., GX_TEXMAP?) is allocated two texture caches from the
low bank and one from the high bank.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

How to Override the Default Texture Configuration 75

TLUTSs that are used for color index format are allocated in the remainder of the high bank. There are
16x256-entry and 4x1024-entry TLUTs defined. TLUTs must always be allocated in the high bank.

When texture is without mipmapping and does not have a 32-bit format, only one cache region in the low
bank (part A in Figure 8-10) is used. Cache regions in both the low bank and the high bank (parts A and B
in Figure 8-10) are used only when a 32-bit format is used.

When 32-bit formatted mipmapped textures that are not color index formatted are used, even LODs are
cached in one bank while odd LODs are cached in the opposite bank. Thus, one cache region from the low
bank and one cache region from the high bank (parts A and B in Figure 8-10) are used.

When color index textures with mipmapping are used, both odd LODs and even LODs are allocated in the
low bank (parts A and C in Figure 8-10). This is because the color index texture region must always be
allocated in the low bank (that is, they must be in the bank opposite from the TLUTS).

When 32-bit format with mipmapping is used, it is necessary to have twice the continuous cache region for
the odd LODs and even LODs as compared to when normal texturing is used. In this case, the necessary
regions (parts A and C in Figure 8-10) are allocated from the low bank. However, because a sufficient
number of regions cannot be secured in the high bank, cache regions and adjoining textures with different
map IDs are shared. No operational problems are caused when one cache region is shared by two or more
textures. But performance may be affected.

The GX API allows the application to configure texture regions using GXInitTexCacheRegion and
GXInitPreLoadRegion. Application developers can also define their own region-binding schemes by
registering a callback function with GXSetTexRegionCallback or GXSetTlutRegionCallback.

8.6.2 Cached Regions

Texture regions describe areas of TMEM that can be used as texture caches or preloaded textures.

Code 8-7 GXInitTexCacheRegion

GXInitTexCacheRegion (

GXTexRegion* region,

GXBool is_32b_mipmap,
u32 tmem_even,
GXTexCacheSize size_ even,

u32 tmem_odd,

GXTexCacheSize size_odd);

For cached images, the s/t coordinates are translated into cache tag memory addresses. If the addressed
tag indicates the texture is resident in TMEM, the s/t coordinates are translated into TMEM addresses, and
the texture is accessed. If the texture is not resident, the GP will issue memory requests to copy the texture
from main memory to TMEM. Once the texture is resident, the s and t coordinates are translated into
TMEM addresses and the texture is accessed. The unit of texture access is a texture cache line (32 bytes).
All textures are stored as a multiple of this line size. The GP makes texture requests ahead of time and
stores the TMEM addresses in a FIFO. Prefetching allows rendering to proceed during a cache miss.

The GP uses main memory addresses for tags, so caches can be shared among textures (lower
performance) without needing to invalidate between texture loads. Mipmaps that are to be trilinearly
filtered must allocate a cache region in both the low and high banks. The tmem_even parameter defines
the location in TMEM where even LODs will be cached. The tmem_odd parameter defines the location in
TMEM where odd LODs will be cached. Usually, the two types of LODs must be placed in opposite banks.
For non-mipmapped (planar) textures (except GX_TF_RGBAS), only the *_even parameters need to be
defined. Planar (except color index) texture regions can be allocated in either the low or high bank, but

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

76 Graphics Library (GX)

cannot span both banks. Color-indexed texture regions (both planar and mipmapped) must always be
allocated in the low TMEM bank. The size_even and size_odd parameters describe the size of the cache
region for their respective sets of LODs. Unused odd parameters should be set to 0 (address) and
GX_TEXCACHE_NONE (size).

Full-color textures (GX_TF_RGBAS) can only be mipmapped in two cycles, with the even LOD accessed on
the first cycle and the odd LOD accessed on the next cycle. In this case, the tmem_even cache (which
must be in the low bank) is used to store the AR (alpha and red) components of the texture and the
tmem_odd cache (which must be in the high bank) is used to store the GB (green and blue) components.
(Please note that this explanation is simplified; the actual storage is slightly different.) Within each bank,
the even LODs are cached first, followed by the odd LODs. For this case, the size_even and size_odd
parameters refer to the size of the cache region for their respective LODs within one bank. Thus the actual
cache memory usage will be twice the sum of the even and odd sizes. The parameter is_32b_mipmap
indicates the region will be used in this manner.

TMEM caches are sized in terms of superlines (512B or 4x4 lines). TMEM caches can be only one of three
sizes: 32KB, 128KB, and 512KB. Each cache pointer must be aligned to 2KB (2x2 superlines).

The default cached regions created by GXInit are 8x8 superlines (32KB).

8.6.3 TLUT Regions
Code 8-8 GXInitTIutRegion

GXInitTlutRegion (
GXTlutRegion* region,
u32 tmem_addr,
GXTlutSize tlut_sz);

TLUTs must be allocated in the high bank of TMEM. Color-indexed texture regions must be allocated in the
low bank of TMEM. Each 16-bit entry of a TLUT in main memory is replicated into 16 copies during the
TLUT load. Therefore, the total memory in bytes that needs to be allocated for a TLUT is tlut_sz * 16 * 2B.
A 256-entry TLUT requires an 8KB TLUT region.

The tmem_addr for the TLUT region must be aligned to 512B (16 entries * 16 * 2B). Furthermore,
tmem_addr must be aligned to the size of TLUT. For example, a 256-entry TLUT should be aligned to an
8KB TMEM address.

The TLUT region size can be any power of 2 ranging from 16 entries to 16kb entries. The tmem_addr is
bitwise OR’d with the texel index to determine the address of the entry. This makes it possible to create
index sizes that are smaller than the texel type indicates.

For example, you can create a 1024-entry TLUT and access it using the GX_TF_C14X2 (16-bit) texture
type. Since a 1024-entry table requires a 10-bit index, the most significant 6 bits of each index in the
texture should be set to zero.

8.6.4 Preloaded Regions

Code 8-9 GXInitTexPreLoadRegion()

void GXInitTexPreLoadRegion (

GXTexRegion* region,
u32 tmem_even,
u32 size even,
u32 tmem_ odd,
u32 size_odd) ;
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

How to Override the Default Texture Configuration 77

Preloaded textures are loaded explicitly by the application into a TMEM region. The texture is stored in
TMEM in the same format as main memory. Unlike cached regions, the texture cache tag memory is not
checked when accessing a preloaded region. Small, frequently-used textures are good candidates for
preloading. Preloaded textures are not supported by the default configuration of TMEM (the entire TMEM
is mapped as caches or TLUTS).

The size_even and size_odd parameters to GXInitTexPreLoadRegion specify the size of the texture
regions in bytes. The size_even region is used for even LODs and the size_odd is used for odd LODs
when mipmapping. When preloading non-mipmapped (non-GX_TF RGBAS) images, you only need to
specify the *_even parameters.

Figure 8-12 Mipmap in TMEM

Low Half High Half
0 16K
tmem _even
Level 0
Image: 8 Level Mipmap Pyramid
*notdrawn to scale
Level 2
Level 4
Level 6
tmem _odd
Level 1
Level 3
Level 5
Level 7
16K-1 32K-1
«—32B <« 32B

The tmem_even and tmem_odd parameters to GXInitTexPreLoadRegion for a preloaded texture are
required only to be 32B-aligned. For preloaded mipmaps, tmem_even and tmem_odd must be in opposite
TMEM banks. The tmem_even value will define the location of all even LODs and tmem_odd will define
the location of all odd LODs.

Note: Even LODs will use more memory in their bank of TMEM than the odd LODs in the opposite bank.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

78

Graphics Library (GX)

Figure 8-13 Planar Texture in TMEM

Lo HAf

High Half

6k,
[ache Lines

w 16K

16K

tmem_ewen

J2B tile (ak.a. cache ling)

Image: 1616 Tbb texeks = 4l cache lines

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo
CONFIDENTIAL

How to Override the Default Texture Configuration 79

Figure 8-14 32-bit Planar Texture in TMEM

Low Half High Half

0 16
< tmem ode
6B
tmem _even ’
AR

16K -1 32K -1

“-328 — 328 >

For planar non-color index textures (except 32-bit), only tmem_even is used, and may be located in either
the high or low bank of TMEM. For color index textures, tmem_even must be in the low bank of TMEM.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

80

Graphics Library (GX)

For 32-bit planar textures (GX_TF_RGBAS), the tmem_even is the address of the AR tiles and must be in
the low bank of TMEM. The GB tiles are located at tmem_odd and must be in the high bank of TMEM.

Figure 8-15 Color Index Mipmap in TMEM

tmem _even >

Image:8-LevelMipmap Pyramid
*notdrawn to scale

tmem odd >

Low Half High Half
0 16K
Level0
TLUT
Level?
Level4
Level®
Levell
Level3
Levelb
Level7
16K-1 32K-1
<« 3)8 328 >

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo
CONFIDENTIAL

How to Override the Default Texture Configuration 81

For color index preloaded textures, tmem_even and tmem_odd must be in the low bank of TMEM. The
hardware will load all even LODs at the tmem_even address and all odd LODs at the tmem_odd address.

Figure 8-16 32-bit Mipmap in TMEM

Low Half High Half
0 16K
< tmem _odd
tmem even >
GB Level0
AR Level0
Image: 8 Level Mipmap Pyramid
*
AR Level 1 notdrawn to scale
GB Levell
GB Level?2
AR Level 2 AR Level3
GB Level 4
GB Level3 AR Level5
AR Level 4 GB Level 6
GB Level5 AR Level 7
AR Level 6
GB Level7
16K-1 32K-1
<« 32B « 3728 >

GX_TF_RGBAS textures are stored as interleaved AR and GB tiles (32B/tile). When preloading a
GX_TF_RGBAS texture, the AR and GB are written to opposite TMEM banks. The tmem_even (AR) tiles
should be in the low TMEM bank and the tmem_odd (GB) tiles should be in the high TMEM bank.

Note: 32-bit textures use the same amount of memory in the low and high banks.
To actually load the texture into TMEM, call the function in Code 8-10.
Code 8-10 GXPreLoadEntireTexture()

GXPreLoadEntireTexture (
GXTexObj* obj,
GXTexRegion* region);

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

82 Graphics Library (GX)

To associate a hardware texture map ID (GXTexMapID) with the preloaded region, use:
Code 8-11 GXLoadTexObjPreLoaded()

void GXLoadTexObjPreLoaded (

GXTexObj* obj,
GXTexRegion* region,
GXTexMaplD id) ;

8.6.5 Texture Cache Allocation

You can override the default TMEM allocation by replacing the callback function that binds texture objects
to texture regions, as shown in Code 8-12.

Code 8-12 GXSetTexRegionCallback

typedef GXTexRegion * (*GXTexRegionCallback) (GXTexObj *tex obj);

GXTexRegionCallback GXSetTexRegionCallback(GXTexRegionCallback f);

This function is called by GXLoadTexObj and is expected to return a pointer to a GXTexRegion to use for
this texture. These texture regions can be statically allocated or dynamically allocated according to the
needs of the application. The TMEM allocation scheme must also consider color index TLUT and
preloaded texture memory requirements. GXSetTexRegionCallback returns the callback that was set
prior to its invocation.

The programmer can use the GXInitTexObjUserData function to set a pointer to user data in the
texture object. This data may be needed in order to implement a better TMEM allocation strategy. The data
can be retrieved using GXGetTexObjUserData.

8.6.6 TLUT Allocation

If color index textures are to be used, the TMEM allocation scheme must consider TLUT region allocation
in addition to texture region allocation. As described in "8.6.3 TLUT Regions" on page 76, there are more
restrictions on the placement of color index textures and TLUTs in TMEM than on non-color index textures.
To override the default TLUT allocation scheme, the application must replace the callback function that
associates a TLUT name with a TLUT region as shown in Code 8-13.

Code 8-13 GXSetTlutRegionCallback

typedef GXTlutRegion * (*GXTlutRegionCallback) (u32 name)) ;

GXTlutRegionCallback GXSetTlutRegionCallback (GXTlutRegionCallback f);

The callback function is called by GXLoadTexObj to associate the TLUT name (GXInitTexObjCI) with
a TLUT region. GXLoadT1lut also calls the callback function. GXSetTlutRegionCallback returns the
callback that was set prior to its invocation.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Invalidating Texture Cache 83

8.7 Invalidating Texture Cache

The texture hardware maintains a Cache Tag Memory that maps a texture cache line’s main memory
address to its TMEM address. Because of this, textures can share a cached region without address
collisions. However, the following situations will require invalidating the texture cache:

* The texture is moved to a new main memory location.
* A new texture is copied into the memory occupied by a previously used texture.
» The application modifies some texels of a texture in main memory.

Invalidating the texture cache requires resetting the state of certain tag bits in the cache tag memory. This
will force the reloading of the affected texture. Functions for invalidating either a texture region or the entire
TMEM are shown in Code 8-14.

Code 8-14 Invalidating Texture Memory

GXInvalidateTexRegion (GXTexRegion* region) ;
GXInvalidateTexAll (void) ;

It is not necessary to invalidate TLUT regions (see "8.6.3 TLUT Regions" on page 76) and preloaded
regions, because they are explicitly loaded into TMEM. If the data in a TLUT or preloaded texture is
changed, the application must reload it for the change to take effect.

8.8 Changing the Usage of TMEM Regions

Sometimes an application will change the use of a particular region of TMEM from preloaded to cached or
from TLUT to cached. In these cases—and only these—the application should call GXTexModeSync to
ensure all texels currently in the pipeline are flushed before the change in usage goes into effect. The call
should be made prior to drawing any primitives that will use the TMEM region in the new mode. When
changing a TMEM region from cached to preloaded (or TLUT), the command to load the TMEM region will
synchronize the pipeline automatically.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

84 Graphics Library (GX)

8.9 Creating Textures by Copying the Embedded Frame Buffer

Textures can be created by copying the Embedded Frame Buffer (EFB) to main memory using the
GXCopyTex function. This is useful when creating dynamic shadow maps, environment maps, motion blur
effects, etc.

All non-color index texture types except compressed textures (GX_TF_CMPR) can be created during the
copy. The texture copy operation will create the correct tiling and formatting of the texture so it can be read
directly by the hardware. Optionally, you can apply a box filter to the image in the EFB in order to create a
lower level of detail (LOD) texture. The box filter can be used to create mipmaps from the EFB data.

The EFB can be used in either of two basic modes: antialiased (pixel format of GX PF_RGB565_Z16) and
non-antialiased (pixel format of GX PF RGB8_ 724 or GX_PF RGBA6_Z24). You can copy color textures in
either mode, but Z textures can only be copied from non-antialiased frame buffers. See "12 Video Output"
on page 129 for more details on the EFB modes.

Table 8-4 Texture Copy Formats and Conversion Notes

Format Conversion

GX_TF_l14 4-bit intensity (see Note 1).
GX_TF_IA4 4-bit intensity and 4-bit alpha (see Note 1).
GX_TF_I8 8-bit intensity (see Note 1).
GX_TF_IA8 8-bit intensity and 8-bit alpha (see Note 1).

GX_TF_RGB565 | 16-bit color (RGB565).

GX_TF_RGB5A3 | 16-bit color and alpha. This is RGB555 (opaque) when the MSB is 1 and
RGBA4443 (transparent) when the MSB is 0.

GX_TF_RGBAS8 32-bit full color RGBA (8 bits per component).

GX_TF_Z8 Copy the upper 8 bits from the Z buffer to an 8-bit format.

GX_TF_Z716 Copy the upper 16 bits from the Z buffer to a 16-bit format (see Note 2).

GX_TF_724X8 Copy all 24 bits in the Z buffer into a 32-bit format. The upper 8 bits will be set to
OxFF.

GX_CTF_R4 Copy 4 bits from the R component. The result will be handled in 14 format.

GX_CTF_RA4 Copy 4 bits from the R component and 4 bits from the alpha component. The
result will be handled in 1A4 format.

GX_CTF_RAS8 Copy 8 bits from the R component and 8 bits from the alpha component. The
result will be handled in IA8 format.

GX_CTF_A8 Copy 8 bits from the alpha component. The result will be handled in 18 format.
GX_CTF_RS8 Copy 8 bits from the R component. The result will be handled in 18 format.
GX_CTF_G8 Copy 8 bits from the G component. The result will be handled in I8 format.
GX_CTF_B8 Copy 8 bits from the B component. The result will be handled in 18 format.
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Creating Textures by Copying the Embedded Frame Buffer

Table 8-4 Texture Copy Formats and Conversion Notes

85

GX _CTF_RGS8 Copy 8 bits from the R component and 8 bits from the G component. The result
will be handled in IA8 format.

GX_CTF_GB8 Copy 8 bits from the G component and 8 bits from the B component. The result
will be handled in 1A8 format.

GX_CTF_z4 Copy the upper 4 bits of the Z value into a 4-bit format.

GX _CTF_zZ8M Copy the central 8 bits of the Z value into an 8-bit format.

GX_CTF_z8L Copy the lower 8 bits of the Z value into an 8-bit format.

GX_CTF_zi6L Copy the lower 16 bits of the Z value into a 16-bit format (see Note 2).

Note 1: When copying textures to an intensity format (X _TF_I4,GX TF I8,GX TF IA4,
GX_TF _1IA8), the Y value resulting from the RGB-to-YUB conversion will be used as the
intensity value. This means that the output range is linearly compressed into the range
between 16 and 235. If you want to get accurate values from the EFB, you can use a format
such as R8 or RAS.

Note 2: Hardware configuration dictates that when a texture is copied into a 16-bit Z format, the texture
is laid down in reverse byte order. These results can therefore not be used directly as Z

Texture Buffer
in Main Memory

textures.

Figure 8-17 Texture Copy Data Path

Antialias Gamma Box Y
+—» Deflicker +—¥ Correction T FEilter RGB to Texture
EFB (opt.) YUV Format

filter state gamma=1.0 i
Z
[copy pipeline

The RGB-to-YUV conversion that takes place in the texture copy pipeline is the same as that which is used
for the display copy pipeline for video output (see "12 Video Output” on page 129). As a result, the intensity

is scaled: 16 <=Y

<= 235.

© 2006-2009 Nintendo

CONFIDENTIAL

RVL-06-0037-001-E

Released: March 27, 2009

86 Graphics Library (GX)

The following functions control the copying of textures from the EFB to main memory:

Code 8-15 Texture Copy Functions

void GXSetTexCopySrc (

ulé left,
ulé top,
ulé wd,

ulé ht);

void GXSetTexCopyDst (

ulé wd,
ulé ht,
GXTexFmt fmt,
GXBool mipmap) ;

void GXCopyTex (
void* dest,
GXBool clear) ;

GXSetTexCopySrc specifies the source rectangle to copy from the EFB. All parameters to
GXSetTexCopySrc must be multiples of two pixels. GXSet TexCopyDst specifies the destination
rectangle in main memory. Normally, the source and destination rectangles would have the same size.
However, when copying small textures that will be composited into a larger texture, the source and
destination rectangles may differ.

Figure 8-18 Copying Small Textures into a Larger Texture in Main Memory

Main Memor
GXCopyTex (dest, clear) y

(left, top) wd

-~

Iy

EFB

Iy

GXSetTexCopySrc(left, top, wd, ht)

GXSetTexCopyDst (wd, ht, fmt, mipmap)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Z Textures 87

The fmt argument of GXSet TexCopyDst can specify a few subtle types of texture copy operations. The
format GX_CTF_A8 is used specifically to copy the alpha channel from the EFB into a GX_TF_18 formatted
texture. GX_TF_18 will copy the scaled luminance of the EFB into a GX_TF I8 texture. When reading a
texture GX_CTF A8 and GX_TF_1I8 are equivalent.

When color textures are converted from an GX_PF_RGB8_Zz24 pixel format to a lower-resolution color
format, such as GX_TF_RGB565, the least significant bits (LSBs), of the 8-bit colors are truncated. When
color textures are converted from a lower-resolution pixel format, say GX_PF_RGB565_Z16, to a higher
resolution texture format, say GX_TF_RGBAS, the most significant bits (MSBs) of each pixel are replicated
in the LSBs of each texel. This conversion process distributes the estimation error evenly and allows each
texel to represent the minimum or maximum value.

In general, you should only copy textures containing alpha from an EFB with format GX_PF _RGBA6_Z724.
When copying a texture containing alpha from an EFB without alpha, alpha will be set to its maximum
value.

The GX_TF_ z24X8 format can be used to copy the 24-bit Z buffer to a 32-bit texture (equivalent format to
GX_TF_RGBAS, see Appendix D). The next section describes how this “Z texture” can be used. It is not
legal to copy out 8-bit or 16-bit Z textures, and you may not copy Z from an antialiased EFB (see "12 Video
Output" on page 129 for more details on EFB formats).

The function GXCopyTex initiates the copy operation. It can conditionally clear the EFB at the same time if
clear is true. The update enable flags for each buffer to be cleared must also be enabled (see
GXSetColorUpdate, GXSetAlphaUpdate, and GXSetZzMode). This allows individual buffers to be
conditionally cleared. The copy filter in effect at the time the texture is copied (see GXSetCopyFilter)
will be applied to the EFB data during the conversion process.

To copy a texture, the application must first allocate a buffer in main memory that is the size of the texture
to be copied. This size can be determined using GXGetTexBufferSize. This function takes texture
padding and texture type into account in its calculations.

Before a copied texture can be applied to a textured primitive, you must ensure that the copy operation has
finished. The command GxPixModeSync may be called after GXCopyTex in order to guarantee this.
GXPixModeSync flushes the pixel pipeline, ensuring that the copy is finished before a new primitive is
started.

Sometimes it is useful to determine the screen rectangle that encloses a group of rendered geometry. The
functions GXClearBoundingBox and GXReadBoundingBox can determine the bounding box of
geometry rendered in the EFB. Call GXClearBoundingBox first to reset the bounding box, then render
the geometry. The GP will update the minimum and maximum screen-space (X, y) continually for each
pixel drawn. After rendering the geometry, the bounding box values can be read back using
GXReadBoundingBox. You can use these values to compute the arguments to GXSetTexCopySrc.

8.10 Z Textures

The GP supports combining a color texture and a Z texture into the Embedded Frame Buffer (EFB). This

feature can be used to facilitate image-based rendering, in which a frame buffer is a composite of smaller
color and depth images, like sprites with depth. Each of the sprites can be computed at independent frame
rates, but the final frame buffer is composited at the target frame rate.

You can create Z textures by copying a region of the EFB using GXCopyTex with the pixel format (see
GXSetTexCopyDst) setto GX_TF_Zz24Xx8. Additionally, 8- and 16-bit Z textures can be created offline or
by using the CPU. The GXCopyTex function cannot create 8- or 16-bit Z textures. Moreover, Z textures
cannot be copied from an antialiased EFB.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

88 Graphics Library (GX)

The texture input to the last active TEV stage is used as the Z texture, so the application must be careful to
arrange the TEV equation so the Z texture is output by this stage. When Z texturing is enabled, color is
output from the last active TEV stage, but the texture input to the last stage is not available (because it is
used for the Z texture).

Figure 8-19 Z Texture Block Diagram

Replace/Add
Bias
Rasterized Z 0 1 _0 |
(reference Z at PN — @
the center of the O, +
quad) 2 3 + 20
o—
f 8
t Z1 g-
+ £
> 8
o |G o
_ 0 1 O ug
Z Texture (8-hit, + M
16-hit, or 24-bit) O z3 g
? 2 3 ® + - 8
e
+ 72
+

The Z texture can either replace or offset the rasterized Z of the polygon. Normally, each pixel's Z in a quad
is computed by adding Z slopes to a reference Z computed at the center of the quad. When Z texture is
enabled, the Z texels will offset the reference Z (the Z slopes will not be added, and thus the computed Z
accuracy will be per-quad, not per-pixel). In addition, a constant bias can be added to the result. Finally, if
Z buffering is enabled, the resulting Z is compared with the EFB current Z. The pipeline must be configured
to Z buffer after texture lookup when using Z textures. The Z-texture adders do not clamp, so the
programmer must make sure that there is no overflow.

Code 8-16 GXSetZTexture

void GXSetZTexture (

GXZTexOps op,
GXTexFmt fmt,
u32 bias);

The fmt argument above can be one of the following:
e GX TF Z8
e GX TF Z16

e CX_TF 724X8

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Texture Performance 89

8.11 Texture Performance
This section documents peak texture performance assuming a 243 MHz graphics processor clock speed.

Table 8-5 Texture Performance

Texture
Count

Performance

972 megapixels/second

486 megapixels/second

324 megapixels/second

243 megapixels/second

194 megapixels/second

162 megapixels/second

139 megapixels/second

| Nl | B WO DN|PF

122 megapixels/second

Note: 32-bit textures filter bilinearly at 972 megapixels/second and trilinearly at 486 megapixels/second.
Expect less than 15% degradation for properly sampled cached textures.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

20 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Texture Environment (TEV) 91

9 Texture Environment (TEV)

9.1 Description

The Texture Environment (TEV) combines per-vertex lighting, textures, and constant colors to form the
pixel color (before fogging and blending). The color and alpha components have independent TEV units
with independent controls. There is only one set of TEV color/alpha-combiners implemented in hardware.
To implement multi-texture, the TEV hardware is reused over multiple cycles, called TEV stages. Each
TEV stage has independent controls and a maximum of 16 TEV stages are supported. A consecutive
number of TEV stages may be enabled in order to perform multi-texturing. The resulting pixel color is
output from the last active TEV stage. The last stage must send its output to the GX TEVPREV register.

A set of four input/output color registers are provided to store temporary results, pass results from one
stage to the next, or to supply user-defined constant colors. These color registers are shared among all
TEV stages. The last stage must send its output to the GX TEVPREV register.

The alpha produced by the last TEV stage is input to an alpha-compare equation. The result of the alpha
compare can be used to conditionally mask color (and possibly Z) writes to the frame buffer.

Fog, if enabled, is applied to the pixel values output from the last active TEV stage. Blending operations
occur after fogging. (Fog and blending are described in later chapters.)

Figure 9-1 TEV Block Diagram

- Compare
* 3 compare 1
= [0
" =l
Rasterize: £ k7]
Color S Color
m
n
Tex color L] Z texture
—
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

92 Graphics Library (GX)

9.2 Default Texture Pipeline Configuration

By default, the texture pipeline is configured to look like the diagram below. Each texture coordinate
enabled for a vertex (using GXSetVtxDesc) is sent down the pipeline in the input order. Each coordinate
accesses a texture, and the resulting texel is fed to the corresponding TEV stage. Since only eight unique
textures are available, only eight TEV stages are configured this way; the remaining eight stages are
initialized with null texture and color inputs. The number of active TEV stages and the number of texture
coordinates that are generated must be set by the application (see GXSetNumTevStages and
GXSetNumTexGens). By default, only stage 0 produces an output. The default operation for stage O is
GX_REPLACE, meaning only the texture color is output (see "9.4 GXSetTevOp" on page 92).

Figure 9-2 Default Texture Pipeline

COLOROAO

GX_TEVSTAGEO »Output

Tex Coord 0 —¥ GX_TEXMAPO

COLOROAO GX_TEVSTAGEL »X

Tex Coord 1 —¥»|GX_TEXMAP1

| [
| [
COLOROAO > GX_TEVSTAGE2 »X
Tex Coord 2 —W| GX_TEXMAP2 —‘ cee
(X X
COLOROAO > GX_TEVSTAGE7 »X
Tex Coord 7 —® GX_TEXMAP7
>>§ i GX_TEVSTAGES X
(XX
é i GX_TEVSTAGE15 »X

The texture pipeline is very configurable. The user can override this simple default configuration as
described in the following sections.

9.3 Number of Active TEV Stages
To program the number of active TEV stages, use the function in Code 9-1.
Code 9-1 GXSetNumTevStages

GXSetNumTevStages (u8 stages);

There must always be at least one TEV stage enabled. TEV stages are enabled consecutively. A
maximum of 16 TEV stages may be enabled.

9.4 GXSetTevOp

We provide the function GxSetTevOp to simplify initial programming demos. It determines the color
processing that occurs at the specified TEV stage. This function calls GXSetTevColorIn,
GXSetTevAlphaln, GXSetTevColorOp, and GXSetTevAlphaOp (described later).

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Color/alpha Combine Operations 93

Code 9-2 GXSetTevOp

GXSetTevOp (GXTevStageID stage, GXTevMode mode) ;

Table 9-1 lists the GXTevMode types and the implied operation.

1
2
3.
4

9.5

Table 9-1 GXTevMode Types

Name Color Channel Op Alpha Channel Op
GX_MODULATE C,=C,C A, = AA
GX_DECAL Cy=(1-A)C,+AC, A=A
GX_BLEND Cy=(1-C)C,+C A, = A A
GX_REPLACE C,=G A, = A

For stage 0, subscript r is the rasterized color (from a lighting channel) for this stage.
For other stages, subscript r is the previous stage output color.
Subscript t is the texture value for this stage.

Subscript v is the output color of this stage.

Color/alpha Combine Operations

As mentioned, GXSetTevOp is a simplifying function that sets the inputs and operation for a given TEV
stage. In order to use the full power of the TEV, you must set all of these parameters independently. First
we’ll describe the operation that takes place within a TEV stage, followed by how to set the various inputs
for the operation.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

94 Graphics Library (GX)

The figure below shows the operation that can be programmed in a given TEV stage. Remember that there
are two operations happening in a given cycle: one for the color components, and one for the alpha
component.

Figure 9-3 TEV Operations

ud

GX_TEVREGO

Bias—

A—)

GX_TEVREG1
B— a*(1.0-c) +b*c — op — 41—

Scale
Clamp

GX_TEVREG2

C—

out_reg (select one)

D —
GX_TEVPREV

s10

s10

Op = optional negate Scale = multiply by 1/2, 1, 2, or 4

Code 9-3 GXSetTevColorOp, GXSetTevAlphaOp

GXSetTevColorOp (
GXTevStageID stage,
GXTevOp op,

GXTevBias bias,
GXTevScale scale,

GXBool clamp_enable,
GXTevRegID out_reg);
GXSetTevAlphaOp (
GXTevStageID stage,
GXTevOp op,

GXTevBias bias,
GXTevScale scale,

GXBool clamp_enable,
GXTevRegID out_reg) ;

Each TEV stage has its own set of operation controls. The color and alpha operations are set
independently using GXSetTevColorOp and GXSetTevAlphaOp.

The TEV operation begins by performing a linear interpolation between A and B inputs, using C as the
interpolation factor. The inputs A, B, and C are always unsigned 8-bit values having a range [0 <= A,B,C <=
255]. The result of the interpolation can be optionally negated using op.

The input D and a bias value (0, +0.5, or —0.5) are then added to the result. The D input is a signed 10-bit
number having a range [-1024 <= D <= 1023]. The result of each TEV stage can be a signed 10-bit value,
so this input is provided for accumulating out-of-range values.

A constant scale (1, 2, 4, or 0.5) is then applied. The result is optionally clamped and written to an output
register. (See section "9.5.1 Compare Mode" on page 95 for more details on clamping.)

For color operations, the same sequence is applied in parallel to the RGB color components. Alpha
operations are independent of the color operations.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Color/alpha Combine Operations 95

The output registers are available as inputs for the next TEV stage. For example, GX_TEVREGO
corresponds to GX_cc_co for the color TEV input, and GX_CA_A0 corresponds to the alpha TEV input.
The output registers can store a signed 10-bit number. The output register GX_TEVPREV is used by
convention to pass the results of one TEV stage to the next. GX_TEVPREV must be the output register of
the last active TEV stage.

Table 9-2 Correspondence Between TEV Input and Output Register Names

TEV Register TEV Register TEV Register

Input Color Name Input Alpha Name Output Name
GX_CC_CO0 GX_CA_A0 GX_TEVREGO
GX_CC C1 GX_CA_A1l GX_TEVREG1
GX_CC_C2 GX_CA_A2 GX_TEVREG2
GX_CC_CPREV GX_CA_APREV GX_TEVPREV

9.5.1 Compare Mode

With GXTevOp, it is possible to use the comparison feature in addition to sign specification for addition and
subtraction. When this feature is specified, the TEV output equation is modified as follows:
Equation 9-1 Regular TEV output
output = (dx ((1-c)* a+c* b) + bias) * scale

Equation 9-2 Compare TEV output
output =d + ((@aOP b) ? c:0)

You have a choice of 8-, 16-, or 24-bit wide compares, or an 8-bit per-component compare. When a
compare operation is performed, the output scale factor can only be set to one, and the bias can only be
set to zero.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

96 Graphics Library (GX)

The following tables describe the different operations. For the 16- and 24-bit compares, the MSB is listed
first.

Table 9-3 Color or Alpha Compare Operations

GX_TEV_COMP_R8_GT afred] > b[red] ?
GX_TEV_COMP_R8_EQ a[red] == b[red] ?
GX_TEV_COMP_GR16_GT al[green, red] > b[green, red] ?
GX_TEV_COMP_GR16_EQ a[green, red] == b[green, red] ?
GX_TEV_COMP_BGR24_GT a[blue, green, red] > b[blue, green, red] ?
GX_TEV_COMP_BGR24 EQ a[blue, green, red] == b[blue, green, red] ?

Table 9-4 Color-only Compare Operations

Color-only Compare Operation
GX_TEV_COMP_RGB8_GT per-component: ajcomponent] > b[component] ?
GX_TEV_COMP_RGB8 _EQ per-component: a[component] == b[component] ?

Table 9-5 Alpha-only Compare Operations

Alpha-only Compare Operation
GX_TEV_COMP_A8_GT alalpha] > b[alpha] ?
GX_TEV_COMP_A8_EQ alalpha] == b[alpha] ?
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Color Inputs 97

9.6 Color Inputs
Figure 9-4 TEV Stage Color Inputs

6X_CC CO
GX CC C1
6X CC C2
GX CC CPREV
6X_CC A
GX_CC Al
GX CC A2
GX CC APREV
6X CC_TEXC
GX CC TEXA

SelectOne

6K CC_RASC
6X CC _RASA

GX CC ONE -

6X_CC _HALF —
GX CC KONST
6X CC IERD

GXSetTevColorin

Code 9-4 GXSetTevColoriIn

GXSetTevColorIn (
GXTevStageID stage,
GXTevColorArg a,
GXTevColorArg b,
GXTevColorArg c,
GXTevColorArg d) ;

The TEV allows for many color input sources including constant (register) colors and alphas, texture color/
alpha, rasterized color/alpha (the result of per-vertex lighting), and a few useful constants. Notice that the
input controls are independent for each TEV stage.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

98 Graphics Library (GX)

The register colors can be programmed directly as constant colors or used to store the results of TEV
operations. For example, GX_TEVREGO corresponds to GX_cc_co for the color TEV input. Unlike the rest
of the TEV controls, the TEV registers are shared among all the TEV stages. The application must be
careful to partition the use of registers as input colors and output colors when designing a color-combining
equation. Code 9-5 sets register 1 to a constant 8-bit (per component) color and register 2 to a constant
10-bit (per component) color.

Code 9-5 Setting Constant Color

GXColor cyan = { 0x00, Oxff, Oxff, Oxff };
GXSetTevColor (GX_TEVREG1, cyan);

GXColorsSl0 coffset = { -128, -128, -128, 0 };
GXSetTevColorS10 (GX_TEVREG2, coffset);

The default texture pipeline uses the GX_TEVPREV register to pass the output of one TEV stage to the
input of the next TEV stage. This is only a convention of the default configuration assumed by
GXSetTevOp. YOu can use GX_TEVPREV as a general-purpose register when programming your own TEV
equations. However, at least one register is required to pass results from one stage to the next when multi-
texturing. Note the GX_TEVPREV must be the output register for the last active TEV stage. This register is
wired directly to the fogging and blending functions.

Note also that the inputs A, B, and C are unsigned 8-bit values, but the register inputs GX_cc_co0-2 and
GX_CC_CPREV can be signed 10-bit values [-1024...+1023]. When one of these registers is selected for
the A, B, or C inputs, the least significant 8 bits of the register are used.

The rasterized color and alpha inputs are the result of per-vertex lighting on one of the lighting channels,
either GX_COLOROAO or GX_COLOR1AL. Itis not possible to use the color from one lighting channel with
the alpha from the other lighting channel (for example GX COLORO with GX ALPHA1) into the same TEV
stage. In the default texture pipeline, GX_COLORO0AO0 is directed to the first eight TEV stages. To change the
default, you must call GxSetTevOrder, described later in this chapter.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Alpha Inputs 99

9.7 AlphaInputs
Figure 9-5 TEV Stage Alpha Inputs

us

GX_CA_AO

GX _CA_AL

GX CA_A2

GX _CA_APREV
GX_CA_TEXA
GX _CA_RASA
GX CA ONE
GX CA_ZERO
GX_CA_KONST

Y s10

GXSetTevAlphaln

SelectOne

Each TEV stage combines alpha channels independently of color channels. There are fewer alpha inputs
than color inputs, and there are no color channels available in the alpha combiner.

Code 9-6 GXSetTevAlphaln

void GXSetTevAlphaln (
GXTevStageID stage,
GXTevAlphaArg a,

GXTevAlphaArg b,
GXTevAlphaArg c,
GXTevAlphaArg d);

The inputs A, B, and C are unsigned 8-bit values, but the register inputs GX_CA A0-2 and GX_CA_ APREV
can be signed 10-bit values [-1024...+1023]. When one of these registers is selected by the A, B, or C
inputs, the least significant 8 bits of the register are used.

9.8 Color Component Swap Mode

The swap feature switches the color components of the texture color and rasterize color that are input to
the TEV. This feature includes four tables in which the swap pattern is registered, and it can carry out the
swap based on these tables. In various TEV stages, you can use the GXSetTevSwapMode function to
select entries from the raster color input and texture color input tables. The swap tables are configured with
the GXSetTevSwapModeTable function. Normally, the swap pattern uses only three of these four tables.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

100

Graphics Library (GX)

Code 9-7 GXSetTevSwapMode, GXSetTevSwapModeTable

GXSetTevSwapMode (
GXTevStageID stage,
GXTevSwapSel ras_sel,

GXTevSwapSel tex sel);

GXSetTevSwapModeTable (
GXTevSwapSel select,
GXTevColorChan red,
GXTevColorChan green,
GXTevColorChan blue,
GXTevColorChan alpha) ;

9.9 TEV “constant” Color Registers

Four new registers are available as TEV inputs. They can be treated as RGBA registers or as a set of four
scalar registers. These registers cannot be used as TEV outputs, and thus they are referred to as
“constant” (or “konstant”) registers, although they can easily be modified by a GX set command. New
actual constant values are provided in addition to the new register choices.

The new color inputs are selected through a two-level selection system. First, using GXSetTevColorIn
(or GXsetTevAlphaln), you selectthe GX CC KONST (or GX_CA KONST). Then, using
GXSetTevKColorSel (or GXSetTevKAlphaSel) you select the constant selection desired for each TEV

stage.

Table 9-6 Color and Alpha Constant Register Values

Color KONST values

GX_TEV_KCSEL_1

Alpha KONST values

GX_TEV_KASEL_1

Description

1.0 constant

GX_TEV_KCSEL_7_8

GX_TEV_KASEL 7 8

7/8 constant

GX_TEV_KCSEL_3_4

GX_TEV_KASEL_3 4

3/4 constant

GX_TEV_KCSEL 5_8

GX_TEV_KASEL 5 8

5/8 constant

GX_TEV_KCSEL_1_2

GX_TEV_KASEL 1 2

1/2 constant

GX_TEV_KCSEL_3_8

GX_TEV_KASEL 3 8

3/8 constant

GX_TEV_KCSEL_1_4

GX_TEV_KASEL_1_4

1/4 constant

GX_TEV_KCSEL_1_8

GX_TEV_KASEL_1_8

1/8 constant

GX_TEV_KCSEL_KO

KO [RGB] register

GX_TEV_KCSEL_K1

K1 [RGB] register

GX_TEV_KCSEL_K2

K2 [RGB] register

GX_TEV_KCSEL_K3

K3 [RGB] register

GX_TEV_KCSEL_KO_R

GX_TEV_KASEL_KO_R

KO [RRR] register

GX_TEV_KCSEL_K1_R

GX_TEV_KASEL_K1_R

K1 [RRR] register

GX_TEV_KCSEL_K2_R

GX_TEV_KASEL_K2_R

K2 [RRR] register

GX_TEV_KCSEL_K3 R

GX_TEV_KASEL_K3_R

K3 [RRR] register

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo

CONFIDENTIAL

Example Settings 101

Table 9-6 Color and Alpha Constant Register Values (Continued)

Color KONST values Alpha KONST values Description
GX_TEV_KCSEL_KO_G GX_TEV_KASEL_KO_G KO [GGG] register
GX_TEV_KCSEL_K1_G GX_TEV_KASEL_K1_G K1 [GGG] register
GX_TEV_KCSEL _K2_G GX_TEV_KASEL_K2_G K2 [GGG] register
GX_TEV_KCSEL_K3 G GX_TEV_KASEL_K3_G K3 [GGG] register
GX_TEV_KCSEL_KO B GX_TEV_KASEL_KO B KO [BBB] register
GX_TEV_KCSEL_K1_B GX_TEV_KASEL_K1_B K1 [BBB] register
GX_TEV_KCSEL_K2_B GX_TEV_KASEL_K2_ B K2 [BBB] register
GX_TEV_KCSEL K3 B GX_TEV_KASEL_K3 B K3 [BBB] register
GX_TEV_KCSEL_KO0_A GX_TEV_KASEL_KO_A KO [AAA] register
GX_TEV_KCSEL_K1_A GX_TEV_KASEL_K1_A K1 [AAA] register
GX_TEV_KCSEL_K2_A GX_TEV_KASEL_K2_A K2 [AAA] register
GX_TEV_KCSEL_K3_A GX_TEV_KASEL_K3_A K3 [AAA] register

The command GXSetTevKColor may be used to modify the values of the four new constant color
registers. GXSetTevKColor works the same way as GXSetTevColor. Unlike the existing TEV registers,
the new registers have only 8 bits per component.

9.10 Example Settings

Equation 9-3 Pass Texture Color

Crv = CI':f

Code 9-8 Pass Texture Color

GXSetTevColorIn (GXSetTevColorOp (
GX_ TEVSTAGEO, GX_ TEVSTAGEO,
GX_CC_ZERO, // a GX_TEV_ADD, // op
GX_CC_ZERO, // b GX_TB_ZERO, // bias
GX_CC_ZERO, // ¢ GX_CS_SCALE 1, // scale
GX_CC_TEXC); // d GX_ENABLE, // clamp 0-255
GX_TEVPREV) ; // output reg
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

102 Graphics Library (GX)
Equation 9-4 Modulate
ij = Cj;i?r
Code 9-9 Modulate
GXSetTevColorIn (GXSetTevColorOp (
GX_TEVSTAGEO, GX_TEVSTAGEO,
GX_CC_ZERO, // a GX_TEV_ADD, // op
GX_CC_TEXC, // b GX_TB_ZERO, // bias
GX_CC_RASC, // c GX_CS_SCALE_ 1, // scale
GX_CC_ZERO); // d GX_ENABLE, // clamp 0-255
GX_TEVPREV) ; // output reg
Equation 9-5 Modulate 2X
C, =200,
Code 9-10 Modulate 2X
GXSetTevColorIn (GXSetTevColorOp (
GX_ TEVSTAGEO, GX_ TEVSTAGEO,
GX_CC_ZERO, // a GX_TEV_ADD, // op
GX_CC_TEXC, // b GX_TB_ZERO, // bias
GX_CC_RASC, // c GX_CS_SCALE 2, // scale
GX_CC_ZERO); // d GX_ENABLE, // clamp 0-255
GX_TEVPREV) ; // output reg
Equation 9-6 Add
C, =0, +0,
Code 9-11 Add
GXSetTevColorIn (GXSetTevColorOp (
GX_TEVSTAGEO, GX_TEVSTAGEO,
GX_CC_TEXC, // a GX_TEV_ADD, // op
GX_CC_ZERO, // b GX_TB_ZERO, // bias
GX_CC_ZERO, // ¢ GX_CS_SCALE_1, // scale
GX_CC_RASC); // d GX_ENABLE, // clamp 0-255
GX_TEVPREV) ; // output reg
Equation 9-7 Subtract
C; = Cﬁ - er
Code 9-12 Subtract
GXSetTevColorIn (GXSetTevColorOp (
GX_ TEVSTAGEO, GX_ TEVSTAGEO,
GX_CC_RASC, // a GX_TEV_SUB, // op
GX_CC_ZERO, // b GX_TB_ZERO, // bias
GX_CC_ZERO, // c GX_CS_SCALE 1, // scale
GX_CC_TEXC); // d GX_ENABLE, // clamp 0-255
GX_TEVPREV) ; // output reg

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo

CONFIDENTIAL

Alpha Compare Function 103

Equation 9-8 Blend
C,=C (10— 4,0+ C, 4,
Code 9-13 Blend

GXSetTevColorIn (GXSetTevColorOp (
GX_TEVSTAGEO, GX_TEVSTAGEO,
GX_CC_TEXC, // a GX_TEV_ADD, // op
GX_CC_RASC, // b GX_TB_ZERO, // bias
GX_CC_TEXA, // ¢ GX_CS_SCALE 1, // scale
GX_CC_ZERO); // d GX_ENABLE, // clamp 0-255
GX_TEVPREV) ; // output reg

9.11 Alpha Compare Function
You can apply the alpha compare operation to the alpha output from the last active TEV stage.
Code 9-14 GXSetAlphaCompare

GXSetAlphaCompare (
GXCompare compO,
us refo,

GXAlphaOp op,
GXCompare compl,
usg refl);

The alpha compare operation actually consists of two separate compares, the results of which can be
combined using several logical operations.

Equation 9-9 Alpha Compare
(‘qmurr:e C'ﬂmpu ‘qrqﬂ:l) op (‘qwun’e C‘G‘M}I‘l Arq;"l)
For example, the following compare is possible:
Equation 9-10 Sample Alpha Compare
("qjaurﬁe 2 Ar{fﬂ) ANL (}-1 "qrq;f’l)

The result of the alpha compare is a Boolean condition, true or false. The result of the alpha compare is
used to conditionally write the pixel color (and possibly Z) to the frame buffer.

<
SONFGE

The following compare operations are possible: never, less, less or equal, equal, not equal, greater,
greater or equal, always. The following combine operations are possible: and, or, exclusive-or, exclusive-
nor.

The effect of the alpha compare on the Z buffer depends on whether Z buffering occurs before or after
texture lookup (see GxSetzCompLoc). If Z buffering occurs before texture lookup, then the Z write
condition is determined only by the Z compare. If Z buffering occurs after texture lookup, then the alpha
compare result and the Z compare result are logically ANDed to determine whether the color and Z are
written to the frame buffer. In general, if alpha compare is enabled, Z buffering should occur after texture
lookup.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

104 Graphics Library (GX)

9.12 Z Textures

Z textures are always looked up in the last TEV stage. The texture input of the last active TEV stage is
connected directly to the Z buffer logic; therefore, it is not possible to apply TEV operations to the Z texture.
The color is still output from the last TEV stage when Z textures are enabled, but the texture input of the
last stage is occupied by the Z texture so it cannot be used as a color source. However, all other color
inputs and all TEV operations of the last stage can be used. The alpha side of the TEV stage is not
affected by Z textures.

Refer to "8 Texture Mapping" on page 57 for information on using Z textures. Refer to Advanced Rendering
for information on applications of Z textures.

9.13 Texture Pipeline Configuration

Each TEV stage requires:

e Atexture map (GXTexMapID)

e Atexture coordinate (GXTexCoordID) to use for the texture map

* Acolor channel (6X_COLOROAO or GX_ COLOR1A1l) to rasterize

* Modes and controls for the TEV stage itself

The first three items are supplied using the function in Code 9-15.
Code 9-15 GXSetTevOrder

GXSetTevOrder (
GXTevStageID stage,
GXTexCoordID coord,
GXTexMapID map,
GXChannelID color) ;

Let's take each parameter in turn. The stage parameter is the TEV stage that you are configuring. The
coord parameter is the name of the texture coordinate used to look up the texture. The coord is generated
according to the function GXxSetTexCoordGen. The map parameter is the name of the texture to use. If no
coord or map is to be used in this stage, they should be set to GX_ TEXCOORD NULL and

GX_TEXMAP_ NULL, respectively. This map ID is associated with a texture using the GXLoadTex0bj
function. The color parameter is used to name the output color channel of the vertex lighting hardware. The
GP can only rasterize one color channel per clock, so you must choose whether to rasterize
GX_COLOROAO Or GX_COLOR1AL1 for this TEV stage.

You can think of the GXSetTevOrder function as a switchboard with which you can connect all the
interested parties together. Similarly, the function GXSetTexCoordGen can be seen as a switchboard that
connects and transforms input vertex data to texture coordinates.

While only eight texmaps and eight texcoords may be specified, up to 16 different texture lookups can be
performed. However, since texture coordinates are scaled based on the size of the associated texture
map, you can only re-use a texture coordinate to texture maps that have the same size. Each TEV stage
will perform its own texture lookup based upon all of its settings.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Texture Pipeline Configuration 105

The following diagram shows the relationships between different parts of the texture pipeline and the
functions that control them and their associations.

Figure 9-6 Texture Pipeline Control

GXSetTev*In
GXSetTev*Op
GXSetTevColor
GXSetTevClampMode
GXSetAlphaCompare
GXSetTevOrder GXSetNumTevStages

GX_CC_TEXCIA

Vertex Data

GXSetNumTexGens
GXSetTexCoordGen GX_TEVSTAGEO
GX_VA_POS GX_TEXCOORDO
VA — GX_CC_RASC/A
GX_ VA NRM — XFORM B% GX_TEXCOORD1
GX_VA_CLRO |— Lighting n-& GX_TEXCOORD2 GX_CC_TEXC/A
GX_TEVSTAGE1
GX_VA_CLR1 % GX_TEXCOORD3
GX_CC_RASC/A
9 GX_VA_TEX0O [— XFORM GX_TEXCOORD4
[0
a
= GX_VA TEX1 | XFORM o
g GX_TEXCOORDS5 s
Q
3 o
X GX_VA_TEX2 GX_TEXCOORD6
0
GX_VA_TEX3 GX_TEXCOORD7?
GX_CC_TEXC/A
GX_VA_TEX4
VA GX_TEVSTAGE15
GX_TEXMAPO -
GX_VA_TEX5 T GX_CC_RASCIA
Q| GX_TEXMAP1
GX_VA_TEX6 et °
e]
8 °
GX_VA_TEX7 53 °
0
GX_TEXMAP7
= GXSetNumChans
5
£ | GX_COLOROAO
N
Q
8| GX_COLORIA1
x
0

GXInit sets the default texture coordinate generation capability. This function configures texture
coordinate generation to copy each input texture coordinate directly to an output texture coordinate using
an identity matrix. GXInit sets the number of color channels to 0 (GXSetNumChans).

Once you understand the default configuration, you can choose to override the texture coordinate
generation using GXSetTexCoordGen, or the TEV wiring using GXSetTevOrder, or both.

GXSetTevOrder determines which texture and rasterized color inputs are available to each TEV stage,
while GXsetTevColorIn and GXSetTevAlphalIn determine how the various inputs plug into the TEV
operation for each stage. Also, GXSetTevColorOp/GXSetTevAlphaOp determine how the stages
connect together.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

106 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Indirect Texture Mapping 107

10 Indirect Texture Mapping

The Graphics Processor has a powerful indirect texture feature. It allows the colors looked up from one
(indirect) texture lookup to be transformed into offsets that are then added to the texture coordinates for
another (regular) texture lookup. Various operations are possible when combining the output of the indirect
stage with the coordinates for the regular stage.

Figure 10-1 Indirect Texture Operation

Tex. Coord { Indirect | Color
Texture

Tex. Map - Lookup
Tex. Coord —m{ Texture | Color
Lookup TEV
Tex. Map—p»|
Tex. Coord —— | Op || Regular | Color
Texture —p» TEV
Tex. Map P Lookup
Normal Texture Operation Indirect Texture Operation

Indirect textures have several possible applications:
» Texture warping

» Texture tile maps

* Pseudo-3D textures

e Environment-mapped bump mapping

Using indirect textures for texture warping effects is the simplest application of the indirect feature. In this
case, the indirect texture is used to stretch or otherwise distort the surface texture. You can achieve a
dynamic distortion effect by swapping indirect maps (or by modifying the indirect map or coordinates). You
may apply this effect to a given surface within a scene, or you can take this one step further and apply the
effect to the entire scene. In the latter case, the scene is first rendered normally and then copied to a
texture map. You then draw a big rectangle that can be mapped to the screen using an indirect texture.
Texture warping allows for shimmering effects, special lens effects, and various psychedelic effects.

The indirect feature also lets you draw texture tile maps. In this case, one texture map holds the base
definition for a variety of tiles. An indirect texture map is then used to place specific tiles in specific
locations over a 2D surface. Normally, this effect is accomplished without indirect textures by drawing a
polygon for each desired tile. With indirect textures, only one polygon need be drawn.

Figure 10-2 Tiled Texture Mapping

2011010 30

S0 11 {oofoo|21| Tile Selection
—
TO 11 | 00 Result
21| 10 Tile Definition
o 1 5 3 G
e
: %;% e g E
S R
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

108 Graphics Library (GX)

Tile mapping can be extended to become a pseudo-3D texture effect. Consider all the tiles to be part of a
stack. Rather than drawing just a single tile layer from the stack, you can select two adjacent layers and
blend between them. You can use this technique to cover a large surface with non-repeating patterns that
blend together smoothly. You might imagine covering a beach with such a texture, where the layers vary in
appearance from fine sand to small pebbles to larger rocks.

Figure 10-3 Pseudo-3D Textures

Layer Definitions

Layer Select Results
0 3 6 9
35154 |73 35154 |73
SO 1 4 7 10
—p» (43|66 85— | Op [—» —p» | 43 | 66 | 85
TO 2| s |8 |n
49 | 7.2 | 9.9 49 | 72 | 99
¢ 3 6 9 12 ¢
4.9 = select layers 4 and 5 S1 49=0.1* (layer 4 definition) +
use blend factor 0.9 T1 0.9 * (layer 5 definition)

Environment-mapped bump mapping (EMBM) is another use of indirect textures. Regular emboss bump
mapping considers only the interaction between the bump map and a single diffuse light source. With
environment-mapped bump mapping, you use an indirect bump texture to offset texture coordinates
generated via surface normals. The perturbed normals are then used to look up an environment texture.
The environment texture may contain complicated lighting effects, or it may be a reflection map of the
environment. (One caveat is that the environment map is viewpoint-dependent and must be regenerated
whenever the viewpoint changes.) There are two EMBM methods:

1. The normal perturbations are modeled with respect to a flat surface (dS, dT), and during runtime they
are transformed onto arbitrary surfaces. This method requires three TEV stages plus one indirect
stage to calculate the modified texture coordinates.

2. The normal perturbations are modeled in 3D (dX, dY, dZ), and during runtime they are matched with
specific surfaces and transformed into eye space. This method requires only one TEV stage plus one
indirect stage to compute.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Setting Up Indirect Texture Stages 109

10.1 Setting Up Indirect Texture Stages

Figure 10-4 illustrates the texture hardware as described in the previous chapters. For each TEV stage,
you may assign a texcoord and a texture map to be looked up. Texture lookup and processing occurs in
each TEV stage.

Figure 10-4 Regular Texture Functional Diagram

Texture Lookups

Texture
TEV
Lookup Parameters l

GX_TEXCOORD's Processing

0 0 D 0

1 1 —_— 1

2 2 —_— 2

3 3 —_— 3

4 4 D 4

5 5 —_— 5

6 6 —_— 6

7 7 —_— 7

\ 8 —_— 8
GX_TEXMAP's 9 S 9
0 10 e 10

1 11 D 11

2 12 e 12

3 13 D 13

4 14 e 14

5 T 15 —_— 15

? GXSetNumTevStages()

GXSetTevOrder()

We now describe the indirect texture hardware in more detail. As mentioned above, an indirect lookup
consists of an indirect lookup stage, after which the results are combined with the regular texture
coordinates for another (regular) lookup stage. There can be up to four different indirect lookup stages.
The results from any indirect lookup may be used in any TEV stage to modify a regular texture lookup.
Thus there can be up to 16 modified regular lookups. The total number of texture maps available remains
at 8. In addition, any texture map that is designated as being used for an indirect lookup cannot also be
used as a target for a regular lookup (and vice versa—a given texture map can be only one or the other).

Performance-wise, adding an indirect stage is like adding another TEV stage. It increases the time
required to process each quad (2x2 pixels) by an additional clock cycle.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

110 Graphics Library (GX)

In the figure below, we add in the indirect hardware as it has been described thus far.

Figure 10-5 Regular and Indirect Texture Functional Diagram

Texture Lookups

GXSetTeviIndirect()
GXSetIndTexOrder() Indirect Indirect
Lookup Lookup Texture Lookups
Parameters Results
0 D 0

1 —_— 1 Indirect Operation

2 — > 2 Specs and Regular TEV
GX_TEXCOORD's 3 — > 3 Lookup Parameters Processing

0 GXSetNumIndStages() - 0 —_— 0
1 S 1 — 1
: e =
, 8 8
GX_TEXMAP's 9 — 9
0 10 —_— 10
1 11 —_— 11
2 12 —_— 12
3 13 —_— 13
4 14 —_— 14
5 T 15 —_— 15
? GXSetNumTevStages()

GXSetTevOrder()

The figure also shows some of the relevant functions. First is GXSetNumIndStages, which controls how
many indirect texture lookups there will be. For each indirect stage, you must specify a texture coordinate
and map. This is done using GXSet IndTexOrder:

Code 10-1 GXSetIndTexOrder

void GXSetIndTexOrder (GXIndTexStageID stage,
GXTexCoordID coord,
GXTexMapID map) ;

As mentioned, a map that is assigned to an indirect stage in this way cannot also be assigned to a regular
TEV stage as well. A given map can only be indirect or regular.

On the other hand, a given texture coordinate can be shared by both an indirect lookup and a regular
lookup. If the indirect map is the same size as the regular map, then the sharing is straightforward. If the
sizes differ, there is still the possibility to share. If the regular map is larger than the indirect map, you may
scale it down by a power of two for use with the indirect lookup while still using the unscaled texture
coordinate for the regular lookup. This is set by the call in Code 10-2.

Code 10-2 GXSetIndTexCoordScale

void GXSetIndTexCoordScale (GXIndTexStageID indStage,
GXIndTexScale scalesS,
GXIndTexScale scaleT) ;
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Basic Indirect Texture Processing 111

The figure below shows an example for this case. The block labeled “Scale to Map 2 size” is the regular
texture coordinate scaling that the hardware does. The block labeled “Scale by 1/4” would happen as a
result of calling GXSet IndTexCoordScale with parameters specifying 1/4 scaling.

Figure 10-6 Texture Coordinate Sharing Example

s - Scale by H Indirect | Color
14 Texture

Tex. Map 1 P Lookup

Scale to
Tex. Coord Map 2 si -

ap 2 size - Op | Regular [Color

Texture ——» TEV

Tex. Map 2 P Lookup

Tex. Map 2 is 4x size of Tex. Map 1

If we share texture coordinates for this example and set the indirect scaling to 1, then the texture
coordinate would either wrap or clamp as it accesses the indirect texture. The behavior depends upon the
settings for the indirect map being looked up.

10.2 Basic Indirect Texture Processing

This section describes what is possible inside the “Op” block shown above, where the colors coming from
the indirect lookup are processed and combined with the regular texture coordinate. The figure below
shows some of the major components of the indirect texture processing block. More details will be shown
in a later section.

Figure 10-7 Indirect Texture Processing, Part 1

regular st

coords 2(S17.7) 2(S17.7)
’ %%)—
st (for modified
wrap 2(S17.7) | regular lookup)
indirect '
lookup format bias
color | 3(U8)
I > > +
R -
G U [d ° f]
BT
A S Matrix

When the indirect looked-up color enters the processing box, the first thing that happens is a mapping of
the color components to the (s, t, u) texture offsets. As shown, red (R) is discarded, green (G) maps to u,
blue (B) maps to t, and alpha (A) maps to s. Some remapping may be done later through the use of the
indirect matrix (see section "10.3 Basic Indirect Texture Functions" on page 112). We chose this initial
mapping in order to make efficient use of IA8 texture maps.

Next, the texture offsets go through the format block. You may choose whether some or all of the bits of
each component are actually used; that is, specifically, you may choose whether the lower 3, 4, 5, or 8 bits
of each component are used. Normally, you will use all 8. (The reason for the partial choices is described in
"10.5.1 Texture Tiling and Pseudo-3D Texturing" on page 115.)

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

112 Graphics Library (GX)

Next, you can apply a bias. If 8 bits were chosen in the format block, then the bias is -128, allowing for
signed offsets. If a smaller number of bits was chosen in the format block, then the bias is +1.

The next operation is a matrix-vector multiply. You may configure up to three different static matrices and
choose which one to use for a given indirect texture operation. The components of the matrix are in the
range [-1 ... +0.999] (a sign bit plus 10 bits of mantissa). As shown, the matrix has two rows and three
columns, and it appears on the left side of the multiply. On the right side is a column vector consisting of
the (s, t, u) offsets. The matrix may be used for rotation, scaling, and remapping of the offsets.

A scale value is associated with each static matrix. You may choose a scale value by specifying an
exponent of 2 in the range of [-17 ... +46]. This scale value can be used to stretch the offsets over the size
of the regular texture map that will be associated with this indirect operation. You can also think of the
scale as the fixed-point exponent for the matrix values. Since a value equal to +1.0 cannot be stored in the
matrix, you can store 0.5 and use an exponent of 1 greater than the desired value in order to compensate.

You can optionally wrap the regular texture coordinate used with this lookup operation. You may specify a
wrap value of 0, 16, 32, 64, 128, 256, or none. Using 0 effectively zeroes out the regular texture coordinate
values.

Once all of the above processing has taken place, the offsets are added to the regular texture coordinates.
This becomes the effective texture coordinate that will be used in the texture lookup for the associated TEV
stage.

10.3 Basic Indirect Texture Functions

We now describe more indirect texture functions. Use the function in Code 10-3 to set an indirect matrix
and scale value:

Code 10-3 GXSetIndTexMtx

void GXSetIndTexMtx(GXIndTexMtxID mtx_id,
f32 offset[2] [3],
s8 scale_exp) ;

As mentioned above, there are three indirect matrices, and mtx_id specifies which one to set. The offset
values must be in the range of [-1 ... +0.999] (sign plus 10-bit mantissa), and scale_exp must be in the
range of [-17 ... +46].

The following group of functions will set up the indirect hardware to enable a particular special effect.
These functions only set the indirect hardware, and you must still set up the TEV, texture maps, texgens,
and other parts of the system in order to achieve the desired effect.

10.3.1 Texture Warping
Code 10-4 GXSetTevindWarp

GXSetTevIndWarp (
GXTevStagelD tevStage, // Name of TEV stage being modified
GXIndTexStagelD indStage, // The indirect stage that specifies the warp map
GXBool signedOffsets, // True for s8 offsets, false for u8 offsets
GXBool replaceMode, // True to replace, false to modify regular coords
GXIndTexMtxID matrixSel) ; // Which indirect matrix and scale to use
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Basic Indirect Texture Functions 113

This function provides the ability to warp a regular texture lookup. The indirect map should contain 8-bit
offsets. The signedOffsets parameter controls whether or not a bias of -128 is applied to the offsets. The
replaceMode parameter controls whether the offsets completely replace the regular texture coordinates
(6x_TRUE) or if they merely offset them (GX_FALSE). In effect, this selects a zero wrap value or a wrap
value of none. The matrixSel parameter chooses which of the available indirect matrices (and associated
scale values) to use.

The SDK graphics demo ind-warp shows one way to use this function.

10.3.2 Environment-mapped Bump-mapping (EMBM) (dX, dY, dZ)
Code 10-5 GXSetTevindBumpXYZ

GXSetTevIndBumpXYZ (
GXTevStagelD tevStage, // Name of TEV stage being modified
GXIndTexStagelD indStage, // The indirect stage that specifies the bump map
GXIndTexMtxID matrixSel); // Which matrix/scale slot to use

GXSetTevIndBumpXYZ sets up an environment-mapped bump-mapped (dX, dY, dZ) texture lookup. This
is basically a perturbed lookup into a spherical reflection map. As an indirect operation, this is just a warp
with signed offsets. The bump map must contain biased normal offsets in 3D model space. It must be an
RGBA texture with dX in A, dY in B, and dZ in G. You must load the indirect matrix with a transform for
normals that goes from model space to eye space. The scale value must contain the size of the reflection
map divided by 2 (and thus the reflection map must be a square power of 2 size). You must set up a
normal-based texgen for the regular texture coordinate. Alternately, you may avoid sending vertex normals
by putting normals (not just offsets) in the texture map. See Advanced Rendering for more details on bump
mapping. Also, refer to the demo ind-bump-xyz.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

114 Graphics Library (GX)

10.4 Advanced Indirect Texture Processing

Before moving on to the next indirect functions, let's examine more details in the indirect texture
processing block. These details are illustrated in Figure 10-8.

Figure 10-8 Indirect Texture Processing, Part 2

regular st |2(S17.7) st (for LOD)
coords | 2(817.7) § 2(817.7) . >

|)0)=+ LOD
select

—p abc st (for modified
matrix select 12(817.7) regulﬁr lookup)
indirect . '
lookup format bias
color 3(U8) (S8)
|> > + :3
previous stage
feedback select
bs bump
Rep - bt 1(U8) (upper 5 bits only) alpha
G=»U bu bump alpha select >
Bep T
A=p-S

The figure above shows four additional features of the indirect processing hardware:

e You may select a “bump alpha” value to be extracted from the indirect lookup color.

« A dynamic matrix may be created, based upon the incoming regular texture coordinates.

* You may select whether the original or modified texture coordinate is used to compute texture LOD.

* You may feed the texture coordinate calculated from one stage as an additive input to the next.

10.4.1 Selecting “bump alpha”

You may specify that certain bits from the indirect looked-up color be available as “bump alpha.” Which bits
are used depends upon the format selected for the indirect offsets. If you chose to use 3, 4, or 5 bits from
the colors as offsets, then the remaining 5, 4, or 3 bits are available for selection as bump alpha. If you
chose the 8-bit format, then the upper 5 bits may be duplicated as bump alpha. In any case, you choose
whether to extract the bits from the s, t, or u component; the resulting bits are left-aligned in the bump-
alpha 8-bit field. Bump alpha is available as a TEV-stage color input (by using GXSetTevOrder). You may
select the plain bump alpha, or a “normalized” bump alpha (a bump alpha multiplied by a factor of 255/
248). There is a restriction on this feature: bump alpha is not available for TEV stage O.

10.4.2 Dynamic Matrices

There are more choices for the indirect matrix. You may select from the three static matrices, two types of
dynamic matrices, or a matrix of all zeros. For each matrix selection (except the zero matrix), there is a
corresponding scale selection as well. If you use a dynamic matrix, you may choose one of the three scale
values associated with the static matrices. Dynamic matrices are set based upon the incoming regular s/t
coordinate values:

Equation 10-1 Dynamic Indirect Matrices

e [51256 00 o [0 812560

2 5 FRCEFIX = FRICLEFTN

” 1256 0 0 ” 0 £/256 0O
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Advanced Indirect Functions 115

10.4.3 Selecting Texture Coordinates for Texture LOD

You may select to use the original (unmodified) or the modified texture coordinates for the MIPMAP LOD
computation. When doing texture tiling (see section 10.5.1), you should use the unmodified texture
coordinates for this purpose. In most other cases, you should use the modified coordinates.

10.4.4 Adding Texture Coordinates from Previous TEV Stages

You may choose to add in the texture coordinate computed in the previous TEV stage. This allows even
more complicated expressions to be built up over multiple stages. It also allows a complicated result to be
reused for more than one lookup.

10.5 Advanced Indirect Functions

We now describe functions that take advantage of the features mentioned in "10.4.4 Adding Texture
Coordinates from Previous TEV Stages" on page 115.

10.5.1 Texture Tiling and Pseudo-3D Texturing
Code 10-6 GXSetTevindTile

GXSetTevIndTile (
GXTevStagelD tevStage, // Name of TEV stage being modified
GXIndTexStagelD indStage, // The indirect stage that specifies the tile map
ulé6 tileSizesS, // Size of tile in S dimension
ulé6 tileSizeT, // Size of tile in T dimension
ulé tileSpacings, // Tile spacing in S dimension
ulé tileSpacingT, // Tile spacing in T dimension
GXIndTexFormat format, // Format of indirect offsets
GXIndTexMtxID matrixSel, // Which indirect matrix slot to use
GXIndTexBiasSel biasSel, // For pseudo-3D, selects tile-stacking direction
GXIndTexAlphaSel alphaSel) ; // For pseudo-3D, selects bump alpha

This function specifies texture tiling or pseudo-3D texture lookup. You specify the tile size and spacing
separately. Using a spacing different than the tile size allows borders for mipmapping purposes.
Depending upon the height of the mipmap stack, texels outside of the tile area may be included in the
filtering calculations for mipmapping. This function will set up the matrix values and scale value
appropriately based upon the given inputs; you need only to specify which matrix slot to use. The biasSel
and alphaSel are used only for pseudo-3D lookups (see section 10.5.3). You set these to GX_ITB NONE
and GX_ITBA OFF, respectively, for normal 2D tiling.

Texture tiling can take advantage of the same texture coordinate for use with the indirect map and the
regular map. There is a complication, however, since the desired scale values for the regular texture
coordinates are not directly related to the size of the regular map, which contains the tile definitions (refer
back to "Figure 10-2 Tiled Texture Mapping" on page 107). Normally, GX will set the texture coordinate’s
scale size to the size of the map being looked up, with preference for the regular map size if a texture
coordinate is being shared. Since you need to use a different scale altogether with texture tiling, you must
use the function in Code 10-7.

Code 10-7 GXSetTexCoordScaleManually

GXSetTexCoordScaleManually (

GXTexCoordID texCoord, // Name of the texcoord being affected
GXBool enable, // GX_TRUE = manual scaling; GX FALSE = automatic
ulé6 ss, // Manual scale value for S dimension
ulé6 ts); // Manual scale value for T dimension
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

116 Graphics Library (GX)

Once GXSetTexCoordScaleManually has been called with enable set to GX_TRUE, the given texture
coordinate scale values are fixed until the function is called again. If the function is called with enable set to
GX_FALSE, then automatic texture coordinate scaling takes over once again for that texcoord. When you
are manually scaling, you should also call GXxSetTexCoordBias. The bias is normally set automatically
by the GX API, but when a texture coordinate is being scaled manually, the bias is no longer modified by
GX and will be stale from the last time it was set.

For texture tiling, the desired texture coordinate scale is the tile size multiplied by the size of the indirect
map. You then use GXSetIndTexCoordScale to divide out the tile size for use in accessing the indirect
map. For an example of texture tiling, refer to the demo ind-tile-test.

In order to support pseudo-3D texture lookup, you must call GXSetTevIndTile for two adjacent TEV
stages. The first stage resembles a normal 2D tiling specification. For the second stage, you specify a bias
select and alpha select. The bias is used to select the tile-stacking direction. You use GX_ITB S when the
next tile is offset in s, and GX_ITB T when the next tile is offset in t. You then choose a bump alpha in
order to blend between the tile from the first lookup and the tile from the second lookup. You cannot use
the 8-bit format for pseudo-3D. Instead, you must use the 3-, 4-, or 5-bit format. These formats use a bias
value of +1 instead of -128. The +1 bias is used to get the “next” tile in the second stage. Refer to the demo
ind-pseudo-3d to see one way to use this feature.

10.5.2 Environment-mapped Bump-mapping (EMBM) (dS, dT)
Code 10-8 GXSetTevindBumpST

GXSetTevIndBumpST (
GXTevStageID tevStage, // Name of first TEV stage to insert EMBM lookup
GXIndTexStagelD indStage, // The indirect stage that specifies the bump map
GXIndTexMtxID matrixSel) ; // Which scale/matrix slot to use

This function sets up an environment-mapped, bump-mapped (dS, dT) texture lookup. Similar to
GXSetTevIndBumpXYZ, this sets up a perturbed lookup into a spherical reflection map. The difference is
that the bump map in this case contains deltas for (s, t). Such a lookup requires three TEV stages to
compute the offset texture coordinates. The resulting texture coordinate will be available two stages after
the one specified in the call. This function makes use of the dynamic matrices in order to transform the (s,
t) offsets to be relative to the incoming regular (s, t) (which come from the object normals).

You must set up the desired offset scale value using GXSet IndTexMtx. The scale value must contain the
size of the reflection map divided by 2 (and thus the reflection map must be a square power of 2 in size).
No static matrix is actually used in the texture coordinate computation. Only dynamic matrices and the
scale value are used.

The geometry associated with this lookup must include normals, binormals, and tangents. You must set up
three normal-based texgens for the regular texture coordinates. The binormal texgen goes to the first TEV
stage, the tangent texgen goes to the second stage, and the normal texgen goes to the third stage. An
additional texgen is used for the indirect coordinate. You should use an I1A8 texture format for the bump
map, with s offsets in alpha (A) and t offsets in intensity (I). You must set up the first two TEV stages used
so that they do not actually look up the textures (by using GX_TEX DISABLE).

Refer to the demo ind-bump-st to see this kind of environment-mapped bump-mapping in action. Also
refer to Advanced Rendering for more details on bump mapping.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Advanced Indirect Functions 117

Having used three TEV stages to compute the texture coordinate for an EMBM (dS, dT) lookup, you can
use the result to do more than one lookup. In order to perform successive lookups without taking three
stages to compute each one, use the texture coordinate feedback feature. You may call
GXSetTevIndRepeat to set this up, as shown in Code 10-9.

Code 10-9 GXSetTevindRepeat

GXSetTevIndRepeat (
GXTevStagelD tevStage) ; // Name of TEV stage being modified

This function allows you to use the texture coordinates computed in the previous TEV stage for the named
TEV stage. It is typically used only after GXSet TevIndBumpST.

10.5.3 General Indirect Texturing

The functions described so far implement the most obvious uses of the indirect texture hardware. There is
one more function available to set the indirect texture hardware directly, in case developers think of
additional uses for the hardware.

Code 10-10 GXSetTevIndirect

GXSetTevIndirect (
GXTevStagelD tevStage; // TEV stage name
GXIndTexStagelD indStage; // the indirect stage to be used with this TEV stage
GXIndTexFormat format; // format of the indirect texture offsets
GXIndTexBiasSel biasSel; // Selects which offsets (S, T) receive a bias
GXIndTexMtxID matrixSel; // Selects which indirect matrix and scale to use
GXIndTexWrap wraps; // Wrap value of regular S coordinate
GXIndTexWrap wrapT; // Wrap value of regular T coordinate
GXBool addPrev; // Add output from previous stage to texture coords?
GXBool utcLOD; // Use unmodified texture coordinates for LOD calc?
GXIndTexAlphaSel alphaSel) ; // Selects indirect texture alpha output

GXSetTevIndirect allows you to set the various parameters for a given indirect operation manually. The
indirect texture coordinate processing block is used for all TEV stages. If you do not want to perform a
modified lookup, select the zero texture matrix and turn off wrapping, feedback, and bump alpha. We
provide a convenience function to do this:

Code 10-11 GXSetTevDirect

GXSetTevDirect (
GXTevStagelD tevStage) ; // TEV stage name

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

118 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Fog, Z-compare, Blending, and Dithering 119

11 Fog, Z-compare, Blending, and Dithering

The final pixel output operations include fog, Z-compare, blending, and dithering. These operations are the
final steps of the pixel pipeline before a pixel is either written to the frame buffer or discarded. Fog allows
pixel values to be blended with the fog color based upon the distance from the viewer. The Z-compare
operation determines whether or not rasterized pixels will be written to the frame buffer based upon a Z
value comparison. The blending operation allows the rasterized pixel color to be mixed with the color exist-
ing in the frame buffer. Logic operations are also possible in the blender. Dithering takes place last.

11.1 Fog

Fog, if enabled, blends a constant fog color with the pixel color output from the last active Texture Environ-
ment (TEV) stage. The percentage of fog color blended depends on the fog density, which is a function of
the distance from the viewpoint to a quad (2x2 pixels).

There are five possible fog density functions:

* Linear

» Exponential

» Exponential squared

* Reverse exponential

* Reverse exponential squared

You may program a near and far Z for the fog function independent of the clipping near and far Z.

The eye-space Z used for fog computations does not represent the correct range unless the viewer is fac-
ing the same direction as the z-axis. The GP can compensate for this with a range adjustment factor based
upon the x position of the pixels being rendered. This boosts the eye-space Z value used for the fog com-
putation (the y direction is not compensated), effectively increasing the fog density towards the edges of
the screen in order to make the effect more realistic.

Figure 11-1 Fog Range Adjustment

Xaxis
HHHHHHHHHHHHHHHHHHHHHHH
} Just using Zfor range resuits in
E increasing errar as line of sight
noves angy fromZ axis
Arange adjustirent factor based upon
the Xvalue conpensates for this
v
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

120 Graphics Library (GX)

11.1.1 Fog Curves

These curves show the fog density as a function of range with startz = 50 and endz = 100.

Figure 11-2 Linear Fog Curve

GX_FOG_LIN
0.8}

0.6 |

0.4t

Fog Density

0.2

0 20 A0 &0 al 100
Range

Figure 11-3 Exponential Fog Curve

G CEXP —
0.8}

0.6 |

0.4t

Fog Density

0.2

a 20 40 &0 20 100
Range

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Fog 121

Figure 11-4 Exponential Squared Fog Curve

1

GH_FOG ExWF? —
08¢t
£ 06}
=
a
o 04t
=
[T
0.2t
0
0 20 40 B0 g0 100
Range
Figure 11-5 Reverse Exponential Fog Curve
1
G¥_FOG_REVEXP —
08}
£ 06|
=
&
o D4t
[}
[T
0.2t
a
o 20 40 g0 80 100
Fange
Figure 11-6 Reverse Exponential Squared Fog Curve
1
GX_FOG_REVEXPZ
08¢t
£ 06|
=
&
o 04t
[}
[T
0.2
a
o 20 40 g0 80 100
Fange
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

122 Graphics Library (GX)

11.1.2 Fog Parameters
You can control fog by using the function in Code 11-1.

Code 11-1 GXSetFog

void GXSetFog (GXFogType type,

£32 startz,
£32 endz,
£32 nearz,
£32 farz,

GXColor color) ;

The parameters startz and endz control where the fog function starts and ends, respectively. Usually, the
endz value is set to the far plane Z. The nearz and farz are needed to convert the rasterized screen space
Z value into eye-space Z for fog computations. Color is the color of the pixel when the fog density is 1.0.

The horizontal fog range adjustment is turned off by default in GXInit. In order to use this feature, you
must call the following two functions:

Code 11-2 Fog Range Adjustment Functions

void GXInitFogAdjTable (

GXFogAdjTable* table,
ulé width,
£32 projmtx (4] [4]);

void GXSetFogRangeAdj (

GXBool enable,
ulé center,
GXFogAdjTable* table);

The first function is used to compute the adjustment table. The user must provide the allocated space for
this table. The width parameter specifies the width of the viewport. The projmtx parameter is the projection
matrix that will be used to render into the viewport. This parameter is needed for the function to compute

the viewport’s horizontal extent in eye space.

Once the table has been computed, it can be passed to GXSet FogRangeAdj. The enable parameter indi-
cates whether horizontal fog range adjustment is enabled or not. The center parameter should be the x-
coordinate at the center of the viewport. The range adjust function is symmetric about center.

11.2 Z-compare

You may write to the frame buffer conditionally by comparing the Z value for the rasterized pixel against the
Z value for the pixel already in the frame buffer. This comparison may happen at one of two places within
the graphics pipeline: the comparison may take place before a pixel is textured, or it may take place after
texturing has been done (see "Eigure 3-1 Schematic of the GP" on page 10). Normally, the Z-compare
occurs before texturing because this typically enhances performance; that is, memory bandwidth is
reduced by not looking up textures for pixels that will not be visible. However, the alpha-compare logic is
tied together with the Z-compare logic, so using alpha-compare requires placing the Z-compare after tex-
turing. Using Z textures also requires that the Z-compare occur after texturing. The function
GXSetZCompLoc sets whether the Z-compare happens before or after texturing. The compare is set to
“before” in GXInit.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Z-compare 123

The function GxsetZMode is used to control the Z-compare:
Code 11-3 GXSetZMode

void GXSetZMode (

GXBool compare_enable,
GXCompare func,
GXBool update_enable) ;

The compare_enable parameter can be used to disable the Z-compare altogether. When compare_enable
is false, writes to the Z buffer are also disabled. The func parameter sets the comparison function (never,
less, less or equal, equal, not equal, greater or equal, greater, or always). The update_enable parameter
sets whether new Z values are written to the Z buffer when Z-compares are enabled.

11.2.1 Z Buffer Format

The Z buffer is 24 bits wide in non-antialiased mode and 16 bits wide in antialiased mode. When using a
16-bit Z buffer, a number of different compressed formats are available to make better use of the limited
number of bits. The compression algorithm performs a type of reverse floating point encoding because the
properties of screen space Z necessitates clumping most of the resolution towards the high end of the
number scale, whereas conventional floating point notation clumps most of the resolution towards the low
end of the number scale.

The system supports various compression schemes, with selection being made based on the far-to-near
ratio. For orthographic projection or small far-near ratios, you can use a linear format; it just strips the lower
8 bits from the input Z. For medium far-near ratios, you can use a 14e2 format that has an effective resolu-
tion of 15 bhits at the near plane and 17 bits at the far plane. For high far-near ratios, you can use a 13e3
format that has an effective resolution of 14 bits at the near plane and 20 bits at the far plane. A 12e4 for-
mat is also available.

The 16-bit formats available are listed below:

Table 11-1 16-bit Z Buffer Formats

Format Name Description

GX_ZC_ LINEAR Linear
GX_ZC_NEAR 14e2
GX_ZC_MID 13e3
GX_ZC _FAR 12e4

It is always best to use as little compression as possible (that is, use as many mantissa bits in the Z format
as possible). You get less precision with higher compression. The “far” in the above text does not neces-
sarily refer to the far clipping plane. You should think of it as the farthest object you want correct occlusion
for.

The Z buffer format is set using GXSetPixelFmt. This function affects both the color buffer format and the
Z buffer format. For information about color buffer formats, refer to "12 Video Output" on page 129. Chang-
ing the frame buffer format requires flushing the pixel pipeline.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

124 Graphics Library (GX)

11.3 Blending

The blending operation combines the pixel color (output from the TEV and fog operations), also called the
source color, with Embedded Frame Buffer (EFB) color, also called the destination color. The pixel's alpha,
or source alpha, can always be used as a factor in the blending operation. In addition, if the EFB format is
GX_PF _RGBA6_Z24, then you can blend the source alpha channel with the EFB alpha, also called desti-
nation alpha.

When rendering non-antialiased images, four pixels per clock are blended. When rendering antialiased
images, six samples, or two pixels per clock, are blended.

You can set the main blending controls using:
Code 11-4 GXSetBlendMode

void GXSetBlendMode (
GXBlendMode type,
GXBlendFactor src_factor,
GXBlendFactor dst_factor,
GXLogicOp op);

The type parameter selects between blending operations, GX_BM BLEND, or logical operations,
GX_BM LOGIC. Setting type to GX_BM_NONE writes the source pixel directly to the EFB. Call
GXSetColorUpdate and GXSetAlphaUpdate to enable the writing of the blending result to the EFB.

11.3.1 Blend Equation

The blend equation is:

Equation 11-1 Blending

pix_color = Clamp (src_factor x src_color + dst_factor x dst_color)

RGB blending is performed using the equation above. Alpha blending differs in that a constant alpha can
override the result of the blend equation using GXSetDstAlpha.

The src_factor and dst_factor are both normalized. The normalization process adds the most significant bit
(MSB) of the factor to itself, thus 0 through 127 are unchanged, and 128-255 will map to 129 to 256. The 8-
bit color is multiplied by the 9-bit factor and the result is rounded. The result of the two multiplies are added
and the sum is clamped to 255. This technique allows colors to be multiplied by 1.0 (255 = 1.0), preserving
the high end of the color range.

It is also possible to specify a subtractive blend mode as a special blend operation, as shown below.

Equation 11-2 Subtractive Blend Operation
final pixel color = destination color - source color

You select this blend operation using GXSetBlendMode and choosing a blend_mode of
GX_BM_SUBTRACT. Unlike additive blending, you cannot specify source and destination factors (coeffi-
cients) in this equation. This blend operation is also available with writes from the CPU to the EFB, and
selectable using GXxPokeBlendMode.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Blending

11.3.2 Blending Parameters

The following table lists the possible values of src_factor and dst_factor:

Source or Destination Factor

GX_BL_ZERO

GX_BL_SRCCLR

GX_BL_DSTCLR

GX_BL_SRCALPHA

GX_BL_DSTALPHA

Rs

Rd

As

Ad

Red

Gs

Gd

As

Ad

Table 11-2 Blending Parameters

Green

Bs

Bd

As

Ad

Blue

Iy

25

Alpha

As

Ad

As

Ad

© 2006-2009 Nintendo

CONFIDENTIAL

RVL-06-0037-001-E

Released: March 27, 2009

126

11.3.3 Logic Operations

These logical operations are supported:

Table 11-3 Logic Operations

Logic Op Name Operation

GX_LO_CLEAR 0x00
GX_LO_SET Oxff

GX_LO_COPY Source
GX_LO_INVCOPY ~Source
GX_LO_NOOP Destination
GX_LO_INV ~Destination
GX_LO_AND Source & destination
GX_LO_NAND ~(Source & destination
GX_LO _OR Source | destination
GX_LO_NOR ~(Source | destination)
GX_LO_XOR Source " destination
GX_LO_EQUIV ~(Source " destination)

GX_LO_REVAND

Source & ~destination

GX_LO_INVAND

~Source & destination

GX_LO_REVOR

Source | ~destination

GX_LO_INVOR

~Source | destination

Logic operations and blend operations cannot be used simultaneously.

RVL-06-0037-001-E

Released: March 27, 2009

Graphics Library (GX)

© 2006-2009 Nintendo
CONFIDENTIAL

Dithering 127

11.4 Dithering

The pixel can be dithered after blending when the pixel format is either GX_PF RGBA6_Z24 or
GX_PF_RGB565_Z16. There is no performance penalty for turning on dithering. Each 8-bit color
component is scaled and normalized appropriately (see Equasion 11-4 through 11-7) and the
corresponding entry in the standard 4x4 Bayer matrix is added. The Bayer matrix is screen-aligned and
repeated over the entire screen.

Equation 11-3 Bayer Matrix

W o—b

v |D 8 2 10
12 4 14 6
3 11 1 9

15 7 13 5_

The following equations compute scaling and normalizing for dithering:
Equation 11-4 5-bit Dithering (ideal)

Cop =C0C, *¥247/255) <<)+ dither{x &3, v & 3]) =4
Equation 11-5 5-bit Dithering (approximation actually used)
Copg =00C, -(C, =»5))<<l)+dither[x &3, v &3] ==4
Equation 11-6 6-bit Dithering (ideal)

Cop=00C, *¥251/255)<<2)+ dither[z& 3 vy &3] =>4
Equation 11-7 6-bit Dithering (approximation actually used)

Cop=00C, -(C, =x6))<< +dither[z &3 vy &3] =>4
You can enable dithering by calling the GXSetDither function. Dithering is enabled by default in GXInit.
Code 11-5 GXSetDither

void GXSetDither (GXBool enable) ;

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

128 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Video Output 129

12 Video Output

The Embedded Frame Buffer (EFB) cannot send pixel data directly to the video interface; therefore, the
frame buffer must first be copied out to main memory. We call the frame buffer in main memory the
External Frame Buffer (XFB). In this section, we will fully describe the copy operation necessary to transfer
EFB to XFB.

Since the GP copy operation relates closely to video interface functionality, the remainder of this section
often refers to Video Interface library (VI). For a complete description of this library, see Video Interface
Library (VI).

12.1 The Copy Pipeline

The diagram below illustrates the operations applied during the frame buffer copying process.

Figure 12-1 EFB-to-XFB Copy Pipeline

Antialias Gamma Y scale
Deflicker Correction RGB to YUV
EFB XFB

| filter state | | gamma

‘ copy pipeline >

12.1.1 Copy Source
The EFB source of the copy operation is specified by the function in Code 12-1.

Code 12-1 GXSetDispCopySrc

void GXSetDispCopySrc (
ule left,
ulé top,
ulé wd,
ulé ht);

GXSetDispCopySrc defines a sub-region of pixels in the EFB memory as the source for the copy
operation. Since the GP works on regions of 2x2 pixels, there is the restriction that all of the source copy
parameters be even numbers.

12.1.2 Antialiasing and Deflickering

The GP performs antialiasing in two parts. During rendering, it can rasterize to a super-sampled EFB.
During the copy operation, the multiple samples per pixel can be filtered together to create the final pixel
output color. In fact, samples from more than one row of pixels can be filtered together, enabling
deflickering to be performed during the copy operation as well. Samples from up to three rows of pixels can
be filtered together (with some restrictions). A more detailed discussion of Wii antialiasing and deflickering
may be found in Advanced Rendering.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

130 Graphics Library (GX)

The antialiasing mode is determined by the frame buffer pixel format. "12.4 Embedded Frame Buffer
Formats" on page 137 discusses how to set this format. The function in Code 12-2 sets all super-sample
locations and sample filter weights.

Code 12-2 GXSetCopyFilter

u32 GXSetCopyFilter (
GXBool aa,
us sample pattern[12] [2],
GXBool vf,
us viilter([7]);

The aa parameter indicates whether to use the supplied sample_pattern or a default pixel-centered
pattern. The sample_pattern parameter indicates the exact location of each pixel subsample. The vf
parameter indicates whether to use the supplied Vfilter or a default single-line filter. The Vfilter indicates the
weights to use for each sample. Refer to Advanced Rendering for more details on these parameters.

When rendering in non-antialiased mode, the sample pattern must be set to a pixel-centered pattern, or
else visual anomalies will result. Similarly, the vertical filter must always be set correctly depending upon
the render mode chosen. Note, however, that the vertical filter only samples from the adjacent rendered
pixels (in the EFB). When rendering in field mode, such pixels are not adjacent during scan-out (since the
odd and even fields from the XFB will be interlaced with each other); therefore, the vertical filter should not
be used in this mode. Moreover, the vertical filter is unnecessary in double-strike mode. See below for
further discussion about render modes.

The same copy hardware is used for the video copy path as well as the texture copy path, so it might be
necessary to change the sample pattern and vertical filter within a frame when doing a texture copy
followed by a video copy.

Clamping is generally required when copying the first and last scan lines from the source rectangle. This
makes sure that the GP uses valid data when sampling above the first scan line and below the last.
However, there may be times when it is necessary to disable clamping (see "12.2.7 Interlaced, Antialiased,
Frame-rendering, Deflicker Mode" on page 135). Clamping is controlled by the call in Code 12-3.

Code 12-3 GXSetCopyClamp

u32 GXSetCopyClamp (GXFBClamp clamp) ;

12.1.3 Gamma Correction

Pixel values may be gamma-corrected during the copy operation. Three choices of gamma correction are
available: 1.0, 1.7, and 2.2. The default gamma set in GXInit is 1.0. The gamma for texture copy is fixed
at 1.0. The display-copy gamma can be set with the function in Code 12-4.

Code 12-4 GXSetDispCopyGamma

u32 GXSetDispCopyGamma (GXGamma gamma) ;

Determining the appropriate gamma correction will depend on your design for the game. For many games,
you may find it preferable to maximize low intensity color resolution by setting the gamma correction at 1.0.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

The Copy Pipeline 131

12.1.4 RGB to YUV

A luma/chroma YUV format stores nearly the same visual quality pixel as RGB does, but requires only two-
thirds of the memory. Therefore, we convert RGB EFB to YUV XFB during the copy operation to save on
the amount of main memory used for the frame buffer. There is a corresponding savings of main memory
bandwidth as well (for both the copy operation and the XFB video scan-out). For conversion details, see
"12.5 External Frame Buffer Format" on page 138.

As an example, consider a 640x240 (150,000 pixels) frame buffer. A frame buffer this size requires 900KB
to double-buffer using 24-bit/pixel RGB format. However, a 16-bit/pixel YUV format requires only 600KB,
which saves a difference of 300KB in main memory.

12.1.5 Y Scale

Wii can arbitrarily scale a rendered image both horizontally and vertically. Vertical y scale occurs during the
copy process, while horizontal x scale occurs during the video display. For more details on scaling (x, y) for
display, see “Initialization” in Video Interface Library (VI). The function in Code 12-5 sets the y scale factor.

Code 12-5 GXSetDispCopyYScale

u32 GXSetDispCopyYScale(f£32 yscale);

The function returns the number of lines that will be copied, which can be used to compute the XFB size.

12.1.6 Copy Destination
The destination of the copy operation is defined by:

Code 12-6 GXCopyDisp

void GXSetDispCopyDst (ulé width, ulé height);
void GXCopyDisp(void *dest, GXBool clear);

GXSetDispCopyDst must be called in order to set the proper stride for the copy operation. GXCopyDisp
specifies the XFB destination in main memory and actually issues the copy command. The destination
XFB must begin at a 32-byte aligned address; moreover, the amount of memory required depends on
width alignment. For a complete list of rules for allocating the correct amount of XFB memory, see “4.2.2
Frame Buffer Allocation” in Video Interface Library (VI).

12.1.7 Clear Color and Z for Next Frame

The copy operation can clear the color frame buffer and the Z buffer during the copy. This eliminates clear
time when rendering the next frame.

To perform a clear during the copy operation, use the clear parameter in GXCopyDisp. The clear
parameter is only effective if the buffer has been enabled for update (see GxSetColorUpdate,
GXSetAlphaUpdate, and GXSetZMode). This allows individual buffers to be cleared during the copy
operation.

The function in Code 12-7 specifies the clear color and clear Z values to use during the copy operation.
Code 12-7 GXSetCopyClear

void GXSetCopyClear (GXColor clear clr, u32 clear z);

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

132 Graphics Library (GX)

The clear_clr parameter is in RGBA8 format, while the clear_z parameter is in 24-bit format. The
parameters are converted into the proper format during the clear operation. The constant GX_MAX 724
specifies the maximum depth value.

12.2 Predefined Render Modes

The set of controls necessary to correctly configure the GX and VI libraries is complex. Many game
designers like to be able to customize these controls, so the GX and VI libraries provide all of the
necessary controls to give developers maximum control. The GX API provides a set of predefined
rendering modes containing all of the parameters necessary to make this task simpler.

Each rendering mode contains the following data:
» EFB and XFB size and format information
» Position of the XFB on TV screen

* TV video format: interlaced or non-interlaced (double-strike) mode for NTSC, PAL, and EURGBG60; or
progressive mode (with 480 valid scan lines, using a standard D2 connector) for NTSC and
EURGB®60.

» Antialiasing state and deflicker filter
» Field-rendering mode (enabled or not)

For information on TV video formats and field-rendering, refer to Video Interface Library (VI).

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Predefined Render Modes 133

The diagram below illustrates the relationships between the render mode structure, related GX calls, and
parts of the graphics hardware pipeline:

Figure 12-2 Render Mode Structure, Related Calls and Hardware Modules

Render Mode /< GXSetFieldMode > GP pipeline
GXSetViewportJitter)
]] viewport
field rendering % (GXSetViewport)
/< GXSetScissor) scissor
frame buffer size, format
\C GXSetDispCopySrc >
C GXSetPixelFormat) EFB
AA state, deflicker filter
C GXSetDispCopyYScale >
C GXSetDispCopyDst) copy
. GXCopyDs
TV video format PYESP)
C GXSetCopyFilter)
XFB
XFB position on TV
—>< VIConfigure) VI

In the following sections, we describe the basic rendering modes defined for each of the video modes.

12.2.1 Double-strike, Non-antialiased Mode

In this mode, VI outputs a double-strike, or non-interlaced, signal. This mode turns off antialiasing (AA) to
speed up fill rate. For NTSC, this mode renders 640x240 lines at 60Hz.

Figure 12-3 Double-strike, Non-antialiased Mode

B &"'a& TV Screen

12.2.2 Double-strike, Antialiased Mode

This mode is similar to the preceding one; however, it supports antialiasing (at a potentially reduced fill
rate).

EFB

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

134

12.2.3 Interlaced, Non-antialiased, Field-rendering Mode

Graphics Library (GX)

In this mode, VI outputs an interlaced signal (the rendering alternates between even and odd fields to
support field-rendering). Antialiasing is turned off for maximum fill rate. For NTSC, this mode renders

640x240 lines at 60Hz.

Please note that deflicker is not possible in this mode. Also note that the fields must be completed
and swapped before vertical retrace, or else the incorrect field is displayed during the next display
interval. Otherwise, incorrect fields will be displayed during the following display periods.

Figure 12-4 Interlaced, Non-antialiased, Field-rendering Mode

EFB

EFB

12.2.4 Interlaced, Antialiased, Field-rendering Mode

yT.WD %FB1 TV SoR el Ewven Fidd
Odd Fiald
[= i Dowt T Soree b

This is the same as the preceding mode, except that it supports antialiasing (at a potentially reduced fill

rate).

12.2.5 Interlaced, Non-antialiased, Frame-rendering, Deflicker Mode

In this mode, VI outputs an interlaced signal. The entire frame is copied from EFB to XFB with a
deflickering filter. The video interface hardware can select whether to display the even or odd field within

this frame buffer. For NTSC, this mode renders 640x480 lines at any frame rate.

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo
CONFIDENTIAL

Predefined Render Modes 135

Figure 12-5 Interlaced, Non-antialiased, Frame-rendering, Deflicker Mode

TV Screen
—_— — (Even Field)
Deflicker copy AFB Dizplay

T Screen
(Ddd Field)

EFBE

12.2.6 Interlaced, Non-antialiased, Frame-rendering, Non-deflicker Mode

Similar to interlaced, frame-rendering, deflicker mode, except that this mode does not support deflickering.

12.2.7 Interlaced, Antialiased, Frame-rendering, Deflicker Mode

When rendering a large antialiased frame, the embedded frame buffer is not big enough to hold the entire
frame, so two rendering passes are necessary to construct a single complete frame buffer.

Figure 12-6 Interlaced, Antialiased, Frame-rendering, Deflicker Mode

Fass 1 T% =creen
asz .
— sy [— (Even i)

Display

Fass2 “FB

= Antialias copy T Screen
(Odd Field)

Since the vertical deflicker filter spans three lines, it is necessary to have some overlap in each pass where
the images will be joined, as illustrated in "Eigure 12-7 Overlapping Copy" on page 136. This diagram
shows one extra line in each pass for a total of two lines of overlap. Due to the restriction that only even
numbers of lines can be copied, you must actually have two extra lines from each pass, resulting in a total
overlap of four lines. Please note that copy clamping is not possible at the bottom of the first pass copy and
at the top of the second pass copy.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

136 Graphics Library (GX)

Figure 12-7 Overlapping Copy

Pass 1 EFB

Antialias copy

First line copied

Common lines

—

Pass 2
Antialias copy

Last line copied

Deflicker filter EFB

Drawing the top and bottom halves of the screen correctly involves adjusting the viewing frustum. See the
demo frb-aa-full for an example.

It is also possible to shift the area of the scissor box within the space of the EFB memory. Normally, the
upper-left corner of the scissor box maps to the same corner in EFB space. You can now specify an offset
that is subtracted from the computed pixel’s location before it is stored in the EFB. Thus, you can shift the
area of the scissor box up and/or left within the EFB space.

The main purpose of this feature is to simplify dual-pass rendering for antialiasing. You can now maintain
the same viewport for rendering the upper and lower halves of the screen. The upper half is drawn with the
scissor box set to the upper half of the viewport and the offset set to zero. The lower half is drawn by
moving the scissor box to the bottom half of the viewport and adjusting the offset to place the scissor box
area within the EFB’s valid area (since the EFB is only half the screen height in antialiased frame-
rendering mode).

The offset is adjusted using the function GXSetScissorBoxOf fset, as shown in Code 12-8.
Code 12-8 GXSetScissorBoxOffset

GXSetScissorBoxOffset (u32 xoff, u32 yoff);

12.2.8 Progressive Mode

This mode renders 480 lines and displays all lines at 60 Hz. The frame rate will be 60 Hz or less. Vertical
filtering is turned off in this mode, resulting in sharp image output.

12.2.9 Progressive, “Soft” Mode

This mode renders 480 lines and displays all lines at 60 Hz. The frame rate will be 60 Hz or less. Vertical
filtering is turned on in this mode, resulting in image output that is “softer” than normal progressive mode.
12.2.10 Progressive Antialised Mode

This mode renders 480 lines and displays all lines at 60 Hz. The frame rate will be 60 Hz or less. Two-pass
rendering is required to render the entire frame in this mode. Vertical filtering is turned off to process
antialiasing correctly.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

GX API Default Render Mode 137

12.3 GX API Default Render Mode

GXInit queries VIGetTVFormat to determine the GX API default render mode. The default mode may
be one of the following, depending on format:

* GXNtsc480IntDf

* (GXPal528IntDf

* GXEurgb60Hz480IntDf

These modes feature:

* Full-screen frame-based rendering

* Non-antialiased for the fastest fill rate performance
» Deflickered display to reduce flickering artifacts

» Interlaced display output

If DEMOInit is called with a non-null render-mode pointer, then the referenced render mode is used. If the
pointer is null, then a default render mode is used. In addition, if a default mode is used, DEMOInit will call
GXAdjustForOverscan and trim 16 scan lines off the top and bottom of the screen. This adjustment is
for demonstration purposes only; it is not guaranteed to make the viewport visible on all television sets.

12.4 Embedded Frame Buffer Formats

The EFB has a maximum memory capacity of 2027520B = 640 x 528 x (3B(color) + 3B(Z)). The maximum
pixel width and height of the frame buffer is determined by the size of each pixel. There are two different
pixel sizes:

* 48-bit color and Z
e 96-bit super-sampled color and Z

To set these formats, you must call GXSetPixelFmt, shown in Code 12-9. Setting the pixel format also
controls the antialiasing mode. You must also call GXSetCopyFilter (see Code 12-2) when changing
mode.

Code 12-9 GXSetPixelFmt

void GXSetPixelFmt (GXPixelFmt pix_ fmt, GXZFmtlé z_fmt);

Changing pixel formats causes a flush of the rendering pipeline. Also, data existing in the frame buffer is
not converted when you change formats, so mixed-format rendering is not possible in this manner. As a
result, it may be necessary to clear the frame buffer again after changing modes.

12.4.1 48-bit Format — Non-antialiasing

The 48-bit format is intended for non-antialiasing; it has the following features:
» 24-bit color (either 8/8/8 with no alpha, or 6/6/6/6 with 6 bits of alpha)

e 24-bitZ

This format can support a maximum resolution of 640x528. The width must be between 0-640 and the EFB
stride is fixed at 640 pixels.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

138 Graphics Library (GX)

12.4.2 96-bit Super-sampling Format — Antialiasing

The 96-bit pixel format is for antialiasing and has the following features:

» 16-bit color frame buffer per sample (5/6/5, no alpha)

» 16-bit Z buffer per sample

This format can support a maximum resolution of 640x264. The width must be between 0-640 and the EFB
stride fixed at 640 pixels.

12.5 External Frame Buffer Format

Pixels in the XFB are stored as illustrated in Figure 12-8.

Figure 12-8 XFB Format in Main Memory

0 1 2 3 4 5 6 7 Y
RIGIB R[GIB|RIGIBIRIGIBIRIGIBIRIGIBIRI[GIBIRI[G[B

<P dE dB dB dB B B B e

[YITUIVIYJTUTVIYJUIVIYJUTVIYJUJVIYJUJVIYJUJVIYJUJV] eee
Downsampling
of Uand V

[YOTUO T YL VO] Y2JU2TY3I[V2YAJUALTYS VAT Y6 U] Y7 [V6 oo

U(i) = 1/4 * U(i-1) + 1/2 * U(i) + 1/4 * U(i+1)
V(i) = 1/4 * V(i-1) + 1/2 * V(i) + 1/4 * V(i+1)
In the down-sampling process indicated above, clamping is included for the left and right edges.

The following computations illustrate the conversion of RGB to YUV:

Equation 12-1 RGB to YUV conversion

T=0257*R +0504* 3 +0098*B+ 16
U=-0.148%F -0 291*G +0.435%B +128
V=0439*EF -0368*G3-0071*B+128

The range for Y is only 16 <=Y <= 235. This is in order to meet the requirements of the video encoder.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Graphics FIFO 139

13 Graphics FIFO

13.1 Description
Figure 13-1 GXFifoObj

Main Memory 0x0000
/IFO base
GXFifoObj £
read pointer -~
&
Gfx 5 g z
~ =
Cmds I ¢ |5
o]
1)
- 5 5
write pointer ~
v
v
Oxffff...

The GX API transmits commands from the CPU to the Graphics Processor (GP) using a GXF1ifoObj
structure. The GXFifoObj structure describes a region of main memory, allocated by the application, set
aside for storing graphics commands. The FIFO can be attached to either the CPU or GP or both. When
the FIFO is attached to the CPU, GX commands will be written to the FIFO. There is always one—and only
one—FIFO attached to the CPU. When the FIFO is attached to the GP, the GP will read and process
graphics commands. Only one FIFO can be attached to the GP at a time.

The purpose of the FIFO is to allow the CPU and GP to work in parallel at close to their peak rates. There
are two basic methods of using the FIFO to achieve parallelism: immediate mode and multi-buffer mode.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

140

Graphics Library (GX)

When a single FIFO is attached to both the CPU and the GP, the system is said to be in immediate mode.
The FIFO read and write pointers are managed by hardware as a true FIFO. As the CPU writes graphics
commands to the FIFO, the GP will process them in order. The hardware contains special flow control logic
to prevent writes from over running reads and to wrap the read and write pointers from the last address of
the buffer back to the first address. GXInit sets up the system to use immediate mode by default.
Immediate mode is generally easier to use, because once it is set up, no further management by the

application is required.

Figure 13-2 Immediate Mode

GP

Command Main Memory

Processor

i

read pointer ——p

write pointer ———p

0x0000
0x0001

GXFifoObj

RVL-06-0037-001-E
Released: March 27, 2009

Write-Gather
Buffer

CPU

© 2006-2009 Nintendo
CONFIDENTIAL

Creating a FIFO 141

It is also possible to connect one FIFO to the CPU while the GP is reading from a different FIFO. This is
called multi-buffer mode. In this case, the FIFOs are managed more like buffers than FIFOs, since there
are no simultaneous reads and writes to a FIFO. You may choose multi-buffer mode if you require dynamic
memory management of FIFOs; however, there are complications that make this choice less desirable.
These will be described below.

Figure 13-3 Multi-Buffer Mode

GP
i 0x0000
Command Main Memory 00001
Processor o
@~ []
[]
read pointer ——p
write pointer ———)
GXFifoObj A
read pointer ——p ‘
write pointer ——p T
GXFifoObj B

Write-Gather

L/\ Buffer

CPU

The CPU must always write graphics commands to the FIFO in 32-byte units. To do this, the CPU has a
special write-gather function that automatically packs graphics commands into 32-byte words. The GP
always reads graphics commands from the FIFO in 32-byte units.

13.2 Creating a FIFO

The GX API declares a static GXFifoObj structure internally. This structure is initialized when GXInit is
called.

Code 13-1 GXFifoObj

GXFifoObj* GXInit (void* base, u32 size);

The FIFO base pointer must be aligned to 32 bytes. Use the memory allocation functions provided by the
OS and MEM libraries to allocate a FIFO memory region that is guaranteed to be 32-byte aligned.

Note: The FIFO region must be allocated from internal system memory (MEML1 region). It cannot be
allocated from external memory (MEM2 region).

The size parameter passed to GXInit is the size of the FIFO in bytes, which must be a multiple of 32. The
minimum FIFO size is 64KB. GXInit sets up the FIFO for immediate-mode graphics; both the CPU and
GP are connected to the FIFO, the read and write pointers are initialized to the base pointer, and the high-
and low-water marks (see "13.4 FIFO Status" on page 143) are enabled.

GXInit returns a pointer to the initialized GXFifoOb to the application.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

142 Graphics Library (GX)

If the application wants to operate in multi-buffered mode, then it must allocate additional FIFOs. The
application must allocate the memory for each additional FIFO and initialize a GXFifoObj as well. The
functions in Code 13-2 initialize the GXFifo0bj.

Code 13-2 FIFO Initialization Functions

void GXInitFifoBase (
GXFifoObj* fifo,
void* base,
u32 size) ;
void GXInitFifoPtrs(
GXFifoObj* fifo,
voidx* read_ptr,
void* write ptr);
void GXInitFifoLimits(
GXFifoObj* fifo,
u32 hi water mark,
u32 lo_water mark);

Normally, the application only needs to initialize the FIFO read and write pointers to the base address of
the FIFO. Once initialized, the system hardware will control the read and write pointers automatically.

The application only needs to call GXInitFifoLimits when the FIFO will be used in immediate mode.
This function sets the high and low water marks for the FIFO, which are not available in multi-buffer mode
(see "13.5 FIFO Flow Control" on page 144).

These APIs are intended for use on FIFOs that are not attached to the CPU or GP. This is to prevent any
temporary inconsistencies in the pointers and water mark values. These APIs will cause assertion failures
if they are used on attached FIFOs.

The following inquiry functions may be used to retrieve the data set above. To get the current FIFO
pointers, refer to "13.4 FIFO Status" on page 143.

Code 13-3 FIFO Basic Inquiry Functions

void* GXGetFifoBase(const GXFifoObj* fifo);
u32 GXGetFifoSize (const GXFifoObj* fifo);
void GXGetFifoLimits(const GXFifoObj* fifo, u32* hi, u32* lo);

13.3 Attaching and Saving FIFOs

Once a FIFO has been initialized, it can be attached to the CPU or the GP or both. Only one FIFO may be
attached to either the CPU or GP at the same time. Once a FIFO is attached to the CPU, the CPU may
issue GX commands to the FIFO. When a FIFO is attached to the GP, it will be enabled to read graphics
commands from the FIFO. The following functions attach FIFOs:

Code 13-4 FIFO Attachment Functions

void GXSetCPUFifo(const GXFifoObj* fifo) ;
void GXSetGPFifo(const GXFifoObj* fifo);

You may inquire which FIFO objects are currently attached with these functions:

Code 13-5 FIFO Attachment Inquiry Functions

GXBool GXGetCPUFifo(GXFifoObj* fifo);
GXBool GXGetGPFifo(GXFifoObj* fifo);

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

FIFO Status 143

In multi-buffer mode, when the CPU is finished writing GX commands, the FIFO should be “saved” before
switching to a new FIFO. The following function saves the CPU FIFO:

Code 13-6 GXGetCPUFifo

GXBool GXGetCPUFifo(GXFifoObj* fifo);

This function gets the current state of the CPU FIFO as a structure object specified by fifo. If it is
successfully obtained, GX_TRUE will be returned; otherwise, if the CPU FIFO has not been configured,
GX_FALSE will be returned.

Note: This function gets the current state of the CPU FIFO directly, unlike the function of the same name
in the Nintendo GameCube SDK, which only returned a pointer to the GXFifoObj structure
previously set by GXSetCPUFIfo.

Since SDK 3.1 patch 3, this function has been changed to not flush the write-gather buffer internally. To get
the same behavior as before, call GXFlush once before GXGet CPUFifo following the last command
insertion into the FIFO.

There is no save function for the GP. Once the GP is attached, graphics commands will continue to be read
until either:

* The FIFO is empty
» A FIFO breakpoint is encountered (see "13.6.3 FIFO Breakpoint" on page 146)

* The GP is preempted using GXAbortFrame (See "13.6.4 Abort Frame" on page 147)

13.4 FIFO Status
You can use the following functions to read the status of a FIFO and the GP:
Code 13-7 FIFO Status Functions

void GXGetGPStatus (
GXBool* overhi,
GXBool* underlow,
GXBool* readIdle,
GXBool* cmdIdle,
GXBool* brkpt);

void GXGetFifoPtrs(
GXFifoObj* fifo,
void** readPtr,
void** writePtr) ;

Use GXGetGPStatus to get the status of the GP (regardless of the FIFO that is attached to it). The
minimum requirement before attaching a new GP FIFO is to wait for the readldle status to be GX_TRUE.
Normally, additional requirements would include making sure that all graphics commands have been
rendered into the EFB, and that the EFB has been copied to main memory. The cmdldle status provides
the additional information that the command processor is idle.

The parameters underlow and overhi indicate where the write pointer is, relative to the high and low water
marks. They do not indicate any error in processing.

GXGetFifoPtrs may be used to request the read and write pointers of the given FIFO.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

144 Graphics Library (GX)

13.5 FIFO Flow Control

When a FIFO is attached to both the CPU and GP (immediate mode), care must be taken so that the CPU
stops writing commands when the FIFO is too full. The high water mark defines how full the FIFO can get
before graphics commands will no longer be written to it. Since there may be up to 16KB of buffered
graphics commands in the CPU, we recommend that you set the high water mark to the FIFO size less
16KB. (This 16KB figure comes into play if the locked-cache mechanism is used to write to a FIFO.)

When the high water mark is encountered, the program will be suspended, but other interrupt-driven tasks
such as audio will continue. However, in a multi-threaded program, the library will have to choose a
particular thread to suspend. By default, the thread that called GXInit is suspended (which, in a single-
threaded application, would be the main loop). However, you may designate a different thread to be
suspended with the APIs in Code 13-8.

Code 13-8 APIs to Get and Set the Current GX Thread

OSThread* GXGetCurrentGXThread (void) ;
OSThread* GXSetCurrentGXThread (void);

GXSetCurrentGXThread will designate the calling thread as the current GX thread and return a pointer
to the previous GX thread. GXGetCurrentGXThread will return a pointer to the current GX thread. It is a
programming error to call GXSetCurrentGXThread while the previous GX thread is suspended waiting
for a low water mark. This condition indicates that, potentially, your program has two threads generating
GX data. An assertion failure will occur in this situation.

The low water mark defines how empty the FIFO must become after reaching a high water mark before the
program (or GX thread) is allowed to continue. We recommend that the low water mark be set to (FIFO
size / 2). The low water mark prevents frequent context switching in the program, since it does not need to
poll some register or constantly receive overflow interrupts when the amount of new command data stays
close to the high water mark.

When in multi-buffered mode, the high and low water marks are disabled. When a FIFO is attached to the
CPU, and the CPU writes more commands than the FIFO will hold, the write pointer will be wrapped from
the last address back to the base address. Previous graphics commands in the FIFO will be overwritten. It
is possible to detect only when the write pointer wraps over the top of the FIFO (which indicates an
overflow only if the FIFO’s write pointer was initialized to the base of the FIFO before commands were
sent).

In order to prevent FIFO (buffer) overflow in multi-buffered mode, the application must use a software-
based checking scheme. The program should keep its own counter of the buffer size, and before any
group of commands is added to the buffer, the program should check and see if there is room. If room is
available, the size of the group should be added to the buffer size. If room is not available, the buffer
should be flushed and a new one allocated.

Instead of using multi-buffered mode, it may be preferable to use a single large FIFO along with
breakpoints to simulate multi-buffering. Breakpoints are discussed in section 13.6.3.

13.6 Draw Synchronization Functions

The rendering pipeline consists of several asynchronous components. Among them are the CPU
generating graphics commands, the GP consuming the commands and producing frame buffers, and the
VI displaying the frame buffers. We provide several mechanisms to synchronize these components,
allowing for various programming models (with different levels of complexity).

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Draw Synchronization Functions 145

The CPU must be coordinated with the GP since not all of the graphics data goes through the FIFO. All the
indexed data and texture data that the CPU provides must remain available until the GP has read it, after
which it can be altered for the next frame or deleted as necessary. The GP must be coordinated with the VI
so that the EFB is copied only to an inactive external frame buffer XFB, and so that VI will switch to
scanning out the new XFB at the right time, freeing up the previously scanned-out XFB.

First, we describe the mechanisms that are available for synchronization. Then we show how to use the
different mechanisms for various synchronization schemes with varying levels of complexity and efficiency.

13.6.1 GXDrawDone

We have mentioned GXDrawDone briefly already. GXDrawDone is actually a wrapper around two
synchronization functions: GXSetDrawDone and GXWaitDrawDone. The former sends a draw-done
token into the FIFO and flushes it, while the latter waits for the pipeline to flush and the token to appear at
the bottom of the pipe. Instead of waiting for the token, you can also make use of a callback that occurs as
a result of a draw-done interrupt. This callback runs with interrupts disabled, and thus must complete
quickly. The function to set the callback routine also returns the old callback function pointer. The draw-
done functions are summarized in Code 13-9.

Code 13-9 GXDrawbDone Synchronization Commands

void GXDrawDone () ;

void GXSetDrawDone () ;

void GXWaitDrawDone () ;

typedef void (*GXDrawDoneCallback) (void) ;

GXDrawDoneCallback GXSetDrawDoneCallback (GXDrawDoneCallback cb) ;

Note: The GXDrawDone function may hang under certain conditions. If execution has hanged, you can
try various ways to deal with the situation: attempt to reduce the number of write operations used,
switch the order in which matrices are loaded, and so on. Another possibility is that the XF stall
bug has occured. This is an XF bug that sometimes causes the GP to hang when rendered
primitives are clipped immediately after a raster state command is sent. With the GX library, you
can work around the XF stall bug by using the GXSetMisc (GX MT XF_ FLUSH or
GX_XF_FLUSH SAFE) settings. However, these settings adversely affect speed and memory
usage, so we recommend that you try them only when the XF stall bug has occurred.

13.6.2 GXDrawSync

In order to detect that the pipeline has completely rendered geometry, you can use the functions
GXSetDrawSync and GXReadDrawSync. Use GXSetDrawSync to send a token (a 16-bit number of your
choosing) down the pipeline after rendering the geometry. This token will be stored in a special token
register when it reaches the bottom of the pipeline. Use GXReadDrawSync to poll the token register. When
the token register value returned matches the token you sent, the geometry has been rendered completely.

It is also possible to receive an interrupt when the draw token reaches the bottom of the pipeline. The
application can register a callback, using GXSetDrawSyncCallback, that will be called by the interrupt
handler. The callback’s argument is the value of the most-recently-encountered token. Since it is possible
to miss tokens (because graphics processing does not stop while the callback is running), your code
should be capable of deducing if any tokens have been missed (for example, by using monotonically
increasing values).

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

146 Graphics Library (GX)

The draw-sync mechanism is similar to the draw-done mechanism, with two major differences. First, draw-
sync allows you to insert a numbered (16-bit) token into the pipe and read the token value when it reaches
the pipe bottom. Second, draw-sync does not force the pipe to be flushed, and thus does not create a
“bubble” of idle cycles within the pipe. The draw-sync functions are summarized below:

Code 13-10 GXDrawSync Synchronization Commands

void GXSetDrawSync (ulé token) ;

ulé GXReadDrawSync () ;

typedef void (*GXDrawSyncCallback) (ulé token) ;
GXDrawSyncCallback GXSetDrawSyncCallback (GXDrawSyncCallback c¢b) ;

13.6.3 FIFO Breakpoint

Sometimes it is useful to write two or more frames of graphics to the same FIFO. The breakpoint feature
will cause GP FIFO reads to be disabled when the FIFO read pointer matches the breakpoint value. The
breakpoint can be set using:

Code 13-11 GXEnableBreakPt

void GXEnableBreakPt (void* break pt);

You can re-enable GP FIFO reads by using:
Code 13-12 GXDisableBreakPt

void GXDisableBreakPt (void) ;

For example, after writing frame A of graphics, read the current CPU FIFO write pointer using
GXGetFifoPtrs. Make this the current breakpoint using GXEnableBreakPt. Continue writing frame B
of graphics into the FIFO. GP FIFO reads will be disabled when the read pointer reaches the break point.
The readldle status can be polled for this event. The application can enable processing of frame B
graphics by calling GXDisableBreakPt.

There is also a CPU interrupt that is associated with the break point. You can define a callback to be
executed when this interrupt occurs. This callback will run with interrupts disabled, and thus it is necessary
for the callback to run as quickly as possible. The callback can be set using GXSetBreakPtCallback,
which also returns the previous callback:

Code 13-13 GXSetBreakPtCallback

typedef void (*GXBreakPtCallback) (void) ;

GXBreakPtCallback GXSetBreakPtCallback(GXBreakPtCallback cb);

For an illustration of using the same FIFO to manage two frames of graphics with breakpoints, see mgt -
fifo-brkpt in the gxdemo/Management branch of the source tree.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Draw Synchronization Methods 147

13.6.4 Abort Frame

GX allows you to halt the GP and flush all commands currently in the FIFO up to the next break point or the
end of the FIFO (if no break point is set). The command in Code 13-14 achieves this.

Code 13-14 GXAbortFrame

void GXAbortFrame(void) ;

This command resets all state in the GP. Textures loaded in texture memory are retained, but if a load was
in progress, you must make sure it was not aborted (you should use draw syncs to verify this). When
starting the next frame, you should send down new, complete state information (you should not assume
that any state has been retained from the aborted frame).

13.6.5 VI Synchronization

The preceding functions synchronize the CPU with the GP. In order to synchronize the CPU with the video
output, you may use the functions in Code 13-15.

Code 13-15 VI Synchronization Commands

void VIWaitForRetrace() ;

typedef void (*VIRetraceCallback) (u32 retraceCount) ;
VIRetraceCallback VISetPreRetraceCallback (VIRetraceCallback cb);
VIRetraceCallback VISetPostRetraceCallback (VIRetraceCallback cb) ;

The VIwaitForRetrace function suspends the current thread until a vertical retrace occurs. When the
retrace does occur, an interrupt is sent to the CPU. The handler for this interrupt will first call the “pre”
retrace callback. It will next update the VI hardware registers, and then it calls the “post” retrace callback.
Finally, it wakes any threads that are waiting for retrace. The callback routines run with interrupts off, and
therefore must complete quickly. The functions to set the callback routines also return the old callback
function pointer. For more details on these functions, refer to the Video Interface Library (V1).

13.7 Draw Synchronization Methods

13.7.1 Double-Buffering

The simplest programming model uses double-buffering and GXxDrawDone to coordinate the CPU with the
GP. Having the EFB and one XFB would seem to be enough to provide for double-buffering; however, due
to synchronization issues, it is simpler to have two XFBs. This allows the copy operation to be performed
after graphics rendering is finished without having to stall until vertical retrace occurs. The end-of-frame
code sequence in Code 13-16 illustrates simple double-XFB synchronization.

Code 13-16 Double-Buffer Copy Synchronization

// ... draw the image in the EFB, then:
GXCopyDisp (xfb, GX TRUE) ;

GXDrawDone () ;
VISetNextFrameBuffer (xfb) ;

VIFlush() ;

VIWaitForRetrace () ;

xfb = (xfb == xfbl) ? xfb2 : xfbl;

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

148 Graphics Library (GX)

With only one XFB, the copy operation must be performed during vertical retrace. The copy operation can
be completed in about 0.5 milliseconds, thus finishing before the next video field begins to display. Since
the copy command must be issued through the FIFO, you must hold up the FIFO until vertical retrace
occurs. In addition, the copy command must be guaranteed to issue immediately upon vertical retrace.
The latter requirement means that the copy command must be issued during a vertical retrace interrupt
callback. This method is illustrated in Code 13-17.

Code 13-17 Single-Buffer Copy Synchronization

// main loop: // vertical retrace interrupt “post” callback:
// ... draw the image in the EFB, then:
if (do_copy) {
GXDrawDone () ; GXCopyDisp (xfb, GX TRUE) ;
do_copy = GX_TRUE; GXFlush() ;
VIWaitForRetrace () ; do_copy = GX_ FALSE;

}

13.7.2 Triple-Buffering

Both of the above methods idle the CPU and the GP while waiting for vertical retrace. You can avoid this
idling by using triple-buffering. This allows the graphics pipeline to run without having to wait for video
refresh. You can perform triple-buffering in various ways. We will describe a method that uses only two
XFBs.

When you decide not to wait for draw-done and vertical retrace before continuing drawing, various
complications arise. One is that indexed data and dynamic texture data must remain available until you
know the GP is done with it. Another is that you may finish drawing two frames before VI has scanned out
only one. In this case, the second frame will have nowhere to go since both XFBs will be occupied. The
second copy must wait until the vertical retrace period. Fortunately, these problems can be solved by use
of the synchronization commands provided.

The breakpoint must be used in order to hold back the frame buffer copy commands. The draw sync token
must be used to detect when the copy commands have completed, and the vertical retrace callbacks must
be used to coordinate the copies and buffer swaps. To see all of this in action, refer to the mgt-triple-

buf . c demo, located in the gxdemo/Management branch of the source tree.

13.8 Graphics FIFO vs. Display List

Writing graphics commands to a command FIFO differs from writing graphics commands to a display list in
several respects. When writing commands to a FIFO you may use GXCallDisplayList to call a display
list. Display lists (bracketed by GXBeginDisplayList/GXEndDisplayList) may not themselves call a
display list.

Using GXSetGPFifo, the application attaches a FIFO to the GP to enable processing of the FIFO’s
graphics commands. A display list is called using GXCallDisplayList. A FIFO may be attached to the
CPU and the GP simultaneously. The CPU creates a display list, a call command is issued into a command
FIFO, and the GP reads and processes the display list.

13.9 Notes About the Write-Gather Pipe

The CPU write-gather pipe is a mechanism for doing fast uncached writes to main memory. It consists of a
128-byte circular queue organized as four 32-byte cache lines. It collects together the writes to a single
memory address and stores them in the queue. When a cache line is filled, it is scheduled to be written to
memory while another cache line continues to absorb the writes. When combined with the graphics
processor’s FIFO mechanism, this allows fast writing to arbitrary areas of memory, provided that all the
writes are 32-byte aligned.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

GX Verify 149

Flushing the write-gather/FIFO mechanism is typically done in GX by writing 32 NOPs. In general, these
NOPs are not cleared out whenever the write-gather is redirected (when using GXBeginDisplayList or
GXEndDisplayList). The GXResetWriteGatherPipe function is a special-purpose function intended
to be called after the GXxBeginDisplayList function. This function ensures that no residual zeroes will
be written to the start or end of display lists generated after this point. This guarantees a consistent display
list length.

Since the write-gather pipe is a handy way to blast data into memory, a couple of extra APIs have been
created to make this easy:

Code 13-18 APIs to Control the Write-Gather Pipe

volatile void* GXRedirectWriteGatherPipe (void * ptr);
void GXRestoreWriteGatherPipe () ;

The first API allows the write-gather pipe to be redirected to an arbitrary, 32-byte aligned address. It returns
a pointer to the write-gather register to which the application should actually write the data. The second
API restores the write-gather pipe to where it had been before it was redirected.

These APIs handle flushing differently than the rest of GX. They will clear out any extra zeros that were
used to flush the write-gather pipe. Also, the restore function flushes by writing 31 zeros, thus avoiding the
possibility of writing out one too many cache lines.

You cannot issue most GX commands while the write-gather pipe has been redirected.

13.10 GX Verify

The debug version of the GX library has a verify feature that can be used to check for certain state-setting
errors. This checking happens when GXBegin is called. The APIs in Code 13-19 control this feature.

Code 13-19 APIs to Control Verification

typedef enum {

GX_WARN_NONE, // no warnings reported
GX_WARN_SEVERE, // reports only severest warnings
GX_WARN_MEDIUM, // reports severe and medium warnings
GX_WARN_ ALL // reports any and all warning info

} GXWarningLevel;

void GXSetVerifylLevel (GXVerifyLevel level);

typedef void (*GXVerifyCallback) (GXVerifyLevel level,
u32 id,

char* msg) ;

GXVerifyCallback GXSetVerifyCallback(GXVerifyCallback cb);

As you can see, you can control the level of checking that occurs. The higher the verification level is set,
the longer it takes. Even setting the highest level of verification will not uncover all possible errors; there
are still many kinds of errors for which the verification function does not check.

When the verification function finds an error, it calls the GX verification callback. There is a default callback
function that simply prints the level, id, and msg out to the debug console. You may change the error-
reporting behavior by substituting your own callback function using GxSetVverifyCallback.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

150 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Performance Metrics 151

14 Performance Metrics

Application developers can access internal performance counters in the Graphics Processor. Statistics
gathered using the performance counters might be useful in tuning the application for the highest perfor-
mance, or for making load-balancing decisions at runtime.

14.1 Types of Metrics

The GP metrics are grouped into different categories:

» GP front-end and texture-related metrics

» Vertex cache metrics

» Pixel metrics

* Memory metrics

A set of GX functions exists to handle each category of metrics. The functions themselves fall into three
categories:

» Set functions choose exactly which metric to count.

* Read functions read the value of the counter.

» Clear functions clear the counter back to zero.

The pixel and memory metrics do not have any “set” functions since all of the available counters may be

read at once.

14.2 GP Front-End and Texture-Related Metrics

The following functions are used to control the performance counters for various GP-related events:
Code 14-1 GP Metric Functions

void GXSetGPMetric(GXPerfO perf0, GXPerfl perfl);
void GXReadGPMetric(u32* cnt0, u32* cntl);
void GXClearGPMetric(void) ;

// macros to deal with counter 0 only:
void GXSetGPOMetric(GXPerfO perfo);
u32 GXReadGPOMetric(void) ;

void GXClearGPOMetric(void) ;

// macros to deal with counter 1 only:
void GXSetGP1lMetric(GXPerfl perfl);
u32 GXReadGPlMetric(void) ;

void GXClearGPlMetric(void) ;

There are two counters which are set, read, and cleared at the same time. The functions that deal with
counters 0 or 1 are generally macros that set the desired counter and turn off the other one. You cannot
clear one counter without clearing the other at the same time.

The subsequent sections of this chapter describe the various counters.

14.2.1 GP Counter 0 Details
GX_PERF0_VERTICES

This metric returns the number of vertices processed by the GP as measured by the transform engine
(XF unit).

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

152 Graphics Library (GX)

GX_PERFO_CLIP_VTX
Returns the number of vertices that were clipped by the GP.
GX_PERFO_CLIP_CLKS
Returns the number of GP clocks spent clipping.

The transform engine (XF) in the GP is a pipeline that has an input stage, parallel transform and light-
ing stages, and a “bottom of pipe” processor which merges the results of lighting and texture coordi-
nate generation. The following performance counters measure how many GP cycles are spent in each
stage of the XF.

GX_PERFO_XF_WAIT_IN

Measures how many cycles the XF has been waiting on input. If the XF is waiting a large percentage
of the total time, it may indicate that the CPU is not supplying data fast enough to keep the GP busy.

GX_PERFO_XF_WAIT_OUT

Measures how many cycles the XF waits to send its output to the rest of the GP pipeline. If the XF can-
not output, it may indicate that the GP is currently fill-rate limited.

GX_PERFO_XF_XFRM_CLKS

Indicates the number of cycles that the transform engine is busy.
GX_PERFO_XF_LIT_CLKS

Indicates the number of cycles that the lighting engine is busy.
GX_PERFO_XF_BOT_CLKS

Indicates the number of cycles that the bottom of the pipe is busy.

The XF contains various state registers that control its processing. The registers are normally set using
various functions of the GX API. The following counters measure state-register accesses.

GX_PERFO_XF_REGLD_CLKS
Measures how many cycles are spent loading (writing to) XF registers.
GX_PERFO_XF_REGRD_CLKS
Measures how many cycles are spent reading XF state registers.
GX_PERFO_TRIANGLES*
The triangle metrics allow the counting of triangles under specific conditions or with specific attributes.
* GX_PERFO_TRIANGLES counts all triangles.
* GX_PERFO_TRIANGLES_CULLED counts triangles that failed the front/backface culling test.
» GX_PERFO_TRIANGLES_PASSED counts triangles that passed the front/backface culling test.
* GX_PERFO_TRIANGLES_SCISSORED counts the triangles that are scissored.

» GX_PERFO_TRIANGLES_ *TEX count triangles based on the number of texture coordinates sup-
plied.

* GX_PERFO_TRIANGLES_ *CLR count triangles based on the number of colors supplied.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

GP Front-End and Texture-Related Metrics 153

GX_PERFO_QUAD*

The quad metrics allow you to count the number of quads (2x2 pixels) the GP processes. The term
coverage is used to indicate how many pixels in the quad are actually part of the triangle being raster-
ized. For example, a coverage of four means that all pixels in the quad intersect the triangle. A cover-
age of one indicates that only one pixel in the quad intersects the triangle.

e GX_PERFO0_QUAD_O0CVG indicates the number of quads having 0 coverage.
« GX_PERFO_NONOCVG counts the number of quads that have greater than zero coverage values.
e GX_PERFO0_QUAD_[1-4]CVG counts the quads having the given coverage.

e GX_PERFO_AVG_QUAD_CNT indicates the average quad count (number of pixels covered
divided by 4).

GX_PERFO_CLOCKS

GX_PERFO_CLOCKS counts the number of GP clocks that have elapsed since the previous call to
GXReadGPOMetric.

GX_PERFO_NONE

This metric disables counting on GP counter 0 and clears the current count.

14.2.2 Counter 1 Details
GX_PERF1_TEXELS

This metric returns the number of texels processed by the GP.
GX_PERF1_TX_IDLE

Returns the number of clocks that the texture unit (TX) is idle.
GX_PERF1_TX_REGS

Returns the number of GP clocks spent writing to state registers in the TX unit.
GX_PERF1_TX_MEMSTALL

Returns the number of GP clocks the TX unit is stalled waiting for main memory.

GX_PERF1_TC_CHECK1_2
GX_PERF1_TC_CHECK3 4
GX_PERF1_TC_CHECK5_6
GX_PERF1_TC_CHECK7_8
GX_PERF1_TC_MISS

These metrics can be used to compute the texture cache (TC) miss rate. The TC_CHECK* parame-
ters count how many texture cache lines are accessed for each pixel. In the worst case, for a mipmap,
up to eight cache lines may be accessed to produce one textured pixel. GX_PERF1_TC_MISS counts
how many of those accesses missed the texture cache. To compute the miss rate, calculate:

Equation 14-1 Miss-Rate Calculation

GX_PERF1_TC MISS

GX_TC_PERF1 TC CHECK1 2+GX PERF1 TC CHECK3 4+GX PERF1 TC CHECK 5 6+GX_ PERF1 TC CHECK 7_8
GX_PERF1_VC_ELEMQ_FULL

Counts vertex cache stalls due to its element queue being full.
GX_PERF1_VC_MISSQ

Counts vertex cache stalls due to its miss queue being full.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

154 Graphics Library (GX)

GX_PERF1_VC_MEMREQ_FULL
Counts vertex cache stalls due to too many outstanding main memory requests.
GX_PERF1_VC_STATUSY

Counts vertex cache stalls due to too many elements in the element queue depending upon a single
cache line.

GX_PERF1_VC_MISSREP_FULL
Counts vertex cache stalls due to a cache miss with all sets still in use (no replacement available).
GX_PERF1_VC_STREAMBUF_LOW

Counts vertex cache stalls due to the near-empty FIFO (streaming buffer) having priority over the ver-
tex cache.

GX_PERF1_VC_ALL_STALLS

Counts all of the above-mentioned vertex cache stall conditions.
GX_PERF1_VERTICES

This metric returns the number of vertices processed by the GP as measured by the vertex cache.
GX_PERF1_FIFO_REQ

This metric counts the number of lines (32B) read from the GP FIFO.
GX_PERF1_CALL_REQ

This metric counts the number of lines (32B) read from called display lists (GXCallDisplayList).
GX_PERF1_VC_MISS_REQ

This metric counts the number of vertex cache miss requests. Each miss requests a 32B transfer from
main memory.

GX_PERF1_CP_ALL_REQ

This metric counts all requests (32B/request) from the GP command processor (CP). It should be
equal to the sum of counts returned by GX_PERF1_FIFO_REQ, GX_PERF1_CALL_REQ, and
GX_PERF1_VC_MISS_REQ.

GX_PERF1_CLOCKS

GX_PERF1_CLOCKS counts the number of GP clocks that have elapsed since the previous call to
GXReadGP1Metric.

GX_PERF1_NONE

This metric disables counting on GP counter 1 and clears the current count.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Using Performance Counters 155

14.3 Using Performance Counters

The performance counter functions directly access GP registers, and thus they only work in immediate
mode. However, they measure information that is sent through the GP FIFO, and so some synchronization
is necessary in order to make sure the desired data is measured properly. The code sequence in Code 14-
2 illustrates one possible approach.

Code 14-2 Counting a Metric

u32 metricl, metric2;

// Set desired metrics
GXSetGPMetric (GX_PERFO_VERTICES, GX_PERFl_TEXELS) ;

// Clear counters
GXClearGPMetric () ;

// Send down non-end draw-sync token
GXSetDrawSync (0x0) ;

// Draw Object (s)

// Send down ending draw-sync token, wait for it
GXSetDrawSync (0xbeef) ;
while (Oxbeef != GXReadDrawSync())

i

// Read the counters
GXReadGPMetric (&metricl, &metric2) ;
OSReport ("Number of verts: %$d texels: %d\n", metricl, metric2);

14.4 Vertex Cache Metrics
Use the functions in Code 14-3 to control the performance counters for vertex cache-related events.

Code 14-3 Vertex Cache Metric Functions

void GXSetVCacheMetric(GXVCachePerf attr);
void GXReadVCacheMetric(u32* check, u32* miss, u32* stall);
void GXClearVCacheMetric(void) ;

The “set” function allows you to choose which vertex attribute will be measured. You can choose a value of
GX_VC_ALL in order to measure all of the attributes at once. For any given attribute selection, three met-
rics are available:

» check indicates the total number of accesses to the vertex cache.
* miss indicates the total number of misses when accessing the vertex cache.
» stall indicates the number of GP clocks the GP is stalled waiting on the vertex cache.

The stall count measures how often the command processor of the GP must wait on cache requests being
filled.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

156 Graphics Library (GX)

14.5 Pixel Metrics

The functions in Code 14-4 are used to control the performance counters for pixel-related events.

Code 14-4 Pixel Metric Functions

void GXReadPixMetric(u32* top pixels_in,
u32* top pixels out,
u32* bot_pixels_in,
u32* bot_pixels_out,
u32* clr pixels_ in,
u32* copy_clks);
void GXClearPixMetric(void) ;

The GP can be configured to Z-buffer before or after texture lookup (see GXSet ZCompLoc). The parame-
ter top_pixels_in returns the number of pixels entering the Z compare before texture lookup. The parame-
ter top_pixels_out indicates how many pixels passed this Z compare test.

The parameter bot_pixels_in counts the number of pixels entering the Z compare after texture lookup. The
parameter bot_pixels_out indicates how many pixels passed this Z compare test.

The parameter clr_pixels_in counts the number of pixels processed by the blend unit in the last stage of
the pipeline. This is normally the sum of top_pixels_out and bot_pixels_out.

The parameter copy_clks counts the number of GP clocks spent on copy operations, either from the EFB
to a texture (see GXCopyTex) or from the EFB to a display buffer (see GXCopyDisp).

14.6 Memory Metrics

The functions in Code 14-5 are used to control the performance counters for memory-related events.

Code 14-5 Memory Metric Functions

void GXReadMemMetric(u32x* cp_redq,
u32* tc_req,
u3z2* cpu_rd_req,
u3zx* Cpu_wr_req,
u32* dsp_req,
u32* io_req,
u32* vi_req,
u32* pe_req,
u32* rf_req,
u32* fi req);

void GXClearMemMetric(void);

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Memory Metrics

The various metrics are explained in the following table:

Table 14-1 Memory Metrics

157

Metric Purpose

cp_req The command processor (CP) is responsible for reading the Graphics FIFO,
reading display lists (¢XCallDisplayList), and servicing vertex cache misses.
This metric returns the number of memory read requests issued by the CP.

tc reqg Returns the number of memory read requests issued by the Texture Cache (TC).

cpu_rd reg

Returns the number of memory read requests made by the CPU.

cpu_wr_req

Returns the number of memory write requests made by the CPU.

dsp reqg Returns the number of memory requests made by the Audio DSP.

io reqg Returns the number of memory requests made by 10 devices.

vi reqg Returns the number of memory read requests made by the Video Interface (VI).

pe_req Returns the number of memory write requests made by the Pixel Engine (PE).
These include texture copies (GXCopyTex) and display copies (GXCopyDisp).

rf reqg Returns the number of memory refresh requests.

fi reqg Returns the number of Forced Idle (FI) requests, which are dummy requests

required to switch the bus direction (i.e., read to write, or write to read).

© 2006-2009 Nintendo

CONFIDENTIAL

RVL-06-0037-001-E

Released: March 27, 2009

158 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Limitations 159

15 Limitations

This chapter outlines features that disable other features, or only work in restricted cases.

15.1 Antialiasing
+ Antialiasing can use pixel format GX_PF RGB565_Z16 only.

» At peak, antialiased rendering runs at half the maximum fill rate of non-antialiased rendering, or 486
megapixels/second. (Beyond this reduction in the peak rate, the formula for computing the antialiased
rendering speed is the same as for non-antialiased rendering; see "12 Video Output" on page 129 for
more details.)

» Ztextures cannot be copied from an antialiased frame buffer.

15.2 CPU Access to the Frame Buffer

The application must synchronize CPU access to the Embedded Frame Buffer (EFB) with normal
rendering to the EFB.

15.3 Display Lists

When creating a display list at runtime by calling GX functions bracketed by GXBeginDisplayList/
GXEndDisplayList, the following functions may not be used:

* GXBeginDisplayList

* GXEndDisplayList

* GXCallDisplayList

In addition, the following types of functions cannot be placed inside of a display list:

e GXInitx*

e GXRead*

e (GXPeekARGB/GXPeek?Z

e (GXPokeARGB/GXPokeZ

o (GXGet*

These may be executed while a display list is being created; however, they will not be put into the display
list.

15.4 Vertex Performance

Vertex performance depends on the lighting and texture coordinate features selected. See the “Vertex
Performance Calculator” page in the Revolution Function Reference Manual (HTML).

15.5 Matrix Memory

Position and texture matrices share the same internal matrix memory. Normal matrices are stored in a
separate memory.

15.6 Texture

Color index textures cannot be trilinearly-filtered.

Mipmaps using texel format GX_TF_RGBAS require two cycles to filter. These cycles are internal to the
texture filter hardware and do not effect the total number of TEV stages available.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

160 Graphics Library (GX)

15.7 Blending and Logic Operations

You must choose between blending and logical operations; you cannot do both at the same time.

15.8 Sharing Main Memory Resources

While the embedded frame buffer (EFB) eases the bandwidth requirements of the main memory, there are
still several large main memory bandwidth hogs in the system, including the CPU, vertex input to the GP,
texture fetches, and copies from the EFB.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

GX API Functions 161

Appendix A. GX API Functions

The GX API list has been removed from the programming manual. Please refer to the GX pages in the
Revolution Function Reference Manual.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

162 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

GXiInit Defaults

Appendix B. GXlInit Defaults

This appendix lists the state set by GXInit.
Code B-1 GXlInit Defaults

163

// Color definitions

#define
#define
#define

//
//
!/

GX_DEFAULT BG {64, 64, 64, 255}
BLACK {o, o, o, 0}

WHITE {255, 255, 255, 255}
Render Mode

(set 'rmode' based upon VIGetTvFormat () ;

Geometry and Vertex

GXSetTexCoordGen (GX_TEXCOORDO, GX_TG_MTX2x4,
GXSetTexCoordGen (GX_TEXCOORD1, GX_TG_MTX2x4,
GXSetTexCoordGen (GX_TEXCOORD2, GX_TG_MTX2x4,

GXSetTexCoordGen (GX_TEXCOORD4, GX_TG_MTX2x4,
GXSetTexCoordGen (GX_TEXCOORDS5, GX_TG_MTX2x4,

(
(
(
GXSetTexCoordGen (GX_TEXCOORD3, GX_ TG _MTX2x4,
(
(
(

GXSetTexCoordGen (GX_TEXCOORD6, GX TG MTX2x4,
GXSetTexCoordGen (GX_TEXCOORD7, GX TG MTX2x4,
GXSetNumTexGens (1) ;

GXClearVtxDesc () ;

GXInvalidatevVtxCache () ;

GXSetLineWidth (6, GX_TO_ZERO) ;
GXSetPointSize (6, GX_TO_ZERO) ;

GX_DISABLE, GX_DISABLE)
GX_DISABLE, GX DISABLE)
GX_DISABLE, GX DISABLE)
GX_DISABLE, GX_DISABLE) ;
GX_DISABLE, GX DISABLE)
GX_DISABLE, GX DISABLE)
GX_DISABLE, GX_DISABLE)
GX_DISABLE, GX DISABLE)

GXEnableTexOffsets (GX_TEXCOORDO,
GXEnableTexOffsets (GX_ TEXCOORDI,
GXEnableTexOffsets (GX_ TEXCOORD2,
GXEnableTexOffsets (GX_TEXCOORD3,
GXEnableTexOffsets (GX_ TEXCOORD4,
GXEnableTexOffsets (GX_ TEXCOORDS5,
GXEnableTexOffsets (GX_TEXCOORDS,
GXEnableTexOffsets (GX_TEXCOORD7,
//

// Transformation and Matrix

//

// (initialize 'identity mtx' to identity;

code not shown)

GX_TG TEX0, GX IDENTITY) ;
GX_TG TEX1, GX IDENTITY) ;
GX_TG TEX2, GX IDENTITY) ;
GX_TG TEX3, GX IDENTITY) ;
GX_TG TEX4, GX IDENTITY) ;
GX_TG_TEX5, GX IDENTITY) ;
GX_TG TEX6, GX IDENTITY) ;
GX_TG TEX7, GX IDENTITY) ;

code not shown)

// Note: projection matrix is not initialized!
GXLoadPosMtxImm(identity mtx, GX_PNMTXO) ;
GXLoadNrmMtxImm(identity mtx, GX_ PNMTXO) ;
GXSetCurrentMtx (GX_ PNMTXO0) ;
GXLoadTexMtxImm(identity mtx, GX_IDENTITY, GX_MTX3x4) ;
GXLoadTexMtxImm(identity mtx, GX_PTIDENTITY, GX MTX3x4) ;
// left

// top

(float) rmode->fbWidth, // width

(float) rmode->xfbHeight, // height

// nearz

// farz

GXSetViewport (0.0F,
0.0F,

0.0F,
1.0F);

!/

// Clipping and Culling

//

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

164 Graphics Library (GX)

GXSetCoPlanar (GX_DISABLE) ;

GXSetCullMode (GX_CULL_BACK) ;

GXSetClipMode(GX_CLIP_ENABLE);

GXSetScissor (0, 0, (u32)rmode->fbWidth, (u32)rmode->efbHeight) ;
GXSetScissorBoxOffset (0, 0);

//
// Lighting - pass vertex color through
//
GXSetNumChans (0) ; // no colors by default
GXSetChanCtrl (

GX_ COLOROAO,

GX DISABLE,

GX_SRC_REG,

GX_SRC_VTX,

GX_LIGHT NULL,

GX_DF_NONE,

GX_AF NONE) ;

GXSetChanAmbColor (GX_COLOROAO, BLACK) ;
GXSetChanMatColor (GX_COLOROAO, WHITE) ;

GXSetChanCtrl (
GX COLOR1A1,
GX DISABLE,
GX_SRC_REG,
GX_SRC_VTX,
GX_LIGHT NULL,
GX_DF_NONE,
GX_AF_NONE) ;

GXSetChanAmbColor (GX_COLOR1Al, BLACK) ;
GXSetChanMatColor (GX_COLOR1Al, WHITE) ;

//

// Texture

//
GXInvalidateTexAll () ;

// Allocate 8 32k caches for RGBA texture mipmaps.
// Equal size caches to support 32b RGBA textures.

// (code not shown)

// Allocate color index caches in low bank of TMEM.
// Each cache is 32kB.
// Even and odd regions should be allocated on different address.

// (code not shown)

// Allocate TLUTs, 16 256-entry TLUTs and 4 1K-entry TLUTs.
// 256-entry TLUTs are 8kB, lk-entry TLUTs are 32kB.

// (code not shown)

!/

// Set texture region and tlut region Callbacks

//
GXSetTexRegionCallback (__ GXDefaultTexRegionCallback) ;
GXSetTlutRegionCallback (__GXDefaultTlutRegionCallback) ;

//
// Texture Environment
//
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

GXiInit Defaults 165

GXSetTevOrder (GX_TEVSTAGEO, GX TEXCOORDO, GX TEXMAPO, GX_ COLOROAO) ;
GXSetTevOrder (GX_TEVSTAGEl, GX TEXCOORD1l, GX TEXMAP1l, GX_ COLOROAO) ;
GXSetTeVOrder(GX_TEVSTAGE2, GX_TEXCOORD2, GX TEXMAP2, GX_COLOROAO);
GXSetTevOrder (GX_TEVSTAGE3, GX TEXCOORD3, GX TEXMAP3, GX_ COLOROAO) ;
GXSetTevOrder (GX_TEVSTAGE4, GX TEXCOORD4, GX TEXMAP4, GX_ COLOROAO) ;
GXSetTeVOrder(GX_TEVSTAGES, GX_TEXCOORD5, GX TEXMAPS, GX_COLOROAO);
GXSetTevOrder (GX_TEVSTAGE6, GX TEXCOORD6, GX TEXMAP6, GX_ COLOROAO) ;
GXSetTevOrder (GX_TEVSTAGE7, GX TEXCOORD7, GX TEXMAP7, GX_COLOROAO) ;
GXSetTevOrder (GX_TEVSTAGES, GX_ TEXCOORD NULL, GX_ TEXMAP NULL, GX COLOR NULL) ;
GXSetTevOrder (GX_TEVSTAGEY9, GX TEXCOORD NULL, GX_ TEXMAP NULL, GX COLOR_NULL) ;
GXSetTevOrder (GX_TEVSTAGE10,GX TEXCOORD NULL, GX_ TEXMAP NULL, GX COLOR_NULL) ;
GXSetTevOrder (GX_TEVSTAGE11l,GX_ TEXCOORD NULL, GX_ TEXMAP NULL, GX COLOR NULL) ;
GXSetTevOrder (GX_TEVSTAGE12,GX TEXCOORD NULL, GX_ TEXMAP NULL, GX COLOR_NULL) ;
GXSetTevOrder (GX_TEVSTAGE13,GX TEXCOORD NULL, GX_ TEXMAP NULL, GX COLOR_NULL) ;
GXSetTevOrder (GX_TEVSTAGE14,GX_ TEXCOORD NULL, GX_ TEXMAP NULL, GX COLOR NULL) ;
GXSetTevOrder (GX_TEVSTAGE15,GX TEXCOORD NULL, GX_ TEXMAP NULL, GX COLOR_NULL) ;
GXSetNumTevStages (1) ;

GXSetTeVOp(GX_TEVSTAGEO, GX_REPLACE);

GXSetAlphaCompare (GX_ALWAYS, 0, GX AOP_AND, GX ALWAYS, 0);
GXSetZTexture (GX_zT DISABLE, GX_TF_Z8, 0);

for (i = GX TEVSTAGEO; i < GX_MAX TEVSTAGE; i++) {
GXSetTevKColorSel ((GXTevStageID) i, GX TEV_KCSEL 1 4);
GXSetTevKAlphaSel ((GXTevStageID) i, GX_TEV_KASEL 1);
GXSetTevSwapMode ((GXTevStageID) i, GX _TEV_SWAPO, GX TEV_SWAPO);
}
GXSetTevSwapModeTable (GX_TEV_SWAPO,
GX_CH_RED, GX_CH _GREEN, GX_CH BLUE, GX_ CH ALPHA);
GXSetTevSwapModeTable (GX_TEV_SWAP1,
GX_CH RED, GX_CH RED, GX CH RED, GX_CH ALPHA);
GXSetTevSwapModeTable (GX_TEV_SWAP2,
GX_CH_GREEN, GX_ CH GREEN, GX_CH GREEN, GX CH ALPHA) ;
GXSetTevSwapModeTable (GX_TEV_SWAP3,
GX_CH BLUE, GX_CH BLUE, GX_CH BLUE, GX_ CH ALPHA);

// Indirect Textures.
for (i = GX TEVSTAGEO; i < GX MAX TEVSTAGE; i++) {
GXSetTevDirect ((GXTevStageID) 1i);

GXSetNumIndStages (0) ;

GXSetIndTexCoordScale(GX_ INDTEXSTAGEO, GX ITS 1, GX_ITS 1);
GXSetIndTexCoordScale (GX_ INDTEXSTAGEl, GX_ITS 1, GX_ITS_ 1);
GXSetIndTexCoordScale(GX_ INDTEXSTAGE2, GX_ITS 1, GX_ITS 1);
GXSetIndTexCoordScale(GX_ INDTEXSTAGE3, GX ITS 1, GX_ITS 1);

//

// Pixel Processing

//

GXSetFog (GX_FOG_NONE, 0.0F, 1.0F, 0.1F, 1.0F, BLACK);

GXSetFogRangeAdj (GX_DISABLE, 0, 0);

GXSetBlendMode (GX_BM_NONE,
GX_BL_SRCALPHA, // src factor
GX_BL_INVSRCALPHA, // dst factor
GX_LO_CLEAR) ;

GXSetColorUpdate (GX_ENABLE) ;

GXSetAlphaUpdate (GX_ENABLE) ;

GXSetZMOde(GX_TRUE, GX_LEQUAL, GX_TRUE);

GXSetzZCompLoc (GX_TRUE) ; // before texture

GXSetDither(GX_ENABLE);

GXSetDStAlpha(GX_DISABLE, 0) ;

GXSetPixelFmt (GX_PF_RGB8_Z24, GX_ZC LINEAR) ;

GXSetFieldMask (GX_ENABLE, GX_ENABLE) ;

GXSetFieldMode ((GXBool) (rmode->field rendering),
((rmode->viHeight == 2*rmode->xfbHeight) ?
GX_ENABLE : GX DISABLE)) ;

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

166

//

// Framebuffer

//

GXSetCopyClear (GX_DEFAULT BG, GX _MAX Z24);

GXSetDispCopySrc (0, 0, rmode->fbWidth, rmode-s>efbHeight) ;
GXSetDispCopyDst (rmode->fbWidth, rmode->efbHeight) ;
GXSetDispCopyYScale ((£32) (rmode->xfbHeight) / (£32) (rmode->efbHeight)) ;
GXSetCopyClamp ((GXFBClamp) (GX CLAMP TOP | GX CLAMP BOTTOM)) ;
GXSetCopyFilter (rmode->aa, rmode->sample pattern, GX_TRUE, rmode->vfilter);
GXSetDispCopyGamma(GX GM 1 0);
GXSetDispCopyFrame2Field (GX_COPY_ PROGRESSIVE) ;

GXClearBoundingBox () ;

//

// CPU direct EFB access
//

GXPokeColorUpdate (GX_TRUE) ;

GXPokeAlphaUpdate (GX_ TRUE) ;

GXPokeDither (GX_FALSE) ;

GXPokeBlendMode (GX_BM NONE, GX_ BL ZERO, GX_BL ONE, GX LO_SET) ;
GXPokeAlphaMode (GX_ALWAYS, 0);

GXPokeAlphaRead (GX_READ_FF) ;

GXPokeDstAlpha (GX_DISABLE, 0);

GXPokeZMode (GX_TRUE, GX_ ALWAYS, GX TRUE) ;

//

// Performance Counters

//

GXSetGPMetric (GX_PERFO_NONE, GX_PERF1_NONE) ;
GXClearGPMetric () ;

RVL-06-0037-001-E
Released: March 27, 2009

Graphics Library (GX)

© 2006-2009 Nintendo
CONFIDENTIAL

Display List Format 167

Appendix C. Display List Format

Display list commands are listed in <revolution/gx/GXCommandList .h>. The graphics processor
(GP) can interpret the described display list format directly. The bulk of a display list is expected to contain
information for describing primitives and their vertices. The display list format contains only limited state
commands. Most state commands, such as the vertex descriptor or vertex attribute format, should be set
by the appropriate GX API functions prior to calling the display list. We describe the format of certain state-
setting commands below.

Display lists must be 32-byte aligned in main memory and be a multiple of 32 bytes long. Display lists can
be padded with GX_NOP commands to fill out a 32-byte line.

Display lists are executed by calling the GXCallDisplayList function with a pointer to the display list
and the number of bytes in the display list.

Note: There is no “end of display list” token, since you are providing an explicit length in the call.

C.1 Display List Opcodes

A display list consists of a stream of commands (opcodes) followed by their associated data. There can be
any number of commands in any sensible sequence within a display list.

Table C-1 Display List Opcodes

Opcode

Opcode Name Bits[7:0] Next Field Followed By
GX_DRAW_QUADS 10000Vatldx[2:0] | VertexCount[15:0] | Vertex data
stream
GX_DRAW TRIANGLES 10010Vatldx[2:0] | VertexCount[15:0] | Vertex data
stream
GX_DRAW TRIANGLE STRIP | 10011Vatldx[2:0] | VertexCount[15:0] | Vertex data
stream
GX_DRAW TRIANGLE FAN 10100Vatldx[2:0] | VertexCount[15:0] | Vertex data
stream
GX_DRAW LINES 10101Vatldx[2:0] | VertexCount[15:0] | Vertex data
stream
GX_DRAW LINE STRIP 10110Vatldx[2:0] | VertexCount[15:0] | Vertex data
stream
GX_DRAW_ POINTS 10111Vatldx[2:0] | VertexCount[15:0] | Vertex data
stream
GX_LOAD BP REG 01100001 (0x61) | Register[31:0] none
GX_NOP 00000000 None none

Note: Vatldx[2:0] is the 3-bit Vertex Attribute Format Table index. This format will be used to interpret the
vertex data arrays.

VertexCount[15:0] is a 16-bit count of the number of vertices to follow this command.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

168 Graphics Library (GX)

C.2 Attribute Order Requirements

The current Vertex Descriptor (GXSetVtxDesc) is used to indicate the number and type of data or indices.
Recall that indices may be 8 bits or 16 bits. The current attribute array’s (GXSetArray) base pointers and
strides are used for referencing indexed data. These should all be set before executing the display list.

Table C-2 specifies the required order of attribute values (immediate data or indices) in the display list. The
order is identical to that specified for immediate mode primitives drawn using GXBegin/GXEnd.

Table C-2 Vertex Index Stream Order Requirements

Order Attribute

0 GX_VA_POSMATIDX
1 GX_VA_TEXOMTXIDX
2 GX_VA_TEXIMTXIDX
3 GX_VA_TEX2MTXIDX
4 GX_VA_TEX3MTXIDX
5 GX_VA_TEX4MTXIDX
6 GX_VA_TEX5MTXIDX
7 GX_VA_TEX6MTXIDX
8 GX_VA_TEX7MTXIDX
9 GX_VA_POS
10 GX_VA_NRM
11 GX_VA_COLORO
12 GX_VA_COLOR1
13 GX_VA_TEXCOORDO
14 GX_VA_TEXCOORD1
15 GX_VA_TEXCOORD2
16 GX_VA_TEXCOORD3
17 GX_VA_TEXCOORD4
18 GX_VA_TEXCOORDS5
19 GX_VA_TEXCOORD6
20 GX_VA_TEXCOORD?

RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Example Display List (primitives only)

C.3 Example Display List (primitives only)

169

Table C-3 provides an example display list as a list of hexadecimal numbers. This display list could be
called using "Code C-2 Code Necessary to Utilize Example Display List" on page 170.

Note: Since the display list only contains indices to attributes, the formats of the attributes could be
changed without affecting the display list. However, the attribute format must be described
accurately (the format of the data must match the format described) in order for the display list to

be drawn correctly.

Table C-3 Example Display List

Description Data

© 2006-2009 Nintendo
CONFIDENTIAL

GX_DRAW_TRIANGLES, GX_VTXFMTO 0x90
number of verts = 6 0x0006
pos_indx (8b) 0x00
norm_indx (8b) 0x10
tex_coord_0 (16b) 0x0011
pos_indx (8b) 0x01
norm_indx (8b) 0x11
tex_coord_0 (16b) 0x0012
pos_indx (8b) 0x02
norm_indx (8b) 0x12
tex_coord_0 (16b) 0x0013
pos_indx (8b) 0x03
norm_indx (8b) 0x13
tex_coord_0 (16b) 0x0014
pos_indx (8b) 0x04
norm_indx (8b) 0x14
tex_coord_0 (16b) 0x0015
pos_indx (8b) 0x05
norm_indx (8b) 0x15

RVL-06-0037-001-E
Released: March 27, 2009

170 Graphics Library (GX)

Table C-3 Example Display List

tex_coord_0 (16b) 0x0016
no_op 0x00
no_op 0x00
no_op 0x00
no_op 0x00
no_op, pad to 32B 0x00

Note: The display list described in "Table C-3 Example Display List" on page 169 assumes the code
sequence shown in Code C-2 to execute.

Code C-2 Code Necessary to Utilize Example Display List

GXClearVtxDesc () ;

GXSetVtxDesc (GX_VA POS, GX INDEX8) ;

GXSetVtxDesc(GX VA NRM, GX_ INDEX8) ;

GXSetVtxDesc(GX VA TEX0, GX INDEX16) ;

GXSetVtxAttrFmt (GX_VTXFMTO, GX VA POS, GX_POS_XYZ, GX_F32, 0);
GXSetVtxAttrFmt (GX_VTXFMTO, GX VA NRM, GX NRM XYZ, GX S8, 6);
GXSetVtxAttrFmt (GX_VTXFMTO, GX VA TEXO0, GX TEX ST, GX Ulé6, 5);
GXSetArray(GX_VA_POS, &mypos, sizeof (£32)*3);

GXSetArray(GX_VA NRM, &mynrm, sizeof(s8)*3);

GXSetArray(GX_VA TEXO0, &mytex, sizeof (ulé6)*2);
GXCallDisplayList (&Example Display List, 32);

C.4 State Commands

Inserting state commands into display lists requires a certain amount of coordination between the state
that is set by immediate-mode API functions and the state that is set by the display list. You should keep in
mind that various types of conflicts could arise.

The first state commands described here are those related to loading texture objects. These “commands”
are all implemented by setting registers within the GP. Before describing these registers, we explain how
the GX API loads texture objects.

Loading a texture object via GXLoadTexObj performs the following steps:
1. GX calls the texture region callback in order to obtain a region of TMEM to use with the texture.

2. GXrecords the desired texture ID into the texture object, which consists of GP texture registers.
3. The texture registers are written into the FIFO.
4

If this is a color-indexed texture, GX calls the TLUT region callback to obtain the TMEM address for the
TLUT. This is encoded into a register in the texture object and written into the FIFO.

5. GX sets a flag to indicate that the texture coordinate scaling registers need to be updated.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

State Commands 171

Calling GXLoadTexObjPreLoaded is similar, except that step 1 above is omitted. In either case, step 5is
necessary, because the GP requires that the texture coordinates be scaled according to the texture that
they will look up. Prior to any geometry being drawn, the update flag is examined and if set, a function is
called to update the scaling registers (and the flag is then cleared). The update function behaves as
follows:

1. If all texture coordinates are being scaled manually, it simply returns.

2. Loop over the indirect stages:
For all non-manual coordinates, it sets the scale register according to the associated map size.

3. Loop over the normal TEV stages:
For all non-manual coordinates, it sets the scale register according to the associated map size.

4. It sets the texture coordinate range bias appropriately as each scale register is adjusted.
Notes:

« If a texture coordinate is associated with both an indirect stage and a normal TEV stage, the coor-
dinate is scaled according to the size of the texture for the normal TEV stage.

e (GXSetTevOrder and GXSetIndTexOrder will also set the update flag.

Given the preceding information, we should emphasize that putting texture object-loading commands into
a display list requires that all of the steps be done manually. In particular, you may wish to manage TMEM
according to your own scheme. You should also consider calling GXSet TexCoordScaleManually for all
of the texture coordinates.

The subsequent sections detail the display list commands (registers) for loading textures. In order to send
any of these registers down, you must send down the following sequence for each register:

0x61 (1 byte) GX_LOAD BP_REG, the register load com-
mand.
XKXX (4 bytes, big-endian) The actual register as specified below.

Unmentioned register bits are reserved and should be set to 0.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

172

Graphics Library (GX)

C.4.1 Set TextureModeO

Indicates texture lookup and filtering modes.

Code C-3 Set_TextureModeO

Bits Content Values
0-1 wrap s 0: clamp
1l: repeat
2: mirror
: reserved
2-3 wrap_t same values as wrap_s
4 mag _filter 0: near
1: linear
5-7 min_ filter 0: near 4: linear
1: near mip near 5: lin mip near
2: near mip_lin 6: lin mip lin
3: reserved 7: reserved
8 diag_lod enable 0: use edge LOD 1: use diagonal LOD
9-16 lod_bias S2.5 (-4.0:3.99) (2's complement format)
19-20 max_aniso 0: 1
1: 2 (requires edge LOD)
2: 4 (requires edge LOD)
21 lod_clamp 0: off
(bias_clamp) 1: on
24-31 opcode 0x80 + GXTexMapID (id <= 3)
0xa0 + GXTexMapID (id >= 4)
C.4.2 Set_TextureModel

Indicates min/max LOD info.

Code C-4 Set_TextureModel

8-15
24-31

Content

opcode

Values

U4.4 (0:10.0)

U4.4 (0:10.0)

0x84 + GXTexMapID (id <= 3)
0xa4 + GXTexMapID (id >= 4)

C.4.3 Set_TexturelmageO

Indicates texture width, height, and format.

Code C-5 Set_TexturelmageO

24-31

Content

image_width
image height
image format

opcode

Values

Ul0 (0:1023) value is (real width) - 1

Ul0 (0:1023) value is (real height) - 1

0: I4 4: RGB565 8: C4 12: reserved
1: I8 5: RGB5A3 9: C8 13: reserved
2: IA4 6: RGBAS 10: Cl4X2 14: CMP

3: IAS8 7: reserved 11l: reserved 15: reserved
0x88 + GXTexMapID (id <= 3)

0xa8 + GXTexMapID (id >= 4)

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo
CONFIDENTIAL

State Commands 173

C.4.4 Set_Texturelmagel

Indicates where even LODs are stored (or cached) in TMEM. This data normally comes from a
GXTexRegion object.

Code C-6 Set_Texturelmagel

Bits Content Values

0-14 tmem_ offset address of even LODs in TMEM) >> 5

(
15-17 cache_width 3: 32KB
4: 128KB
5: 512KB
17-19 cache_height must be equal to cache_width
20 image_ type 0: cached
1: preloaded
24-31 opcode 0x8c + GXTexMapID (id <= 3)

0xac + GXTexMapID (id >= 4)

C.45 Set_Texturelmage2

Indicates where odd LODs are stored in TMEM (unused by most planar textures). This data normally
comes from a GXTexRegion object.

Code C-7 Set_Texturelmage2

Bits Content Values

0-14 tmem _offset address of odd LODs in TMEM) >> 5

(
15-17 cache_width 3: 32KB

4: 128KB

5: 512KB

0: none (only where odd is not used)
17-19 cache_height must be equal to cache_width
24-31 opcode 0x90 + GXTexMapID (id <= 3)

0xb0 + GXTexMapID (id >= 4)

C.4.6 Set_Texturelmage3
For cached textures, where the texture is found in main memory.

Code C-8 Set_Texturelmage3

Bits Content Values
0-20 1image_base (PHYSICAL address of texture in main memory) >> 5
24-31 opcode 0x94 + GXTexMapID (id <= 3)

0xb4 + GXTexMapID (id >= 4)

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

174 Graphics Library (GX)

C.4.7 Set_TextureTLUT
For color-index textures, where the TLUT is found in the high TMEM bank.
Code C-9 Set_TextureTLUT

Bits Content Values

0-9 tmem_offset (offset of TLUT from start of high bank in TMEM) >> 5
10-11 tlut_format 0: IA8 1: RGB565 2: RGB5A3

24-31 opcode 0x98 + GXTexMapID (id <= 3)

0xb8 + GXTexMapID (id >= 4)

C.4.8 SU_TSO

Indicates the texture coordinate scaling (s component). The point/line offset is normally set by
GXEnableTexOffsets.

Code C-10 SU_TS0

Bits Content Values
0-15 ssize Ule (s scale value - 1) for the specified texcoord
16 bs Enables range bias for s (used with GX REPEAT only)
17 ws Enables cylindrical texcoord wrapping for s
18 1f Enables texcoord offset for lines using this texcoord
19 pf Enables texcoord offset for points using this texcoord
24-31 opcode 0x30 + GXTexCoordID * 2
C49 SU TS1

Indicates the texture coordinate scaling (t component).
Code C-11SU _TS1

Bits Content Values
0-15 tsize Ulée (t scale value - 1) for the specified texcoord
16 bt Enables range bias for t (used with GX REPEAT only)
17 wt Enables cylindrical texcoord wrapping for t
24-31 opcode 0x31 + GXTexCoordID * 2
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Wii Texture Formats 175

Appendix D. Wii Texture Formats

This appendix describes the Wii texture formats. The first section describes the bit ordering within a texel.
The next section describes how texels are arranged in tiles. The texture cache hardware fetches texels in
tile units. The final section describes how tiles are organized into images.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

176 Graphics Library (GX)

D.1 Texel Formats

The texturing hardware supports 14 native texture image formats specified by register

image format [3:0]. Supported types are Intensity, Intensity Alpha, RGB, RGBA, Color Index,
Compressed, and Z. Supported texel sizes are 4-bit, 8-bit, 16-bit, and 32-bit. The following figures illustrate
the packing of texel components.

Figure D-1 Texel Formats

7 NO 4 3 N1 0O

10[3:0] 11[3:0] NO - nibble O
14 l 100301 I 11301 l N1 : nibble 1
7 0
18 [o]
7 0
8-bit Z | YA) | (Note: use 18 for 8-bit Z)
7 0
A4 [iA@or | ‘30 |
15 Byte O 8 7 Byte 1 0
IA8 [Aza | o]
15 Byte O 8 7 Byte 1 0
16-bit Z [¢ @ zpssep ¢ 0 | 0 ¢ iz[zop ¢ i | (Note:use IA8 for 16-bit 2)
15 Byte 0 8 7 Byte 1 0
R5G6B5 [Ra40r @ | @ iclol ¢ [¢ B4 |
15 Byte 0 8 7 Byte 1 0
[1] R0 | gm0l | | BM4:0] | | (RGB5)
RGB5A3 or
15 Byte 0 8 7 Byte 1 0
[o]A0] | R30I | G[3:01 | B[3:0]: | (RGB4A3)
15 Byte 0 8 7 Byte 1 0
RGBAS [@ Ao 0] ¢ 0 R0 | (AR)
15 Byte 0 8 7 Byte 1 0
[© @ Grop ¢ ¢ | ¢ ¢ B[O ¢ ¢ | (GB)
15 Byte 0 8 7 Byte 1 0
24-bit Z [0 x [| zresael | | (AR
(Note: use RGBAS for 24-bit Z)
15 Byte 0 8 7 Byte 1 0
[0 zmssl [0 0 zizop | (GB)
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: March 27, 2009 CONFIDENTIAL

Texture Tile Formats 177

7 NO 4 3 N1 O

cl [cioz:0] | cinfs: |
7 0
ci8 | CI[7:0] |
15 Byte 0 8 7 Byte 1 0
cli4 | | Cl[13:0]
CMP
RGBO0[15:0]
RGB1[15:0]

T[O][O] | T[O][1] | T[O](2] | TIO][3]
TIO] | T[] | T[A[2] | T[]
T[2][0] | T[2][1] | T[2](2] | T[2][3]
T[3][0] | T3] | T[3](2] | TI3][3]

63 Byte 0 56 55 Byte 1 48 47 Byte 2 4039 Byte 3 32
[Rroo] | GO[5:0] | Bof4:0] | ‘Rif40] i | G1[5:0] [Bijo |
31 Byte 4 2423 Byte 5 16 15 Byte 6 8 7 Byte 7 0

[too] o1 to2] To3] tao] mae | Tie [maz [120 [21 [122 [123 [730 | 131 | 732 | 133]

The compressed texture format allows for a 1-bit alpha. If a multi-bit alpha is desired, this can be accom-
plished through the use of multi-texture.

D.2 Texture Tile Formats

Texture images are organized as 32-byte tiles. Each 32-byte tile represents a 2D region of texels. For 4-bit
texels, each tile represents 8x8 texels. For 8-bit texels, each tile represents 4x8 texels. For 16-bit texels,
each tile represents 4x4 tiles. For 32-bit texels, a pair of 32-byte tiles represents 4x4 texels. This is
illustrated in the following figures.

Figure D-2 Texture Tile Formats

—>» S
| [o :
4bit Format : 8x8 texels / cache line
T
0 1F |20 3#
ByteO » Byte3l
A
Texel
3F
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

178

Graphics Library (GX)

—» S
| o :
M 8bit Format : 4x8 texels / cache line
0 F |10 1F
1E ByteO » Byte3l
—» S
i 0|1]|2]|3 _ _
16bit Format : 4x4 texels / cache line
T|4|5|6]|7
81 9| A|B 0 7!18 F
cloplelE ByteO » Byte3l
—» S —>» S 32bit Format : 4x4 texels / 2 cache lines
i 0|1]|2]3 L ol1]2]3
o AR 7] 8 AR F|
T|4|5|6|7|T|4|5|6]|7
ByteO » Byte31
8| 9| A|B 8| 9|A|B
\0 GB 7\8 GB F\
C|D|E|F C|D|E|F
Byte32 » Byte63
AR GB
—» S
T Compressed Format : 8x8 texels / cache line
0 4 1 2 3
ByteO » Byte3l
o)) g
™ 4x4 texels/block

D.3 Texture Image Formats

In main memory, the starting address of an image is aligned to 32 bytes. The tiles that make up the image
are stored in row-column order. Both cached and pre-loaded images have the same organization in main

memory.

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo
CONFIDENTIAL

Texture Image Formats

179

Each row and column of an image is padded to a 32-byte tile. For 32-bit texels, each row is actually
padded to a pair of 32-byte tiles. Each image is stored contiguously in main memory. For a mipmap
pyramid, the levels are stored contiguously. The ordering of the images is from finest to coarsest. Each
level of the mipmap pyramid is aligned to a 32-byte tile. This is illustrated in the following figures.

Figure D-3 Texture Image Formats

In main memory, images are alligned to 32B.

32B tiles are stored in row-column order.

Each row and column is padded to 32B.

For 32-bit format, each row is padded to atile pair.

Mipmap images are stored contiguously.
Each level is alligned to 32B.

—» S
i, 0 1 2 3 4 5
T 6 7 8 9 | A|B
C| D | E F |10 |11
12 | 13| 14 | 15| 16 | 17
¥
32B tile
32B Alligned —,
Level 0
32B Alligned —»
Level 1
32B Alligned —»
32B Alli d Level 2
igne: >
g 4 Level 3

© 2006-2009 Nintendo

CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

180 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Memory Issues

Appendix E. Memory Issues

181

The Graphics Processor has several data memory requirements, including alignment requirements for the

following types of data:

e Texture and TLUT images

» Display lists

e Graphics FIFO

« External frame buffer (XFB)

E.1 Rules of Alignment

These data objects must be aligned because the GP is very fast; data from the main memory is transferred
in 32-byte chunks. Data alignment allows for simple and fast hardware.

On other data objects, such as vertex, matrix and light arrays, additional hardware support eliminates the
need for coarse alignment (these are 4-byte aligned). There are a large number of these data objects, and
the memory consumption of each object is potentially low, so relaxing alignment restrictions helps to con-

serve memory.

Table E-4 outlines the alignment rules for these objects.

Table E-4 Memory Alignment Rules

Data Object Alignment Rule

Texture Map * Base address = 32B

e Width and height
rounded up to tile
boundary. Each tile is
32B.

* Base address of each

map in mipmap is
aligned to 32B

Function

GXInitTexObj (obj, image ptr, ..)

GXInitTexObjCI (obj, image ptr, ..)

GXCopyTex (dest, ..)

Texture Lookup « Base address = 32B
Table (TLUT) . Length = 328

GXInitTlutObj (, lut,)

Display List e Base address = 32B
e Length =32B

GXBeginDisplayList (list, size)

GXCallDisplayList (1list, nbytes)

Graphics FIFO .
e Length =32B

Base address = 32B

GXInitFifoBase (fifo, base, size)

GXInitFifoPtrs (fifo, read ptr,
write ptr)

GXInitFifoLimits (fifo,
hi water mark, lo water mark)

External Frame * Base address = 32B
Buffer (XFB) . Width = 328

e Length =32B

GXCopyDisp (dest, ..)

VISetNextBuffer (framebuffer, ..)

© 2006-2009 Nintendo
CONFIDENTIAL

RVL-06-0037-001-E
Released: March 27, 2009

182

Graphics Library (GX)

E.2 Alignment Assistance Functions

The Revolution libraries contain functions that assist with alignment issues. Several examples appear in

the table below.

Table E-5 Alignment Assistance Functions

Function Purpose

ATTRIBUTE ALIGN (32)

CodeWarrior compiler static variable alignment directive.

OSRoundUp32B (x)

Macro to round up a pointer to 32B.

OSRoundDown3 2B (x)

Macro to round down a pointer to 32B.

OSAlloc (size)

Memory heap allocation function. Always returns 32B base
address and length of memory buffer.

GXGetTexBufferSz (x, vy,
texel type, mipmap)

Function to compute correct amount of memory required to store
a texture, based on the texture width, height, and texel type, and
whether or not this texture is mipmapped.

VIPadFramebufferWidth
(width)

Function to compute correct amount of memory required for the
frame buffer, based on the pixel width of the frame buffer.

E.3 Data Coherency

Wii has multiple processors and hardware blocks that can update main memory. In addition, the CPU and
GP contain various data caches. Since the hardware does not maintain coherency of the data in main
memory and various associated caches, there are three potential sources of coherency problems:

* When the CPU modifies or generates data destined for the GP.

* When the CPU writes data through its write-gather buffer to cached memory.

* When loading new data destined for the GP from the disc into main memory.

Coherency problems may occur if the main memory used to store the data in these two latter cases were

used for other graphics data.

RVL-06-0037-001-E
Released: March 27, 2009

© 2006-2009 Nintendo
CONFIDENTIAL

Data Coherency 183

Figure E-4 Data Coherency

main memory

e}
G .
g o matrices
3 z)
o =
2 £
SIRE ! |
T @
z & vertex array(s) texture
o maps
| l

10 11

1
2

v

Write L1/L2
Gather Data Input Vertex Texture
Buffer Cache FIFOs Cache Cache
Optical
CPU Graphics Processor Disc Drive

The arrows in the Figure E-4 represent the following typical operations:
Loading texture images from the disc to main memory for a new game sector or level.

Loading geometry vertex display list from the disc to main memory for a new game sector or level.
Dynamic rendering of texture maps by the CPU.

Dynamic generation or modification of vertices by the CPU.

CPU animating lights and matrices.

CPU generating display lists.

CPU generating the graphics command stream.

GP reading graphics command stream.

© © N o gk~ 0w DD

GP reading display lists.
10. GP accessing vertices for rendering.
11. GP accessing textures for rendering.

In addition, other combinations are possible, such as loading display lists from the disc or writing command
streams or display lists through the CPU cache.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

184 Graphics Library (GX)

E.3.1 Loading Graphics Data with the Optical Disc Drive Library

When the library loads data, the optical disc drive APl automatically invalidates the loaded main memory
portion that resides in the CPU data cache. This feature provides a safe method for programmers to modify
the disc loaded data without worrying about CPU data cache coherency. This optical disc drive API feature
activates by default; it can be deactivated by the programmer.

The graphical data loaded by the optical disc drive library may contain textures and vertices that have been
already formatted for the GP to render. Therefore, invalidation of the vertex cache and texture cache
regions may be necessary.

Code E-12 DVDSetAutolnvalidation

BOOL DVDSetAutoInvalidation (BOOL autolInval) ;
void GXInvalidateVtxCache(void) ;

void GXInvalidateTexRegion (GXTexRegion *region) ;
void GXInvalidateTexAll (void) ;

E.3.2 CPU Generating or Modifying Graphics Data

The CPU has two means of writing to main memory: the write-gather buffer and the CPU cache hierarchy.
The write-gather buffer is normally used to “blast” graphics commands into memory without affecting the
cache. As a result, information sent through the write-gather buffer is not cache coherent. Care must be
taken when using the write-gather buffer to avoid writing to areas of memory that may be found in the CPU
cache. The cache flushing instructions shown below may be used to force data areas out of the CPU
cache.

If the CPU generates or modifies graphics data through its cache, the following memory types may end up
containing stale data:

e Main memory.
» GP vertex cache and texture cache regions.

To send the correct data to the GP, we need to flush the CPU data cache as well as invalidate the GP ver-
tex or texture cache. The CPU typically animates data one frame ahead of the GP, so efficient techniques
to maintain data coherency include:

» Grouping all the CPU-modified graphics data in main memory sequentially, so that the block data
cache flush is efficient.

» Invalidating the vertex cache, as well as the entire texture cache, at the beginning of each graphics
frame.

Code E-13 Commands to Flush the CPU Data Cache

void DCFlushRange (void* startAddr, u32 nBytes); // write out & invalidate
void DCStoreRange (void* startAddr, u32 nBytes); // write out only
void DCInvalidateRange (void* startAddr, u32 nBytes); // invalidate only

E.3.2.1 Immediate Mode

If you use GX immediate mode APIs to update matrix or light data, you don’t need to worry about coher-
ency issues. These APIs copy the arguments into the graphics FIFO and include matrix and lighting func-
tions with the form GXLoad* Imm.

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

Data Coherency 185

E.3.2.2 Direct Data

If some vertex attributes in the vertex array descriptor are of the type GX DIRECT, this data is copied
directly into the graphics FIFO, so users must be aware of coherency considerations.

E.3.2.3 Indexed Data

If you use the GX indexed mode APIs to update matrix or light data, the software must flush the data cache
in order to move the correct data into main memory. These APIs include matrix and lighting functions with
the form GXLoad* Indx.

Furthermore, the hardware implements indexed matrices and lights by passing this data through the vertex
cache; therefore, you must invalidate the vertex cache also. (The only reason for this is to simplify the
hardware design.)

E.3.2.4 CPU Scratchpad

If the CPU L1 data cache is partitioned in scratchpad mode, you will need to DMA the modified data to
main memory instead of flushing it from the normal data cache.

© 2006-2009 Nintendo RVL-06-0037-001-E
CONFIDENTIAL Released: March 27, 2009

186

TM and ® are trademarks of Nintendo.

Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.

IBM is a trademark of International Business Machines Corporation.
Roland GS Sound Set is a trademark of Roland Corporation U.S.

3ds Max is a trademark of Autodesk, Inc. and Autodesk Canada, Inc.
CodeWarrior is a trademark of Freescale, Inc.

All other trademarks and copyrights are property of their respective owners.

© 2006-2009 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part with-
out the prior approval of Nintendo.

RVL-06-0037-001-E
Released: March 27, 2009

Graphics Library (GX)

© 2006-2009 Nintendo
CONFIDENTIAL

R 10110 Yo 1¥ T 1 o] o PO PR PT SRR TRRPPPRI 1
IR B To Tod ¥] .0 1=1 0 A @ T - U a4 4o o [SO 1
Y 1 = AN 0 (= 1
1.3 A NOLE ON POINIEIS.....eiiiiiiiiiiee ettt e e se e s e e s e e e e neeenene 2
1.4 USETUI BOOKS.......iiiiiiiie ittt ettt snne e s e e nnre e 2

P O To [N =T aa] o] LY] o o] 1= o 4 oSSR 3

I I | 11 =114 14 o o B PRSPPI 9
0 YA To [=To N T F= 1 4= U1 T o PR PP PPRRRPRR 9
3.2 Graphics INItIAlZAtiON.........ccceeieeieeee e e e e e e e s e e e e e e e e e e e anne 9
3.3 GraphiCs ProCeSSOr (GP)......uiuiiiiiieiiee i s ittt e e e s s et e e e e e e e s s s s aaeereeaaeeseeannnnnnes 10

4 VerteX and PrMItiVE DAc.eeoieieiiiieiiie e e e 11
4.1 Describing the VErteX Dat@.........cccvuiiiiiiiieeee et ieee et e e e s e s s s e e e e e e e e e s s sanreanaeeeeaees 12
A B 11 Yol] o] o [AN 4 = = SRR 14
4.3 Describing Attribute Data FOIMALS........cceeeiiiiiiiiiiieiie e s e e e e e s e e e e eee e e 15
4.4 Drawing GraphiCS PrMITIVES.........uuuiiiiiiiiii it e e e e e e e e 17

A 4.1 PrIMITIVE TYPES ittt ettt et e e e e e e e e et e e e e e e e ae e e ae s annbebbeeeeeeaaaaaaas 17
A4.4.2 POINES ANA LINES ..coiiiiiiiiiee ettt e e e e e e e e e e b e e e eeeaaaaaas 18
4.4.3 RaSterization RUIESuuiiiiiiiie e e e 20
4.4.4 USING VerteX FUNCLIONSuiiiiiiiieaei et e e e e e e e e e e 20
4.5 Vertex Data OrganiZationueeueeiiiiiaiiii it e e e e e e a e e e e e 22
451 INdeXed VErteX DAtaAccccuuuiiiiiiieiieaai ettt e e e e ae e e e e as 25
4.5.2 DIreCt VEITEX DAta@l......ooceeeiiiieeiiieee ettt e e e e e e et e e e e e e e e an 26
4.5.3 Mixture of Direct and Indexed Data..............cciiiiiiiiiiiiiiiiiiiiieeee e 27
I B 1] o] = |V] (= T PP PPPRPTR 27
4.6.1 Creating DISPIay LIStSuuuiiiiiiiiiaiiiiiiiiieiii et eaa e 28
4.6.2 Drawing Primitives Using DiSplay LiStScuieiiiiiiiiiiiiiiiiiieee e 30
4.6.3 Effect on Maching STateoooiiiiiiiiiiiiiii e 30
A7 GXDIaW FUNCHONS. ...eetiiiiieiiee ittt ettt ettt ettt e e e e e e e e s e bbb e e e e e e e e e e e e aasnnnnbeaeeeeaaaaens 31

I 1T/ o To TP PRTTT 33
5.1 Loading @ MOUEIVIEW IMALIIXueiiiiieiiiiiiiiiiieie e ettt e e e e e e e st e e e e e e e e e e e ennenes 34
5.2 Setting @ ProjeCtion MatriX............eeeeiiieiiiiiiiiii ettt e e e e e e e e e e e 35
5.3 Culling, Clipping, @Nd SCISSOMNQcetttiaieaiiiiaiiieieitee e e e e ettt e e e e e e e e e s s asbbereeeeaaeaeeaaaanns 36
5.4 Viewport and SCISSOMNGuuuuueiiiiaiiaaiiii ittt e e e e e e et e e e e ae e e s e abbebbereeaeaaaaeaeaannnes 37
5.5 COOrdiNate SYSIEIMS ...ttt ettt e e e e et e e e e ae e e s e sbbebbeeeaaaaeeeeeeannane 38
5.6 How to Override the Default Matrix Memory Configurationccoocciiiiieiiiieinniininns 39

Y =14 (=) Mo 1] o TP PRTPR 41
6.1 Lighting PIPEIINE ...ceeiiiiiiiei ettt e e e e e e et e e e e e e e e e e e annranes 41

6.1.1 Diffuse Lights, Diffuse Attenuation and Vertex Normalsccocceeieiieinniininnns 41
6.1.2 Local Lights and Range AtteNUALIONcoooeiiiiiiiiiiiiiiee e 41
6.1.3 Spotlights, Directional Lights and Angle Attenuationccoooeiiviiiiiieee s 41
6.2 Diffuse Lighting EQUALIONSuuiiiiiiiiieei ettt e et e e e e e e e e e e e enanes 43
6.3 MALIX IMEBIMOIY ...ttt ettt e e e e e e e e e s o ab bbbt e e e e e e e e e e e s e aannnbbbeeeeaaaeaeeaaannn 44
6.4 LGNt PAr@mMeterSocoiiiiiiiiiie ittt ettt e e e e e e s st be b b et e e e aae e e e e aanranes 44
6.4.1 ANQGIE AHENUALIONueiiiiiiiiee ettt e e e e e e bbb e e e e e e e e e e e anereees 44
6.4.2 DiStanCe AMENUALIONuiiiiiiieiii ettt e e e e e e e e e e e e e e e e e annanes 46
6.5 Channel Par@meters......coooo ittt e e e e e e e e e e e e e e 47
6.5.1 ChanNEl COlOrSeuiiiiiiiieie ettt e e e e e e bbb e e e e e e e e e e e e annaees 47
6.5.2 Channel CONTIOl..........uuiiiiiiiii it e e e e e e aaeaes a7
B.5.3 Pre-ligNting .cccce i e a e e 48
6.6 SPECUIAT LIgNTING ..eeiiiiiiiiieee e ettt e e e e e e bbb e e e e e e e e e e e annanes 49
6.7 VerteX PEIrfOIMANCEcoiiiiiieeeii ettt e e e e e e s st e e e e e e e e e e e e e aanranes 50
6.8 Lighting PerfOrManCe............uuiiiiiiieiiae ettt e e bbb e e e e e e e e e eanaees 51

7 Texture Coordinate GENEIALIONuuiiiiiiiei ettt e e e e et e e e e e e e e e s snbbebbeeeaeaaaaeaeas 53
7.1 SPECITYING TEXGENS ...ttt e e e ettt et et e e e e e e e s et bt e b e e eeeaaaaeesassanbbebbaeeeaeaaaeseeaannnn 53

© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: Review

Graphics Library (GX)

7.2 Renormalization and “post-transform” Matrices Added for TeXgensccccccevveeeeereviiinnns 55
7.3 Other Texture Coordinate Generation ISSUESocviirieeriiennee e 56
7.4 Texture Coordinate Generation PerformancCe............ocovveveeinrirn e 56
ST =4 (0101 =T o] o 1 o R 57
8.1 Example: Drawing a Textured Tranglecccccveeeeii i e e 57
8.2 Loading a Texture into Main MEMOIYccuuuiiiiieiieeeeeesisitier e e e e e e e s ss s eeeeaeeeeesennranes 60
8.3 Describing a TeXture ODJECEuuiiiiieeii i e e e e e e e e e e e ennnnes 60
8.3.1 TeXEl FOIMALS ... eeee ettt 62
8.3.2 Texture Lookup Table (TLUT) FOIMAtS..........ccoeicvvriiririereeeeeesceeciienieereeeee e e e e s snenes 63
8.3.3 TeXture IMage FOIMIALS......cccie i i e e s s s e s e e e e e e e e e e e e e e eeeeeeeeeenees 63
8.3.4 Texture CoOrdiNate SPACEc.coeiiieririiiiieeee e et e e se e e e e e e e e e e sss s e e e e eaeeeseeannnene 64
8.3.5 Filter Modes and LOD CONLIOIS.........cociiiiieiiiiiieiiei e 66

8.4 Loading TeXtUre ODJECES.......uuuiiiiiiieie et i e e et e e e e e e s s rr e e e e aee e s e s annrenes 72
8.5 Loading Texture LOOKUP TabIleS (TLUTS) ...uuuiiiiiiieeeieiiiiiiiiieieeeee e e e e e ssssniienneee e e aee e s e ennnnnes 73
8.6 How to Override the Default Texture Configuration...............cceeeeeiiiiiiiniiiiii e 73
8.6.1 TEXLUIE REOIONSuuiiiiiiiiiiiie e ettt et e e e e s ettt ettt e e e e e e e s e sab b e bbe e e e e eeaeaeeeaannnns 74
8.6.2 CaAChEd REQIONSttt ettt e e e e e e e e e e e bbb e e eeaaaeaeeaanana 75
8.6.3 TLUT REQIONS ...ttt ettt ettt e e e e sttt e e e e e e e e e e s nbabbae e e e eeaaaeeaaaannnns 76
8.6.4 Preloaded REQIONSoi ittt e e e e e e e e e e aaraae 76
8.6.5 Texture Cache AllOCALIONccoiii ittt e e e e 82
8.6.6 TLUT AIIOCALION ...uieeiiiiieitieee ettt ettt et e e e e e e e e e s bebb e e e e e eeaaaeeeaannans 82

8.7 Invalidating TeXtUre CACKNEuuuiiiiiiiiii et e e e e e e e 83
8.8 Changing the Usage of TMEM REQIONSuuuiiiiiiiiiiiiiiiiiiiiieee e 83
8.9 Creating Textures by Copying the Embedded Frame Buffer...........ccoooiiiiiiiiiiins 84
BLL0 Z T OXEUIES. ..ttt e oottt e e oo e e e e e e e e e et et et et et ee e e b e b e b e e e e e e e e e e aas 87
8.11 Texture PerfOrMEanCEeccoo ittt et e e e eeee e e e e e e e e 89
9 Texture ENVIrONMENT (TEV) ...ttt ettt et e e e e e e e et b et e e e e e e e e e e as 91
S % B 1= ST 1 o] 1 o] o PP PPUPPRPPRRN 91
9.2 Default Texture Pipeline Configurationoeiiiioiiiiiiiiieee e 92
9.3 NUmber Of ACHVE TEV StAQESuutiiiiieiii ittt e et e e e e e e e e e eenrenes 92
S R € T I =)V O o I T TP UPPPPPPP 92
9.5 Color/alpha CombiNe OPEratiONScooiiiiiiiiiiiiiiiee et e e e e eeeeaa e e e e e aanas 93
9.5 1 COMPArE MOEttt ettt e e e e e e e e e b e b e e e e e e e e e e e e e anrene 95

S IGO0 (o] g 171 o1V = T PP PPUPPTPPRR 97
S I A o] 0 = W [o] o1V £ PP PPPPPTPPRR 99
9.8 Color Component SWaP MOUE......ccuiiiiiiiiiiiiiiiie ettt a e e e e e e e e ae e e e e e eaanes 99
9.9 TEV “constant” ColOr REGISLEISuuuiiiiiiiaiei ittt e et eeeeeeas 100
0.10 EXAMPIE SELLINGS ... tteeeieiieiii ittt e et e e e e e ettt e e e e e e e e s e e s e anbabeaneaaaaaeeaans 101
9.11 Alpha ComPare FUNCHONuuiiiiiieiiae ettt e e e e e e e e e e e e aaan 103
0,02 Z T OXEUIES. ettt e e e e oo e oo e e e e e e et e et et et et e ee e be b e b e a e e e e as 104
9.13 Texture Pipeline ConfIQUIatioNc.oooi i a e 104
10 INIireCt TeXIUIE MaPPING . .ccie e ettt e e e ettt et e e e e e e s s e bbb e beeeeeaaeaeesaasnnbbbaeeeeaaeaaesaaaannnne 107
10.1 Setting Up INdireCt TEXIUIE StAQEScuuuutiiiiiiieaeeeeias ettt ee e e e e e e e e et e e e e e e e e e e e annnees 109
10.2 Basic INdireCt TEXUrE PrOCESSINGcocuvueiiiiiiiiaae ettt e e e e e e e et reeeaa e e e e e e nreees 111
10.3 Basic Indirect TeXUre FUNCLIONSocuiiiiiiiiiiie ettt e e e e e e e neeees 112
10.3.1 TEXIUIE WAIPING ...eeettiiiiiiiaiaeeae ettt e e e e e e e e abbab e et eeeaa e e e e e aaaanbeasbeeeaaaaaeeasaaannnes 112
10.3.2 Environment-mapped Bump-mapping (EMBM) (dX, dY, dZ)......ccccceeieiiiiiiinniinns 113
10.4 Advanced Indirect TeXtUre PrOCESSINGuuieiiiiiaaaiiii ittt e e e e e 114
10.4.1 Selecting “DUMP AIPNA”cooiii e 114
10.4.2 DYNAMIC IMAIICES. .. ettteeiieiaeeei ettt e e e e e e ettt et e e e e e e s e e s et eaeaeeeaaaaeeaasaannne 114
10.4.3 Selecting Texture Coordinates for Texture LODcccooiiiiiiiiiiiiiiiiieee e 115
10.4.4 Adding Texture Coordinates from Previous TEV Stages..........cccooevieiiieierinnininns 115

RVL-06-0037-001-E

Released: Review

© 2006-2009 Nintendo
CONFIDENTIAL

10.5 Advanced INdireCt FUNCLIONScoiiiiiiieiiei e 115
10.5.1 Texture Tiling and PSeudo-3D TeXLUINGccccvrrrrerirerieeereeiiinieneeeeeeeeeeeeassnnenes 115
10.5.2 Environment-mapped Bump-mapping (EMBM) (dS, dT)cccovrmiriereeereeeiiciennns 116
10.5.3 General INdir€Ct TEXIUMNNG «.oeievivieeeiieeieee e e e e e e ses s e e e e e e e s e e s reeeeee e e e e e e e e nnsnnnnes 117

11 Fog, Z-compare, Blending, and Dithering........ccccuviiiiiieiee e e e 119

I T T o o TP PRP TR 119
0 R o Yo T 1Y 120
0 o To T =T = T 1T (T £ 122

B oo o > g U SUS 122
11.2.1 Z BUFfEr FOIMAL.....ooiiiiiiiic e 123

5 T 2 11T o T 1T Vo PSSR 124
5 20 R = 1T o To = U = 4T o PSR 124
G T =Y (=T oo [Ta o = U= g =]] PSR 125
I T T o T [Tol @ o 1= = 4o 1 1 RS 126

I B 11 0 1= o o [T PPTTRPPIIN 127

D2V o [To T @ 11 1 o 11| ST PPRPTPPR 129

12.1 The CopY PIPEIINE ..ot e e et e e e e e e e e e s eannees 129
12.1.1 COPY SOUICEoeieiiieieiiiiiettetet e e e e e e e e e e e e e e e e e aeeeteeeeeeeesaese s babeb st s s e e e e e e aaaaaaaans 129
12.1.2 Antialiasing and DefliCKeringuueiiiiiiiii s 129
12.1.3 GaAmMMA COMTECTIONeiiiieiee ettt ettt et e e e e e e s e e st e e e e e e e e e e e e s aannnes 130
12. 1.4 RGB 0 YUV .ottt ettt sttt sht et e eab e e e eat e e s sabe e e anbeeeas 131
12,105 Y SCAIE... ettt bbb are e e beaeae 131
12.1.6 COPY DESHNALIONuuuiiiiiiiiaaiee ittt e e e e e e e e e st beereeeaaaaaeeasaaannes 131
12.1.7 Clear Color and Z for NeXt FIamMe........ccuuiaiiiiiiiiiiiiiiie e e e 131

12.2 Predefined RENAEr MOAEScooiiii it e e e e e e e e neeees 132
12.2.1 Double-strike, Non-antialiased MOGEcooiiiiiiiiiiiiiiieae e 133
12.2.2 Double-strike, Antialiased MOdEcooiiiiiiiiiiii e 133
12.2.3 Interlaced, Non-antialiased, Field-rendering Modeooociiiiiiiiiiiiiiiies 134
12.2.4 Interlaced, Antialiased, Field-rendering Mode...........ccccccooiiiiiiiiiiiiiinie e, 134
12.2.5 Interlaced, Non-antialiased, Frame-rendering, Deflicker Mode................cccccuues 134
12.2.6 Interlaced, Non-antialiased, Frame-rendering, Non-deflicker Mode 135
12.2.7 Interlaced, Antialiased, Frame-rendering, Deflicker Mode..............ccccccceieiiiniinns 135
12.2.8 ProgreSSiVE MOcoiiiiiiiiiiiiiitii ittt e e e e et eeeea e e e e e e e anreees 136
12.2.9 Progressive, “Soft” MOOEooouuiiiiiiiiiiee et 136
12.2.10 Progressive AntialiSed MOUE.uuiiiiiiiieiiiiieit e 136

12.3 GX API Default RENAEr MOUE........cooiiiiiiee e a e ireees 137

12.4 Embedded Frame Buffer FOrMALSuuiiiiiiiiiiiiiieeie e 137
12.4.1 48-bit Format — NON-antialiaSingcceeeiiiiiiiiiiiiiiieiee e 137
12.4.2 96-bit Super-sampling Format — AntialiaSingueeeveeiiaariiiiiiiiieeee e 138

12.5 External Frame BUffer FOrMALoouiiiiiii et 138

13 GraphiCs FIFO ...ttt ettt e e e e e e e e s o bbbt eeee e e e e e e s e aananbbaesaeeaaeaaeaanaannnnes 139

R TR B 1= 2o 0] 1o o H OO PPPUPPPTRTIN 139

13.2 CreatiNg @ FIFO ...ttt et e e e e e e e et e e e e e e e e e e e s aannees 141

13.3 Attaching and SavinNg FIFOS.......oooii i e e e e e eeees 142

L1314 FIFO SEAIUS ...eieiitieiitiee ettt ettt ettt et ettt e e sht e e sab b e e eabe e e s abe e e e be e e sabe e e e abbeeebeeeessneens 143

13.5 FIFO FIOW CONLIOI ...ttt e e e e e e e e et e e e e e e e e e e e e e annes 144

13.6 Draw Synchronization FUNCHONSc..uuiiiiiiiiiiaie et 144
13.6.1 GXDIAWDONEcoiiiiiiiiiiiititet e e e e e e e e e e e e et e e et e et ettt e steee e bbb eb et e a e e e e e e e e e aaaens 145
13.6.2 GXDIAWSYNC ...ceieiiiiiiiiiiieititeti e s e e e e e e e e e e e e e e eeeeaeeeeeeeesaeeesbsbeb bt asanaa e e e e e e e e aaaaaaans 145
13.6.3 FIFO BreakPOiNt.. ettt ettt e e e e e e e e e e e e anneees 146
13.6.4 ADOI FIAME ...ttt ettt e et e e e e e e e e b et e e e e e e aaaeeeaaaane 147
13.6.5 VI SYNCRIONIZALIONeeeiiiiiiiiii et e e e e 147

© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: Review

4 Graphics Library (GX)

13.7 Draw Synchronization MethOUSccoiiiiiiiiiiiiiii e 147

R T R I T T o L= =13 1= 1 Vo PSR 147

R B 7 I o L= =W 3 1= g T SRR 148

13.8 Graphics FIFO vS. DISPIay LiStcciiciiiiiiiiiiie ettt e e e st er e e e e e e e e e e e nnenees 148
13.9 Notes About the Write-Gather PiPecccuiiiiiiiiiiee e 148
T L0 Y QY =T) PP PRPROTPPPPN 149

14 PerfOrmanCe MELICSuuiiiiiiiiiie ettt et e ettt e e sttt e e s st b e e e e s bbb e e e s snbaeeeeennees 151
14.1 TYPES OFf MEIIICS oeiieeiiis ittt e e e e e s et e e e e e e e e s e s ansasnb e aeeaaeeeesaanannnnes 151
14.2 GP Front-End and Texture-Related MEtriCSocvviiiiiiiiiiee e 151
14.2.1 GP CoUNter 0 DELAIIScc.uveeiiieiiiiiie ettt 151

14.2.2 CoUNEr 1 DELAIISvvviiieiiieie ettt e e e 153

14.3 Using Performance COUNEISccooiiiiiueiiiieiiie e e e e e e ses sttt ee e e e ee e e s e s snssnnreaeaneeaeeeeesnnannnnnes 155
14.4 VerteX CaChe MELIICSuuiiiiiiiiiiie ittt e e et e e e e sbb e e e e s abaeeeeeanees 155
SR o D= Y = (o PP PRPPOTPPPPN 156
14.6 MEMOIY MELIIICS ..ooiiiiiii ettt ettt e e e oo e e bbbttt e e e e e e e s e s anbbbbbeeeeeeaaeaeesaannnrnnes 156

ST 1 o1 = U o] o USSP 159
T Y o (=11 T= T3 o OO PPTURPTIN 159
15.2 CPU Access to the Frame BUfer...........ouuiiiiiiiiiiiiiii e 159
15.3 DISPIAY LISES...eeeeiiiiieiiei ittt e e e e e e bbbttt e e e e e e e e e e e b bbb e e e eeeaaa e e e e e e annaee 159
15.4 VerteX PerfOrmManCe........c.oo oot e e e e e e e e e e e ae e 159
15.5 MAALIX IMEIMIOIY ..ttt ettt ettt e e e e e e e e e e et b et e e e e e e e e e e e e aaanbbaeaaeeaaeaaeeesaannnnes 159
T IS (LU | = PRSPPI 159
15.7 Blending and LOGQIC OPEIatiONS........coiiuuuuiiiiiiiiaaee ettt e ettt e e e e e e e s e aneeeeeeees 160
15.8 Sharing Main Memory RESOUICESuuuiiiiiiiiiiei ettt a e e e e e e eaeees 160

RVL-06-0037-001-E © 2006-2009 Nintendo

Released: Review CONFIDENTIAL

Figure 3-1 SchematiC 0f the GP..........euiiiiii e e e e e e e e e e s e e e nnnnes 10

Figure 4-1 Vertex and Attribute DESCIIPLONcici i e e e s e e e e e e e e e e e nnennes 12
Figure 4-2 Vertex Attribute FOrmat Table (VAT) ..ot e e e e e e e e e e s e ennenees 15
Figure 4-3 GraphiCs PrimitIVES........oio it s e r e e e e e e e e s e e e e e e e ae e e s e e annnnnes 17
Figure 4-4 POINt DEfINITIONovviiiii i e e e e e e e e e s s s e eeeeeeeeeseeannnnnes 18
FIgUre 4-5 LiNE DefINItIONeeiiiiee e e e e e s e e e e e e e e s e s s e e rereeeeeeeeeeaannnns 19
Figure 4-6 Polygon Rasterization RUIEScocoiiiiiiiiiieiiie e e s re e e e e e e e e e ennenees 20
Figure 4-7 Flow Of INdeXed VErEX DALAccceeeeiiiiiciieiieiii e e e e st e e e e e e e s s ree e e e e e e e e s s e enanennes 22
Figure 4-8 FIOW Of DIr€Ct VEMEX DAtA.....uueueeiiiiieeiisieiiiiiieie e e e e e s e e s ese s er e e e e e e s e s s ennesbanereeeeeeaeesennnnns 24
Figure 4-9 IndeXed VErtEX Dat@.......cccuvuiiiiiiieeie i s e e e e e e e e s s s s e e e e e e e e e ssnsnnaetaeeeeeaeeeaneannnnnnes 25
Figure 4-10 DiSplay LISt FIOW.........coiiii ittt e e e e s s ee e e e e e e s e s s snanrerereeeeeeseeeannnnns 28
Figure 5-1 Modelview and Projection Data Path............ccccccceiiiiiiiiii e 33
Figure 5-2 Clipping and Culling Data Path..............couiiiiiiiiiiie e ee e e e e e 36
FIgure 5-3 CliP COOIAINALIESeeeeii i ittt e e et e s e e e e e e e s e s e e e e e e e eeesssnssnaetaneeaeeeeeaseeannnnnes 37
Figure 5-4 Coordinate System Transformationscciiiiii i 38
FIQUIE 5-5 MALIX MEIMOIY ...coiiiiiiiiiiiiiie ettt e e e ettt e e e e e e e e e e s e anbe e beeeeaaaeeeaneeanannnes 39
Figure 6-1 Associating Lights with Color Channels ... 42
FIQUre 6-2 LIGhtiNG VECIOIScciiiiiiiiieee ettt ettt e e e e e e e e e e bbb e e e te e e e e e e e e aa e e e annenes 43
Figure 6-3 SPOotlight FUNCLIONS ...ttt e e e e e e e e e ennaes 45
Figure 6-4 Distance Attenuation FUNCLIONSooii ittt e e e e e e e e eaeeees 46
Figure 6-5 Specular LIGhtING VECIOIS........ i ittt e e e e e e e e e e e senaes 49
Figure 6-6 GXINitLightShiNINESS VAIUEScciiiiiiiiiieee e 50
Figure 7-1 Texgen Computation Path.......... ... 55
Figure 8-1 Map-relative Texture COOIrINALEScc.uueiiiiiiieieeai e e e e e e e e aeeees 64
Figure 8-2 Linear Filter—Clamp, Repeat, MirtOr...........uueiiiiiiiiiiiiiiee e 65
Figure 8-3 Nearest Filter—Clamp, Repeat, MilTOreeiiiiiii i ee e e 65
Figure 8-4 Pixel Projected in Texture Space EXampPlecoiiiiiiiiiiiiie e 66
Figure 8-5 LOD CalCUIALIONcoiiiiiiiiiiieee ettt e e et e e e e e e st ebeeeeaaaaeeaaeeannnnes 67
FIGUIE 8-6 LOD BIASttetteeiiieieeai ettt ettt e e e e e e e s e e et bbbttt e e e e e e e e e s e nnbeebeeeeaaaaaeaseaaannnnns 68
Figure 8-7 ANISOtrOPIC FltEIINGcoieiiee ettt e e e e e e e e e e e e e ennaes 69
Figure 8-8 Mipmap Pyramid for the Largest TEXIUIE SiZeoooiiuiiiiiiiiiiiaaee e 70
FIGUIE 8-9 GX_UINEAR ... ittt ettt ettt ekttt et e s h e e e bt e s b e e e s be e ekt e e e sabb e e eabeeesabbeeenneaas 71
FIgure 8-10 GX_LINEAR ...ttt ettt ettt ettt ettt h bt e s et e e s b e e e s be e e b e e e sbbneesaneas 71
Figure 8-11 Default TMEM CONfIQUIALIONooiiiiiiiiiiieie et e e e e e 74
Figure 8-12 MIipmap iN TIMEM ...ttt e e e e e e e e bbb be e e e e e e e e e e e e anneaes 77
Figure 8-13 Planar Texture in TIMEM ...t e e e e e e e e e e eaneenes 78
Figure 8-14 32-bit Planar Texture in TMEM ...t e e eeees 79
Figure 8-15 Color Index Mipmap iN TMEM ..o 80
Figure 8-16 32-bit Mipmap iN TMEMouiiiiiii et e e e e e e e e eaenaes 81
Figure 8-17 Texture Copy Data Path ...t 85
Figure 8-18 Copying Small Textures into a Larger Texture in Main MEMOIYcccccceeeeeeeiniiiinnnnn. 86
Figure 8-19 Z TeXture BIOCK DIGQIAMuuiiiiiiaaii ittt et e e e e e e e e e e eeaa e e e e e e anans 88
Figure 9-1 TEV BIOCK DIGQIAIM ...ttt ettt e e e e e e e e s abbe b e e e e e aaeeaseaannnnes 91
Figure 9-2 Default TEXIUre PIPEIINEu i e a e e e 92
FIQUrE 9-3 TEV OPEIAtiONS ..cceieiii ittt ettt ettt e e e e e e ettt et e e e e e e e e e sa e anbeebeeeeaaaeeeaaeaannnnnes 94
Figure 9-4 TEV Stage CoOlOr INPULSuiiiiiiiieiiei ittt e e e e e e e e s st ebeeeeaaaeeeaasanannnnes 97
Figure 9-5 TEV Stage AIPha INPULSueiiiiiii ettt e e e e e e e e e e snnees 99
Figure 9-6 Texture PIpeling CONTIOooii i a e 105
Figure 10-1 IndireCt TEXIUre OPEIatiONcciiiiiiiiiiiiieeieee e e e ettt e e e e e e e e e e e abeibeeeeeeeaaeeeesaanneeees 107
Figure 10-2 Tiled TeXIUre MaPPINgceeeeiaaiaiiiiiiiieeeeee e e e e e e e aeeetbbe e e e eaee s e e s s absnbeeeeeeeaaeseeaaaannrene 107
FIQUre 10-3 PSEUAO-3D TOXIUIES.uuuteiiieiiiiaeae ittt e e e e e e e e s e bbibe bt e e eeaa e e e e s aaananbbaeaeeaaaaaeeaanaannnnes 108
Figure 10-4 Regular Texture FUNCHONAl DIagram...........eeeie i a e e 109
Figure 10-5 Regular and Indirect Texture Functional Diagram............cccccceeeiiiiiiiiiiiiiieeen e 110
Figure 10-6 Texture Coordinate Sharing EXample ... 111
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: Review

Graphics Library (GX)

Figure 10-7 Indirect Texture ProCessing, Part Lcccccccvvereeiiiiiiiiiiiier e e e e e e e sssnreee e e e e s e e s e snnnnes 111
Figure 10-8 Indirect Texture ProCessiNg, PArt 2cuuuieieeeeiiiiiiiiiiiier e e e e e e s sssireee e e e e e e e s e nnnennes 114
Figure 11-1 FOg RANGE AQJUSIMENT.......ueiiiiiiieeiiiiiiiie e e e e s e e s s st r e e e e e e s s s et eeeeeeeesessnnnnnrennes 119
T [I e I T 1= = Ll o o N O Y/ SR 120
Figure 11-3 EXPONential FOQ CUIMVEuuuiiiiiieee it e e e e e e e s s e e e e e e e e e s st aeeeneaeeeesesnsnnnnes 120
Figure 11-4 Exponential Squared FOQ CUIVEcccuuiiiiiiiie e ee e e e seer e e e e e s e e s e s nnnees 121
Figure 11-5 Reverse Exponential FOG CUIVE........cccccuuiiiiiiiiie et e e e e e e s s sneeaenr e e e e e e e e s ennnes 121
Figure 11-6 Reverse Exponential Squared FOG CUINVEcceeeiiiiiiiiiiiiieee e e scveieeerr e e e e e e e e snnens 121
Figure 12-1 EFB-t0-XFB COPY PIPEIINEccceii ittt e e e e s n e e e e e e s e s nnenees 129
Figure 12-2 Render Mode Structure, Related Calls and Hardware Modules...........cccccceveeeeiiniinnns 133
Figure 12-3 Double-strike, Non-antialiased MOUEceieieeiiiiiiiiiiiiicieee e 133
Figure 12-4 Interlaced, Non-antialiased, Field-rendering Mode............ccccccvvveeiiiiiicciiiinniee e 134
Figure 12-5 Interlaced, Non-antialiased, Frame-rendering, Deflicker Modecccccccvvvveeniinnns 135
Figure 12-6 Interlaced, Antialiased, Frame-rendering, Deflicker Modeccovcciivieeviieeeenieens 135
Figure 12-7 OVErlapPiNg COPY ..ccoiiiiuuuieieieiitae e e ettt e e e e e e e e s e e aiab b be e e e e eeaaaaeesaassnbbeaeeeeaaaaeesaaaaannrnes 136
Figure 12-8 XFB Format in Main MEIMOIYcoiiiiiiiieiiiee ettt e e e e e e s e aneeees 138
FIGUIPE 13-1 GXFIOOD] . .eettiiiiieeeiii ettt e e ettt et e e e e e e e e s bt bbb e e e eeaaaeeeeaanannnnes 139
Figure 13-2 ImMmediate MOcoo it e e e e e e e e e e e e e e e e e e s e annnes 140
Figure 13-3 MUIti-BUFfEr IMOTE ...ttt e e e e e e e e e e e nenees 141
FIQUre D-1 TeXEl FOIMIALS ..ottt e ettt e e et e e e e e e e s e abbb b e e et e e e e e e e e e e e annnees 176
Figure D-2 Texture Til@ FOMMALSuuiiiiiiiii ittt e e e e e e e et e e et e e e e e e e e e annnees 177
Figure D-3 Texture IMage FOMALS.coii ettt e e e e e et ae e e eeaaeaa e e e s aannees 179
FIQure E-4 Data CONBIENCYccooiiiiiiiiiiieie ettt e e e e e e e ettt e e e e e e e e e e s e aanbbbaeeeeaaaeaeeaanaannnees 183
RVL-06-0037-001-E © 2006-2009 Nintendo

Released: Review CONFIDENTIAL

Table 4-1 Vertex Attribute Order REQUIFEMENLEScvviiieiiiii e r e e e e 13
Table 1 - VerteX PerfOrMEaNNCEcoiiiiiie ettt e et e e e st e e e e sbareeeesanes 51
Table 7-1 Texture Coordinate Generation OFUENuueieiiiiieiee ittt e e e srareee e 54
TaDIE 8-1 TEXEI FOMMALS ...cciiitiiii e ittt ettt e sttt e e et e e e s st bt e e e s snbe b e e e e s anbeeeeeesnbabeeeesnnes 62
TaADIE 8-2 TLUT FOIMALS....ciittiiiiei ittt ie ettt e ettt e e sttt e e e s sttt e e e s sabe e e e e e snbebeeeessnbbeeeeesnbebeeeennne 63
Table 8-3 Mipmap Minimum Filter MOUES.........uuuiiiiiieie e e e e e e ee e s 72
Table 8-4 Texture Copy Formats and Conversion NOESuuiiiiireriiiiiiiiiiieeeree e e e e e e e esernreeee e 84
Table 8-5 TexXture PerfOrMaNnCeoeii ittt e e e s 89
Table 9-1 GXTEVMOUE TYPES ..uuueeieiiieieeeiesiieittntttereeteaeseesssssasntereaeereeaaaesaaaasasssrenrerreeeaeesansanssnnrenreees 93
Table 9-2 Correspondence Between TEV Input and Output Register Names..........cccoeoeevvvvvvveenenn. 95
Table 9-3 Color or Alpha Compare OPEratiONScceeeeiiiiciiriiiiereeeee e s s e ssarre e ee e e e e e s sananrrnreeere e 96
Table 9-4 Color-only Compare OPEratiONSuuuieiriieeeeiiiieiiiririerrerreeeeeesssesarrerrrrreeeeeesaneannrnrerereees 96
Table 9-5 Alpha-only Compare OPEratiONSeeueiiereeriiiiiiiiiriiererereeeeesssssrrerrrrreeeaeesanessrareeereees 96
Table 9-6 Color and Alpha Constant RegiSter ValUESuuvvviiieriiiiiiiiiiiieeeee e eesneee e e e 100
Table 11-1 16-bit Z BUFfer FOMMALS.......cooiiiiiiiiieiee et e 123
Table 11-2 BIending PAr@QmeEtersScooooiiiiiiiiiie ettt e et e e e e e e e s e e s bt e seeeeeeaas 125
Table 11-3 LOGIC OPEIALIONS.uuutiiiiiiieeaie ittt et e e e e e e e ettt e bttt e e e e e e s e s e bbb beeeeeeaaaaseeaanbabbeaeeseeaeas 126
Table 14-1 MEMOIY IMELIICSueeeeieiiieiie ettt e ettt e e e e e e e e s s e bbb bt e eeeeaa e e e e e aanbnnbeneseaeaaas 157
Table C-1 Display LiSt OPCOUESccuiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e s e snbeebeeeeeas 167
Table C-2 Vertex Index Stream Order REQUIFEMENTS...........uuiiiiiiiiaiiaeiie it 168
Table C-3 EXample DISPIAY LiST.......cuiiiiiiiiiiiiiiiiit ettt e e e e e e s e et seseeeeeas 169
Table E-4 Memory AlIGNMENt RUIESooiiiiiiieii ettt e e e e e 181
Table E-5 Alignment ASSIStANCE FUNCHIONSiiiiiiiiiiiiiiiie et 182
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: Review

2 Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: Review CONFIDENTIAL

(@0 o [T I o 1= { 1K 3

(0700 [T R B o 4 (= QD 1= Tox] o] (o SRR 12
Code 4-2 GXSEVIXALIFEML.....eeeeieie e e 16
COdE 4-3 GXSEEPOINISIZE ..ttt re e e e nnnes 18
Code 4-4 GXSEtLINEWIATN.......eiiiiieiee e 18
C0de 4-5 VErteX FUNCHIONSeeiiiiieiiiieieee ettt sre e e nee e 20
Code 4-6 Drawing Primitives Using Vertex FUNCLONScciiiiiiiiiiiiiiiieeecee e cssinaee e e e e e e e 21
Code 4-7 UsiNg VerteX FUNCHONScoi ittt e e e e e e s er e e e e e e s s e s s nn it aeaneeeeeeaes 21
Code 4-8 Indexed vs. Direct Compression EXamPlec..cevvviiiiiieei i e e sinene e e e 23
(0700 [T RS) €T = AN 1 - YRR 25
Code 4-10 Arrays Of VEMEX SIIUCIUIESuuiiiiiiiie e e e e i e e e e e e s s e e e e e e e e s e s snnannrneeeeeeeeeaes 26
Code 4-11 DireCt VEIMEX DALA.......uviiiieeierriieitiee ittt nne e 27
Code 4-12 Mixture of Direct and INdexed Data...........ceeirreiiiiiiiiiierie e 27
Code 4-13 GXBEQINDISPIAYLIST ..eeeeeeeiiiciiiieiee e e e e e e e s e e s e e e e e e e e s e sn s e e e e e eaeeeeaes 28
Code 4-14 Sample Array Containing Display LiSt..........ccuueuiiiiiiiiiii e 29
Code 4-15 GXCAlIDISPIAYLISEceeieiieeeiiiiiiiee ettt et e e e e e e e et e e e e e e e ae s anbenbeeeeeeaeaaaeas 30
Code 4-16 GX DrawW FUNCHONScoiiiiiiitiieie ettt e e e e e e e ettt e e e e e e e e e s e s aanbbnbbeeeaaeaaeeaeas 31
Code 5-1 GXLOAAPOSMEXIMIM ...coiiiiiiiiiiiiitie ettt e e e e e e ettt e e e e e e e e e s e s eanbenbaeeeaaaaeaaaeas 34
COAE 5-2 GXSEEPIOJECHION......eeiiiiiiieee ittt et e e e e e e et e e e e e e e e e e e s aanbbnbbeeeaeaaaaaaeas 35
COAE 5-3 GXSEEVIBWPOITeeeteeeeeete e ettt e e e e ettt ettt e e e e e e e s e e abbebbe e e e e eaaeeeeeaanbbnbbreeeeeaaaaens 38
(0700 [T) Y= STl 1o | (TP PRTPR 38
(0700 [ST) € o (o] =To! TP PPPRTTT 39
Code 6-1 GXSEINUMCRNANS.ciiiiiii ettt ettt e e e e e e s e et bbbttt e e e e e e e e e aasnsbesbeeeaaaaaaaeaeas 41
Code 6-2 GXINITLIGNTALIN ...ttt e e e e e e s s e bb e bttt e e e e e e e s e e e s bbnbbreeeeeaaaaens 44
Code 6-3 GXINITLIGNTISPOL ...ttt e e e e e e e et e e e e e e e e e e e s annbbebbeeeaeeaaeaaeas 45
Code 6-4 GXINITLIGNIDISTAIINeeeiiiiee ettt e e e e e e e e s bbbttt e e e e e e e e e e s nbbnbbeeeeeeaaeans 46
Code 6-5 GXSetChanAMBCOIONoi ittt a e e e e e e e e e e e e e as 47
Code 6-6 GXSEICNANCIITeeiiiiiii et e e e e e e e e s e e e e e aaaae e e s 47
Code 6-7 Pre-lighting APt et e e e e e e s bbb e e e e e e eaaa e e as 48
Code 6-8 GXINItLIGtSNININESS() «.eeeeeeeiiiiiiiiieie ettt e e e e e e e e e s sbb e b e reeeeaaaea s 49
(0670 [l B B €Y 1= B o) (@0 o] (o [CT=] o BT PPPRTRT 53
Code 7-2 GXSEINUMTEXGENS ...coiiiiiiiiiitteeee et e e e e e e ettt et e e e e e e s s e e bbbt e et eeaaeaaeae s nnsbenaeeeeaaaeaeaaas 54
Code 7-3 GXSEtTEXCOOIUGENZcoeiiiieitieee ettt e e e e e et e et e e e e e e e e e s nnbeebeeeaaaaeaaaan s 56
Code 7-4 GXSetTexCoordScaleManUAIY ... 56
Code 7-5 GXSetTeXCOOIACYIVWIAP ...ttt ettt e ettt e e e e e e e e s e s abb bbb e e e e eeaaeeeeaaannnns 56
Code 8-1 Simple TeXtUre EXAMPIEcoi ittt e e e e e e e eeeeaaa e as 57
Code 8-2 Initializing or Changing a Texture ODJECEuuiiiiiiiiiie e 61
Code 8-3 Texture Component Promotion t0 8 DitSoooiiiiiiiiiiii e 62
Code 8-4 GXINILTEXODILODciiiiiiiiiie ittt ettt e e sbe e sabe e e e abe e e e be e e s sebeenaees 66
Code 8-5 GXLOAATEXOD) ...ttt ettt e e e e e e e e e e s e b e eeaeaaaeeaeas 72
(070 [T T oY= To 10T B IV E U I SRR TPPPRP 73
Code 8-7 GXINItTEXCACNEREGION ...t e e e e e e e e e 75
Code 8-8 GXINIETIULREGIONeeiiiiiiiei ittt e e e e e e e e e e e et e e e e e e e e e e e s anbbebbereaaaaaaaaeas 76
Code 8-9 GXINItTEXPreLoadREGION()ccuuerieieieieeie ettt e e ettt e e e e e e e e e e s nanbeeeeeeaaaaans 76
Code 8-10 GXPreLOadENIETEXIUIE() ...uvurrreeeiieieeeeee ittt ittt e e e e e e ettt e e e e e e e e s e s enabesbeeeeaaaae e e s 81
Code 8-11 GXLoadTeXODJPIELOBAEA() ... vvvreererieaaaeiiiiiietie et e e e e et e et e e e e e e s e e e e e eaae e e s 82
Code 8-12 GXSetTexRegioNCallDACKoiiiiiii e 82
Code 8-13 GXSetTIUtRegioNCalIDACKuiiiiiiiiii e 82
Code 8-14 Invalidating TeXtUrE IMEIMOIYueiiiiiie ettt e e e e e e e e e e e e e s sbbebbeeeeeeaaaeaeas 83
Code 8-15 Texture COPY FUNCLIONSuiiiiiiiiiiiee ettt e et e e e e e e e e e s e st enbeeeeaaaaeaeaeas 86
COUE 8-16 GXSEEZTEXLUIE ...eeeiiieeeeies ittt e et e e e e e e e e ettt et e et e e ae e e s s e aaab b e beeeeeaaaaeeeesaansbesbeeeaaaaaaaaaens 88
Code 9-1 GXSEtNUMTEVSIAGESc e i et iiiiitittiee et e e e e e e e ettt e et e e e e e e s e e aaaabb b beeeeeaaaaaeaeaaansbenbreeaaaaeaeaaas 92
(0700 [B €Y 1= 1Y@] o U PPTPPRTTR 93
Code 9-3 GXSetTevColorOp, GXSetTeVAIPhAOP.o 94
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: Review

Code 9-4 GXSetTevColorin
Code 9-5 Setting Constant Color
Code 9-6 GXSetTevAlphaln
Code 9-7 GXSetTevSwapMode, GXSetTevSwapModeTable
Code 9-8 Pass Texture Color
Code 9-9 Modulate
Code 9-10 Modulate 2X
Code 9-11 Add......oooeeeeeeeeiieececee e,
Code 9-12 Subtract

Code 9-13 Blend

Code 9-14 GXSetAlphaCompare
Code 9-15 GXSetTevOrder
Code 10-1 GXSetIndTexOrder
Code 10-2 GXSetIndTexCoordScale
Code 10-3 GXSetindTexMtx
Code 10-4 GXSetTevindWarp
Code 10-5 GXSetTevindBumpXYZ
Code 10-6 GXSetTevIindTile
Code 10-7 GXSetTexCoordScaleManually
Code 10-8 GXSetTevindBumpST
Code 10-9 GXSetTevindRepeat
Code 10-10 GXSetTevindirect
Code 10-11 GXSetTevDirect
Code 11-1 GXSetFog
Code 11-2 Fog Range Adjustment Functions
Code 11-3 GXSetZMode
Code 11-4 GXSetBlendMode
Code 11-5 GXSetDither
Code 12-1 GXSetDispCopySrc
Code 12-2 GXSetCopyFilter
Code 12-3 GXSetCopyClamp
Code 12-4 GXSetDispCopyGamma
Code 12-5 GXSetDispCopyY Scale
Code 12-6 GXCopyDisp
Code 12-7 GXSetCopyClear
Code 12-8 GXSetScissorBoxOffset
Code 12-9 GXSetPixelFmt
Code 13-1 GXFifoOb)j
Code 13-2 FIFO Initialization Functions
Code 13-3 FIFO Basic Inquiry Functions
Code 13-4 FIFO Attachment Functions
Code 13-5 FIFO Attachment Inquiry Functions
Code 13-6 GXGetCPUFifo
Code 13-7 FIFO Status Functions
Code 13-8 APIs to Get and Set the Current GX Thread
Code 13-9 GXDrawDone Synchronization Commands
Code 13-10 GXDrawSync Synchronization Commands
Code 13-11 GXEnableBreakPt
Code 13-12 GXDisableBreakPt
Code 13-13 GXSetBreakPtCallback
Code 13-14 GXAbortFrame
Code 13-15 VI Synchronization Commands
Code 13-16 Double-Buffer Copy Synchronization
Code 13-17 Single-Buffer Copy Synchronization

RVL-06-0037-001-E
Released: Review

Graphics Library (GX)

© 2006-2009 Nintendo
CONFIDENTIAL

Code 13-18 APIs to Control the Write-Gather Pipeccuviviiiiiiee e a e 149

Code 13-19 APIS to COoNtrol VErfICALIONcoiiviiii ittt e e 149
Code 14-1 GP MEtriC FUNCHIONS.ueiiiiiiiiiiie ittt e ettt e e e st ee e e e st e e e e s snbeeeeeesnees 151
Code 14-2 COUNLING @ MELITIC ...vviiiiiii e e ettt e e s e e e e e e e e s s ee e e e e e e e e e s sennnnrrnanereeaeeeas 155
Code 14-3 Vertex Cache MetriC FUNCLIONSvuiiiiiiiiiiee ittt eee e e 155
Code 14-4 Pixel MetriC FUNCLIONScciiiiiiiieei ittt e et e et e e e e sbreeeeeaes 156
Code 14-5 Memory MetriC FUNCHONSuiiiiiiiiiee et e e e e e s e e e e e e s s s aeeneeeeaeeeeeas 156
Code B-1 GXINIt DEFAUILS.........ueiiiiiiiiiiee et e st e e s s saba e e e s anbeeeeeae 163
Code C-2 Code Necessary to Utilize Example Display LiSt........cccceeiiiiciiiiiniieeeieeeeccssceieieeeeeeeeeen 170
Code C-3 Set_TeXtUrEMOUEOccciii ittt ee e e e et r e e e e e e s e s s s reereeeasessanannrrnneaneeeeaeeeaaas 172
Code C-4 Set_TeXIUrEMOUELcccoi it e et r e e e e e e s e s e e e e e e e e e e s e s ssnannrrenraneeeeeeeeanas 172
Code C-5 Set_TeXtUrelMAagEOccoiiiieeeiiiiee e e e e e e er e e e e e e s e s s s reee e e e e e e s s aanrreeranraeeeeeeanas 172
Code C-6 Set_TeXtUrEIMAQGELcccoii it e e s e e e e e e s e s e e e e e e e e e e e e s s snanrreaeaneaeeeeeeaaas 173
Code C-7 Set_TEXUIEIMAGEZceeeiis i eeeeiieee et e e e e e s ee e e e e e e e s e s s e ereeeeaeasesaansnnsreneaneeeeaeeeanas 173
Code C-8 Set_TeXtUIEIMAGEScooiii ittt e e e e e e e e bbbt e e e e e e e e e e s e e bnbbereeeeaaaaaeeans 173
(OfoTo [O IS N =Y« (U] £ O 174
€008 C-10 SU_TS0 ... uteieieeitiiiee e s siete e e e sttt e e s s et e e e e s stteeeeeaattbeeeeeasbteeeeeastaeaeeestseeaeeasbaeeeesasaeeeansases 174
(00 o L @] O S X USSR PRRN 174
Code E-12 DVDSetAutoINValidationooiiiiiiiiierr e e e e e ae e 184
Code E-13 Commands to Flush the CPU Data CacChecccceeeiiiiiiiiiiiiiicce e 184
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: Review

Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: Review CONFIDENTIAL

Equation 4-1 ALrDULE AQAIESSccoie et e e e s e s e e e e e ae e s sa s snneetaneeaeeeeeaneennnnnes 14

Equation 5-1 Vertex poSitioN tranSfOrM.........uiiiie i e e e e e e s s s e e e e e e e e s e e nnrnnes 34
Equation 5-2 Vertex Normal TranSfOrmiiii oot e e e s e e e e e e e e s e ennneeees 34
Equation 5-3 Perspective ProjECHIONuuuiiiiiiie i e e e e e e e e s s aee e e e e e e e e anesnnnnnnes 35
Equation 5-4 OrthographiC ProjECHIONuuuiiiiieci et s e e e e e s e s e e e e e e e s e e annennns 35
Equation 5-5 Clip Space to Screen Space CONVEISIONcvevveereeiiiiiiiieieeeeeseessssssnsesreereeseessnssnnnnnnn 37
Equation 5-6 NOrmal MatrixX INAEXuueeiiiiiiieiiiisiiiiiieeeeeee e e e s e s st ee e eeeeaeesssssnneesrnereeeeeessesannnnns 40
Equation 6-1 Light PArameEtersccoceiiieieiieeie e it e e e e e e e s e e e ee e e e e e e e e s s nnsaae e eeeeaeeesneannnnnnns 43
Equation 6-2 RASLEMNZEA COlON.........cc et ees e e e e e s e e s r e e e e e e e s s s anbee e eeeeaeeeanesnnnnnnes 43
Equation 6-3 Color ChanNEl............ooceiiieiiei e e e e e e e e s e s s e e e e e aeeeseeannnnns 43
EQUALtioN 6-4 MaALErial SOUICEc.coiiiiiiiieiieee e et e e et e et e e e s e e s e e e e e e aeessa s snntntaneeeeeeeeanesannnnes 43
Equation 6-5 Channel ENADIE ... e e e e e e s 43
Equation 6-6 Sum of Lights in @ ChanNElcccooiiiiiiiiiicc e 43
EQUAtioN 6-7 AMDIENT SOUICEccii ittt e e e e s e s e r e e e e e e e e s s nnbeeteeeeeeaeeeaneannnnnnes 43
Equation 6-8 Diffuse AtENUALIONueiieiiiiiie ittt e e e e e e e s e e e e e e e e e e e e e aannnnes 43
Equation 6-9 Diffuse Angle and Distance AttE@NUALIONccoiiii i 44
Equation 6-10 Pre-lighting ... ittt e e e e e e e e e e e e e annaes 48
Equation 6-11 Specular AtENUALIONeeiiiiiaaii ittt e e e e e e s e rbebbe e e e eea e e s e e sannaes 49
Equation 7-1 Texture Coordinate GENEIatioNc..uuuieiiiieieaai ettt e e e e e e e e e e naeeees 53
Equation 7-2 Transforming src_param by 2x4 and 3X4 MatriCescceiiaiiiiiiiiiiiiiiieeaee e 53
Equation 7-3 INPUL COOITINALESttt e e e e e e e e e e e b eebeeeeaaaeeeaaeaannnnes 53
Equation 9-1 Regular TEV OQUIPULcuuiiiiiiieiiee ettt e e e e e e e e e e s eibbbsaeeeeeaaaeeeaannns 95
Equation 9-2 ComMPAre TEV OULPUL........uuiiiiiiiiie ittt e e e e e e e e s abbebbeeeaaaaeeeeeeannnnes 95
Equation 9-3 PAsSS TEXIUIE COl0Oruuiiiiiiiiiiai ittt et et e e e e e e e st e e e e e e e e e e e e e annnees 101
EQUALION 9-4 MOAUIALEcoiiiiiiii ettt e ettt et e e e e e e e e e bbbt e e e eeaaeeeeaa e annnees 102
EQUAtion 9-5 MOAUIALE 2Xoii ittt e et et e e e e e e e s bbbt eeeeeaae e e e s e e nnnees 102
EQUALION -6 AGDottt e e e e e e e e st e e e e e e e e e e e e e b a bbb aeeeeaae e e e e e e annree 102
EQUALION -7 SUDTIACT ...ttt ettt et e e e e e e e s e e bbb e e e eeeaaeaeeeaaannnees 102
EQUALION -8 BIBNG ...ttt e e e e e ettt e e e e e e e e e e e e bbbt e e e ee e e e e e e e e e annree 103
EqUuation 9-9 AIPNa COMIPAIE.coi ittt ettt et et e e e e e e e e e e s sabbbbebeeeaaaaeaeaaannes 103
Equation 9-10 Sample AIPNa COMPAIEcoiiiiiiiiiiieiiiee ettt e e e e e e e e e e e e e e e s e s aneeees 103
Equation 10-1 Dynamic INAIr€Ct MALIICEScceiiiiiiiiiiiiiiieee ittt a e e 114
(Lo [UE=T o] o 0 It I =11 o To [g To RO PPTUPURR I 124
Equation 11-2 Subtractive Blend OPEration...........cocuuiiiiiiiiieeeei ittt e e e e e e snneees 124
EQUAtioN 11-3 BAYET IMALIIX ..eeeiieiiiiiiiiieteee et e e e ettt et e e e e e e s e et et e e e e e e e e e e s e aannbbbaeeeaeaaeeeeaanannnees 127
Equation 11-4 5-bit DIthering (IdEaI)euuiiiiiiiiiiie e e e e e 127
Equation 11-5 5-bit Dithering (approximation actually used)ccueeiiiiiriiiiiii s 127
Equation 11-6 6-bit DIthering (IdEaI)uueiiiiiiiiiii e a e e e 127
Equation 11-7 6-bit Dithering (approximation actually used)ccueeiiiiiriiiniiii s 127
Equation 12-1 RGB t0 YUV CONVEISION ...ceeiiiiiiiiiiiiiitiititee e e e e e e sttt e ee e e e e e e s e asnbsaeseeeaaeaaeaanaannnnes 138
Equation 14-1 Miss-Rate CalCUIAtION..........ciiii i e e e e s e rneeees 153
© 2006-2009 Nintendo RVL-06-0037-001-E

CONFIDENTIAL Released: March 27, 2009

Graphics Library (GX)

RVL-06-0037-001-E © 2006-2009 Nintendo
Released: March 27, 2009 CONFIDENTIAL

	Graphics Library (GX)
	1 Introduction
	1.1 Document Organization
	1.2 Syntax Notes
	1.3 A Note on Pointers
	1.4 Useful Books

	2 Code Example: smp-onetri.c
	3 Initialization
	3.1 Video Initialization
	3.2 Graphics Initialization
	3.3 Graphics Processor (GP)

	4 Vertex and Primitive Data
	4.1 Describing the Vertex Data
	4.2 Describing Arrays
	4.3 Describing Attribute Data Formats
	4.4 Drawing Graphics Primitives
	4.4.1 Primitive Types
	4.4.2 Points and Lines
	4.4.3 Rasterization Rules
	4.4.4 Using Vertex Functions

	4.5 Vertex Data Organization
	4.5.1 Indexed Vertex Data
	4.5.2 Direct Vertex Data
	4.5.3 Mixture of Direct and Indexed Data

	4.6 Display Lists
	4.6.1 Creating Display Lists
	4.6.1.1 Using GXBeginDisplayList and GXEndDisplayList
	4.6.1.2 Creating Arrays Containing Display List Commands

	4.6.2 Drawing Primitives Using Display Lists
	4.6.3 Effect on Machine State

	4.7 GXDraw Functions

	5 Viewing
	5.1 Loading a Modelview Matrix
	5.2 Setting a Projection Matrix
	5.3 Culling, Clipping, and Scissoring
	5.4 Viewport and Scissoring
	5.5 Coordinate Systems
	5.6 How to Override the Default Matrix Memory Configuration

	6 Vertex Lighting
	6.1 Lighting Pipeline
	6.1.1 Diffuse Lights, Diffuse Attenuation and Vertex Normals
	6.1.2 Local Lights and Range Attenuation
	6.1.3 Spotlights, Directional Lights and Angle Attenuation

	6.2 Diffuse Lighting Equations
	6.3 Matrix Memory
	6.4 Light Parameters
	6.4.1 Angle Attenuation
	6.4.2 Distance Attenuation

	6.5 Channel Parameters
	6.5.1 Channel Colors
	6.5.2 Channel Control
	6.5.3 Pre-lighting

	6.6 Specular Lighting
	6.7 Vertex performance
	6.8 Lighting Performance

	7 Texture Coordinate Generation
	7.1 Specifying Texgens
	7.2 Renormalization and “post-transform” Matrices Added for Texgens
	7.3 Other Texture Coordinate Generation Issues
	7.4 Texture Coordinate Generation Performance

	8 Texture Mapping
	8.1 Example: Drawing a Textured Triangle
	8.2 Loading a Texture into Main Memory
	8.3 Describing a Texture Object
	8.3.1 Texel Formats
	8.3.2 Texture Lookup Table (TLUT) Formats
	8.3.3 Texture Image Formats
	8.3.4 Texture Coordinate Space
	8.3.5 Filter Modes and LOD Controls

	8.4 Loading Texture Objects
	8.5 Loading Texture Lookup Tables (TLUTs)
	8.6 How to Override the Default Texture Configuration
	8.6.1 Texture Regions
	8.6.2 Cached Regions
	8.6.3 TLUT Regions
	8.6.4 Preloaded Regions
	8.6.5 Texture Cache Allocation
	8.6.6 TLUT Allocation

	8.7 Invalidating Texture Cache
	8.8 Changing the Usage of TMEM Regions
	8.9 Creating Textures by Copying the Embedded Frame Buffer
	8.10 Z Textures
	8.11 Texture Performance

	9 Texture Environment (TEV)
	9.1 Description
	9.2 Default Texture Pipeline Configuration
	9.3 Number of Active TEV Stages
	9.4 GXSetTevOp
	9.5 Color/alpha Combine Operations
	9.5.1 Compare Mode

	9.6 Color Inputs
	9.7 Alpha Inputs
	9.8 Color Component Swap Mode
	9.9 TEV “constant” Color Registers
	9.10 Example Settings
	9.11 Alpha Compare Function
	9.12 Z Textures
	9.13 Texture Pipeline Configuration

	10 Indirect Texture Mapping
	10.1 Setting Up Indirect Texture Stages
	10.2 Basic Indirect Texture Processing
	10.3 Basic Indirect Texture Functions
	10.3.1 Texture Warping
	10.3.2 Environment-mapped Bump-mapping (EMBM) (dX, dY, dZ)

	10.4 Advanced Indirect Texture Processing
	10.4.1 Selecting “bump alpha”
	10.4.2 Dynamic Matrices
	10.4.3 Selecting Texture Coordinates for Texture LOD
	10.4.4 Adding Texture Coordinates from Previous TEV Stages

	10.5 Advanced Indirect Functions
	10.5.1 Texture Tiling and Pseudo-3D Texturing
	10.5.2 Environment-mapped Bump-mapping (EMBM) (dS, dT)
	10.5.3 General Indirect Texturing

	11 Fog, Z-compare, Blending, and Dithering
	11.1 Fog
	11.1.1 Fog Curves
	11.1.2 Fog Parameters

	11.2 Z-compare
	11.2.1 Z Buffer Format

	11.3 Blending
	11.3.1 Blend Equation
	11.3.2 Blending Parameters
	11.3.3 Logic Operations

	11.4 Dithering

	12 Video Output
	12.1 The Copy Pipeline
	12.1.1 Copy Source
	12.1.2 Antialiasing and Deflickering
	12.1.3 Gamma Correction
	12.1.4 RGB to YUV
	12.1.5 Y Scale
	12.1.6 Copy Destination
	12.1.7 Clear Color and Z for Next Frame

	12.2 Predefined Render Modes
	12.2.1 Double-strike, Non-antialiased Mode
	12.2.2 Double-strike, Antialiased Mode
	12.2.3 Interlaced, Non-antialiased, Field-rendering Mode
	12.2.4 Interlaced, Antialiased, Field-rendering Mode
	12.2.5 Interlaced, Non-antialiased, Frame-rendering, Deflicker Mode
	12.2.6 Interlaced, Non-antialiased, Frame-rendering, Non-deflicker Mode
	12.2.7 Interlaced, Antialiased, Frame-rendering, Deflicker Mode
	12.2.8 Progressive Mode
	12.2.9 Progressive, “Soft” Mode
	12.2.10 Progressive Antialised Mode

	12.3 GX API Default Render Mode
	12.4 Embedded Frame Buffer Formats
	12.4.1 48-bit Format - Non-antialiasing
	12.4.2 96-bit Super-sampling Format - Antialiasing

	12.5 External Frame Buffer Format

	13 Graphics FIFO
	13.1 Description
	13.2 Creating a FIFO
	13.3 Attaching and Saving FIFOs
	13.4 FIFO Status
	13.5 FIFO Flow Control
	13.6 Draw Synchronization Functions
	13.6.1 GXDrawDone
	13.6.2 GXDrawSync
	13.6.3 FIFO Breakpoint
	13.6.4 Abort Frame
	13.6.5 VI Synchronization

	13.7 Draw Synchronization Methods
	13.7.1 Double-Buffering
	13.7.2 Triple-Buffering

	13.8 Graphics FIFO vs. Display List
	13.9 Notes About the Write-Gather Pipe
	13.10 GX Verify

	14 Performance Metrics
	14.1 Types of Metrics
	14.2 GP Front-End and Texture-Related Metrics
	14.2.1 GP Counter 0 Details
	14.2.2 Counter 1 Details

	14.3 Using Performance Counters
	14.4 Vertex Cache Metrics
	14.5 Pixel Metrics
	14.6 Memory Metrics

	15 Limitations
	15.1 Antialiasing
	15.2 CPU Access to the Frame Buffer
	15.3 Display Lists
	15.4 Vertex Performance
	15.5 Matrix Memory
	15.6 Texture
	15.7 Blending and Logic Operations
	15.8 Sharing Main Memory Resources

	Appendix A. GX API Functions
	Appendix B. GXInit Defaults
	Appendix C. Display List Format
	Appendix D. Wii Texture Formats
	Appendix E. Memory Issues

